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Age-related macular degeneration is a retinal disease that causes permanent loss of central vision in people over the age of 65. Its
pathogenesis may be related to mitochondrial dysfunction, infammation, apoptosis, autophagy, complement, intestinal fora, and
lipid disorders. In addition, the patient’s genes, age, gender, cardiovascular disease, unhealthy diet, and living habits may also be
risk factors for this disease. Complement proteins are widely distributed in serum and tissue fuid. In the early 21st century,
a connection was found between the complement cascade and age-related macular degeneration. However, little is known about
the efect of complement factors on the pathogenesis of age-related macular degeneration. Tis article reviews the factors as-
sociated with age-related macular degeneration, the relationship between each factor and complement, the related functions, and
variants and provides new ideas for the treatment of this disease.

1. Introduction

Research shows that the number of people with age-related
macular degeneration (AMD) is expected to reach nearly
300 million by 2040 [1]. Patients with early onset of AMD
have no obvious symptoms, and fundus examination can
show macular pigment disorders. According to the clinical
manifestations, the disease can be divided into two cate-
gories, i.e., wet and dry, and the dry nature accounts for
about 80%∼90% in the clinic.Te course of dry AMD is slow,
with a gradual and irreversible decrease in central visual
acuity. Te pathological manifestations include atrophy and
dryness of the retinal pigment epithelium (RPE) layer. Ef-
fective treatment for this disease is currently lacking [2].
Patients with wet AMD usually have reduced or even loss of
central visual acuity for several weeks or months, and the
pathological manifestations are mainly neovascular. Tis
neovascularization can develop subretinal through the
choroid and is fragile, easily leaking serous fuid in the blood
vessels to the surrounding tissues, causing an infammatory
response in the surrounding tissues [3]. At present, anti-
VEGF therapy is being investigated as a treatment modality

[4]. Te complement system consists of more than 50
proteins, some of which are capable of recognizing patho-
gens in the fuid phase. Te complement system reacts to
environmental changes through three major pathways: the
classical pathway, the alternative pathway, and the lectin
pathway (or MBL pathway) [5]. Te classical pathway and
the MBL pathway activate C1 and MBL-MASP-2, re-
spectively, to cleave C2 and C4 to form C3 convertase. C3b
formed after C3 cleavage combines with C4b2a to produce
C5 convertase. In the alternative pathway, factor B combines
with C3b, which is spontaneously hydrolyzed by C3, with the
assistance of factors D and P to generate C3 convertase and
C5 convertase. Both of the above two enzymes can activate
and cleave C5 and participate in the formation of the
subsequent membrane attack complex (MAC) [6]. MAC can
form a transmembrane channel on the cell membrane,
allowing water and small soluble molecules to enter the cell
through the channel.Tis causes cell rupture and chemokine
release, resulting in an infammatory response [7] (Figure 1).
During the pathogenesis of AMD, the complement pathway
is activated, and the product MAC can directly destroy
retinal cells and gradually accumulate in the basal layer of
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retinal pigment epithelial cells to form drusen. Aggregation
between Bruch’s membrane and the retinal pigment epi-
thelium results in retinal pigment epithelium-Bruch’s
membrane-choriocapillary complex degeneration. If the
lesion reaches the retinal pigment epithelium and the
neuroepithelial layer, it can lead to the formation of sub-
retinal neovascularization and severely damage the patient’s
vision [8]. However, a signifcant correlation has been found
between complement protein levels and age, BMI, and so on,
which are also factors that accelerate the incidence of AMD
[4]. At the same time, the coding variation of complements
can also afect retinal function by changing the serum
complement levels [9]. Tis article summarizes the
6 pathogenesis-related factors, their relationship with
complements, and the complement function and mutants
related to the pathogenesis of AMD.

2. The Pathogenesis of AMD

2.1. Mitochondrial Dysfunction and Oxidative Stress. Te
retina is one of the highest oxygen- and energy-
consuming tissues in the human body. Mitochondria
are double-membrane organelles and are the primary
source of energy in cells; mitochondrial dysfunction has
a signifcant impact on the retina. Under normal cir-
cumstances, the mitochondrial outer membrane regulates
the entry and exit of ions and proteins into and out of cells
through various channels and transporters. Te inner
membrane of the cell has a large surface area. Trough the
formation of ridges, various enzymes involved in electron
transfer, tricarboxylic acid cycle, oxidative phosphoryla-
tion, and other processes are carried, providing energy for
cells [10]. A part of the oxygen in the inner membrane is
not completely reduced to form ROS during oxidative

phosphorylation. ROS can regulate the communication
transcription factor between mitochondria and the nu-
cleus to transmit information [11]. ROS increases during
the pathogenesis of AMD. Many photoreceptors exist in
the retina, especially in the macular region. Te photo-
receptors are rich in unsaturated fatty acids and are targets
of lipid oxidation [12]. In addition, there are many
photosensitizers in RPE and photoreceptors (rhodopsin
and lipofuscin) [13]. Te photosensitizers undergo
a photochemical reaction in response to the light per-
ceived by the visual cycle, but this photochemical reaction
results in the production of ROS [14]. Due to the high
oxygen consumption and high concentration of un-
saturated fatty acids and photosensitizers in the retina, the
organ is prone to oxidation and antioxidation imbalance
[15]. Oxidative stress seems to play a pivotal role in the
pathogenesis of AMD, with a signifcant increase in ROS
levels [16]. Excessive ROS impairs protein and lipid
metabolism and damages mitochondrial DNA (mtDNA)
in the matrix. mtDNA is a 16 kb circular double-stranded
DNA without introns. 98% of the genome controls the
expression of functional proteins such as 16sRNA and
12sRNA, and 2% controls its own replication, which is
located in the d-loop. However, mtDNA lacks proof-
reading and repair functions, and under normal cir-
cumstances, mitochondrial transcription factor A
(TFAM) and the nucleoid complex of various proteins are
protected from abnormal external interference. Sustained
ROS production damages mtDNA beyond repair capacity
[17]. Terefore, most of the molecules involved in cellular
oxidative phosphorylation (OXPHOS) are blocked due to
mtDNA damage. Tis leads to the dysfunction of the
complex electron transport chain in the inner mito-
chondrial membrane that generates ROS, which further
stimulates the production of ROS [18]. Moreover, ROS
production preferentially damages mtDNA [19], and
mtDNA damage in the macula is more severe than in
other retinal pigment epithelium regions [20]. Damaged
mitochondria open their own permeability transition
pores, releasing internal mitochondrial proteins and
mtDNA, etc. [21]. Tese mtDNA and mitochondrial
proteins disrupt the balance of cellular oxidative stress,
promote the formation of apoptotic bodies, and promote
infammation [22]. In addition, the retina is more sen-
sitive to light with shorter wavelengths. After long-term
photodamage, the extraphotoreceptor segment (POS)
with rich content of polyunsaturated fatty acids (PUFA),
the intermediate produced by internalization and deg-
radation of CD36 and MerTK, is ingested by lipofuscin
particles or other photosensitizers in the retina, and
lipofuscin can directly interact with light to produce ROS
[23]. It can also be combined with N-retinoate-N-reti-
noate ethanolamine (A2E), that can cause fundus auto-
fuorescence, to produce ROS. At the same time, the
photoreceptors are continuously stimulated, which can
accelerate the renewal rate of the outer segment, and
produce more and more ROS, causing damage to the
retina. Retinal RPE cells can engulf POS and cause re-
spiratory bursts, known as ROS bursts [24].
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Figure 1: Te classical pathway and the MBL pathway activate C1
and MBL-MASP-2, respectively, cleaving C2 and C4 to form C3
convertase. C4b2a combines with C3b formed after C3 cleavage to
produce C5 convertase. In the alternative pathway, factor B
combines with C3b, which is spontaneously hydrolyzed by C3
under the action of factors D and P to generate C3 convertase and
C5 convertase. Both of the above enzymes can activate and cleave
C5 and participate in the formation of the subsequent MAC.
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2.2. Infammation. Te blood-retinal barriers (BRBs) pre-
vent immune molecules from entering the omentum pa-
renchyma, and resident immune cells, such as microglia and
the complement system, contribute to immune privilege.
Terefore, the immune privilege of the retina is involved in
the retinal damage response [25]. Microglia are mainly
distributed in the inner layer of retinal nerves and are
regulated by CX3CL1/CX3CR1, C2, and other molecules.
Tey can be divided into a proinfammatory phenotype (M1
type) and an anti-infammatory phenotype (M2 type). After
stimulation, M1-type microglia can change into an amoeba
shape and migrate to the extraretinal and subretinal areas to
phagocytose pathogens, receptors, and damaged cell debris
[26]. Te release of infammatory factors such as TNF-α and
IL-1β induces infammation [27]. Te M2 type is the op-
posite of the M1 type, and its release of IL-10, TGF-β, VEGF,
and so on counters infammation and promotes cell repair
[28]. In the retina of AMD patients, infammatory pathways
are activated, IL-1β increases, and infammasomes are
formed [29]. Studies have shown that IL-1β stimulates the
expression of chemokines such as Ccl2 in Muller cells and
retinal RPE cells and promotes the accumulation of mac-
rophages. Te types of macrophages are similar to those of
microglia, with the antivascular M1 type and the provascular
M2 type exerting opposite efects, regulating the growth of
retinal and choroidal blood vessels [30]. Infammasomes are
multiprotein complexes composed of sensor proteins,
adaptor proteins, and proenzymes. It is a class of oligomeric
complexes that act as receptors to recognize microorganisms
and cell products. In the retina, infammasome assembles
with procaspase-1 after retinal activation, after which it is
assembled to divide and dissolve into caspase-1. Caspase-1
cleaves some propeptides (e.g., IL-18 and IL-1β) into active
forms to activate infammation [31]. Tey accelerate Bruch’s
membrane degradation and choroidal neovascular de-
generation [32]. Studies have shown that the activation of
infammasomes promotes retinal neovascularization in
AMD patients, and the targets are mainly located in non-
RPE cells [33]. C-reactive protein can be found in drusen in
the choroid basal layer, where it acts as a regulator of ac-
tivated platelets and monocytes, participates in various in-
fammatory pathways, and targets choroidal cells to
destroy [34].

2.3. Apoptosis. Apoptosis is a programmed cell death
process characterized by the formation of membrane
vesicles, cell shrinkage, nuclear fragmentation, and apo-
ptotic bodies [35]. It is a programmed death that begins in
utero and is opposed to mitosis and can occur through both
intrinsic and extrinsic pathways. (1) Te intrinsic pathway,
also known as the mitochondrial pathway, is usually ac-
tivated by increased ROS, lack of oxygen, protein or DNA
damage, and so on, which can stimulate mitochondria to
accelerate the production of cytochrome C and then ac-
tivate caspase for subsequent reactions. At the same time,
the intrinsic pathway is regulated by the Bcl-2 family and
fuctuates under the regulation of proapoptotic factors
(such as Bax, Bak, Bad, and Bcl-x) and antiapoptotic factors

(such as Bcl-2 and Bcl-xl). (2) External pathways can occur
by the death receptor protein family, such as Fas binding to
Apo1 and TNFR1 receptor binding to tumor necrosis
factor (TNF), and then activating caspase [36]. Dysfunc-
tional mitochondria and endoplasmic reticulum are de-
tected in the retina of AMD patients with visual
impairment [37]. Te endoplasmic reticulum is a tubular
network mainly responsible for protein synthesis, folding,
and transport. Te stress response to oxidative damage
leads to protein maturation disorders and induces the
activation of caspase-4 [38]. Apoptosis is regulated by the
caspase protein family, and activated caspase-4 activates
downstream caspase-3/6/7 along with the signaling path-
way, triggering apoptosis in target cells [39]. Moreover,
from the perspective of toxicology, cell apoptosis shares
some common inducing factors with AMD pathogenesis
[40]. Caspase and cytochrome c release following mito-
chondrial damage [41], and the production of IL-1β, IFN-c,
IL-6, TNF-α, and oxLDL by macrophages after phagocy-
tosis of pathogens can induce apoptosis [42]. Furthermore,
A2E (N-retinyl-N-retinylidene ethanolamine) can generate
a large amount of ROS and can also cause apoptosis [43].
Tese are all important factors in the pathogenesis of AMD,
highlighting the close relationship of apoptosis to AMD.

2.4. Gut Microbiota. Tere are about 100 trillion micro-
organisms in the human gut. Due to people’s diferent
lifestyles, body mass index, and cultural and dietary
habits, the microbiota in the human gut vary considerably
[44]. Te disturbance of intestinal fora may damage the
intestinal vascular barrier and increase the permeability of
the intestinal tract. Terefore, the stability of the intestinal
fora is essential for maintaining the health of the body
[45]. In recent years, studies have found that the impact of
gut microbiota energy metabolism, signal transmission,
and barrier regulation on the body is not limited to the
intestinal lumen but also involves the central nervous
system [46]. Te retina is an extension of the central
nervous system, and the concept of the “microbiota-gut-
retina axis” is being researched [47]. Aging is an un-
avoidable cause of AMD. Studies have shown that with the
natural aging process, the types and quantities of
microbiota in the gut also change [48]. Furthermore,
a high-sugar and high-fat diet is also related to changes in
gut fora and the pathogenesis of AMD [49]. In a mouse
model of AMD, a larger proportion of Clostridium species
were found in the intestine of mice on a high-fat diet,
while a low-fat diet promoted the growth of the S24-7
family and Bacteroidetes. Clostridium species increase the
systemic infammatory response and promote choroidal
neovascularization, while Bacteroidetes inhibit the
pathogenesis of AMD in the body [50]. Firmicutes were
more prevalent in AMD patients than in controls, while
Bacteroidetes were less abundant. Lower levels of bacteria
linked to fatty acid elongation were found in patients with
AMD [51]. In contrast, Escherichia coli and Helicobacter
pylori in the intestinal lumen lead to increased ROS
levels [52].
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2.5. Lipid Metabolism. Drusen is an early clinical feature of
AMD, which is characterized by a localized dome-shaped
basal linear deposit formed between the inner collagen layer
of Bruch’s membrane and the RPE substrate [53]. About
40% of these sediment components are lipids such as
cholesterol, triglycerides, fatty acids, and apolipoproteins
[54]. Terefore, drusen is also referred to as “oil leak on the
Bruch membrane” [55]. Cholesterol is a lipid component
that performs important functions in living organisms and
can be synthesized by nucleated cells. It is an essential
component of cell membranes, steroids, and neuronal
synapses and is part of the transcriptional regulation of genes
[56]. Due to the high metabolic characteristics of RPE cells,
in order to avoid the accumulation of cholesterol in the cell,
RPE cells can expel excess cholesterol outside the cell
through the subretinal space and choroidal blood vessels;
otherwise, this will afect the transduction process of light in
the retina. Among them, the efux mechanism of ABCA1/
ABCG1 is mentioned more; if cholesterol accumulation
occurs in RPE cells, ATP-binding box transporters A1
(ABCA1) and G1 are activated, cholesterol is fipped to the
cell surface through the inner lobule, and cholesterol that is
fipped to the cell surface plays a role with apoliporeceptor
protein to play subsequent biological functions [57].
Moreover, these lipids are easily oxidized to advanced
glycation end products, such as carboxyethylpyrrole,
malondialdehyde, and 4-hydroxynonenal [58]. Tese
products promote the progression of AMD by accelerating
macrophage aggregation, cytokine release, and neo-
vascularization [59]. Studies have shown that high-density
cholesterol (HDL-C), serum triglycerides (TG), and low-
density cholesterol (LDL-C) are associated with early AMD
[60]. In symptomatic AMD patients, improvements in
eyesight and adverse symptoms have been observed after
statin treatment [61]. ApoE is a popular apolipoprotein
derived from systemic circulation and RPE cells and has
recently been linked to this disease. ApoE packages cho-
lesterol and fat and transports them via the circulation to the
retina, where cholesterol and fat are released to ensure
retinal energy supply [62]. Studies have reported a positive
correlation between ApoE2 polymorphism and the occur-
rence of AMD, while ApoE 4 polymorphism is negatively
correlated with the occurrence of AMD. Furthermore,
glucose metabolism and lipid metabolism disorders were
found in mice lacking ApoE, and substances similar to basal
linear deposits were seen in retinal RPE and Bruch’s
membrane [63]. Terefore, lipid disorders and AMD
pathogenesis are related to each other.

2.6. Autophagy. Eukaryotes can maintain gene conserva-
tion through the autophagy pathway. Under normal
circumstances, autophagy can degrade aging and dam-
aged intracellular substances through organelles such as
lysosomes to maintain intracellular turnover and circu-
lation stability. Its pathways can be divided into macro-
autophagy, microautophagy, and chaperone-modifed
autophagy, which are regulated by AMP-activated protein
kinase (AMPK) and the mammalian target of rapamycin

(mTOR) pathways [64]. Macroautophagy is the main
autophagy pathway of cells; when the cell is misfolded and
pathogens invade, it can be wrapped by the double-
membrane structure to form autophagosomes, and after
autophagies, lysosomes fuse to form autophagic lyso-
somes and fnally degrade the substrate. Microautophagy
is degraded by lysosomal membrane invagination,
wrapping the degraded substrate into the lysosome.
Chaperone protein-mediated autophagy is common in
mammals, and this autophagy mainly relies on lysosome-
related transporters (such as lysosome-associated mem-
brane protein 2A and heat shock protein) to transport
substrates to lysosomes for degradation [65]. Retinal RPE
proteolysis is impaired during AMD, and the accumulated
proteins after chronic oxidative stress are deposited as
lipofuscin in RPE, which promotes the formation of
drusen [66]. Te main component of lipofuscin is A2E,
which inhibits autophagy and aggravates RPE cell damage
[67]. In the early stage of the disease, RPE cells can remove
the accumulated waste through autophagy, but as the
disease progresses, the lysosomal activity in the cells
decreases, and the RPE cells become disordered [68].
Decreased lysosomal activity and elevated autophagy
markers ATG5, LC3, and so on have been observed in
AMD patients. In the autophagosome formation process,
the ratio of soluble LC3-I and lipid-bound LC3-II can be
used as a standard to evaluate autophagosome formation
[69]. Te model group mice showed retinal RPE hyper-
plasia, pigmentation disorder, and accumulated oxidized
protein substances after silencing the core genes ATG5
and ATG7 of mouse autophagy. Te content of misfolded
proteins in AMD far exceeds the repair capacity of heat
shock proteins. Misfolded proteins tend to form harmful
aggregates. After being encapsulated, fusion with lyso-
somes causes cellular infammatory responses and auto-
phagy [70]. Autophagy also afects POS in RPE cells, and
since each RPE cell needs to assist multiple rods, a large
amount of POS is required to be constantly updated.
During the renewal process, autophagies start at the apex
of POS and degrade the disk structure of POS. In addition,
a large number of studies have shown that the onset of
AMD can cause excessive autophagy in RPE cells, the
number of autophagies in RPE cells is increased compared
with that in the control group, and autophagy-related
proteins and autophagy fow are reduced. Inhibition of
RPE autophagy protects against photoreceptor damage in
RPE cells [71].

3. The Pathogenesis of AMD and Its
Relationship with Complement

3.1. Complement andMitochondrial Dysfunction. CD46 and
C1q are complements that mainly afect mitochondrial
dysfunction. Some studies have found that mitochondria-
related genes have been altered by completely suppressing
the complement system of experimental animals with fatty
liver models [72]. Terefore, it is speculated that comple-
ments play a role in mitochondrial function [73]. It was
subsequently found that C1q internalized by CD8+ T cells
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can bind to the C1q receptor on the mitochondrial mem-
brane and regulate ATP synthase complex formation. Te
ATP synthase complex functions to maintain mitochondrial
morphology andmitochondrial membrane potential [17]. At
the same time, it was found that CD46 is a protein receptor
present on the membrane of nucleated cells for complement
regulation of cells. When the body is at rest, it exists in the
form of CD46-CYT-2. When the body is stimulated, it binds
to C3b in the form of CD46-CYT-1 and enters cells. CD46
entering cells participates in the expression of genes related
to glucose transporter 1 and L-type amino acid transporter 1,
promoting the utilization of glucose and amino acids by
cells, andmaintaining the level of mitochondrial metabolism
[74]. Te reduction of CD46 on the surface of RPE cells in
AMD patients also afects the subsequent mitochondrial
production capacity [75]. Furthermore, MBL can localize C4
to mitochondria to activate the complement pathway. Te
identifed mitochondria activate their stress protein (mor-
talin), originally located in mitochondria, which relocates to
the cell membrane and activates the release of complement
[76]. In vitro, cultured renal tubular epithelial cells were
added with C5a, and decreased mitochondrial oxidative
respiration capacity and increased ROS production were
reported [77]. Tis may be related to the increase of Ca2+
uptake after the activation of corresponding C5a on the
mitochondria and the increase of its internal Ca2+
concentration [78].

3.2. Complement and Infammation. Complement C3 is
a major proinfammatory protein.Te complement pathway
is activated in the pathogenesis of AMD. Elevated levels of
C3a, C5a, and MAC directly activate the NF-κB pathway,
stimulating the secretion of interleukin from monocytes and
the secretion of trypsin and chymase from mast cells [79].
Complements also induce ATP efux and initiate the
“complement-metabolism-infammasome” signaling axis to
promote NLRP3 infammasome formation [80]. In addition,
NF-κB promotes infammatory and oxidative responses [81].
Chymase can hydrolyze C3 to C3a, further intensifying the
activation of the complement pathway [82], and the NLRP3
infammasome can be activated by macrophages that have
phagocytosed C1q. After activation, it catalyzes the cleavage
of the caspase-1 precursor, leading to the activation of in-
fammatory factors IL-18 and IL-1b [83]. Te alternative
complement pathway induces the release of extracellular and
intracellular damage-associated molecular pattern (DAMP)
molecules, which promote the expression of infammatory
factors in RPE cells [84]. Under the action of C3b and C5a,
C3a promotes the respiratory burst of neutrophils and ex-
acerbates the production of ROS [85]. Te chemotaxis and
phagocytic functions of neutrophils are inhibited under
extended exposure to higher concentrations of C5a [86]. In
an AMD experimental model, increased levels of IL-6, IL-8,
and GM-CSF were detected after the complement factor H
gene was silenced [87]. At the same time, complement
factor-related protein 1 can induce NLRP3 production
through C-terminal binding to G protein-coupled
receptors [88].

3.3. Complement and Apoptosis. C3 and C5 are comple-
ments that mainly afect apoptosis. Studies have shown that
C3a delays the decline of proapoptotic cells, such as CD4+
Tcells and macrophages. In the absence of C3a, Tcells fail to
diferentiate into IFN-c-producing T1 efector cells [89].
IFN-c promotes the apoptosis of RPE cells [90]. Similarly,
increasing the concentration of C3a in the culture envi-
ronment of macrophages led to a signifcant reduction in the
apoptosis rate of macrophages, resulting in the prolonged
release of IL-1β, TNF-α, prostaglandins, and othermolecules
[91]. Experiments have shown that TNF-α is an external
factor that promotes apoptosis [92].Te combination of C5a
and C5a receptors activates the NF-κB pathway to regulate
the cell cycle, where C5a causes retinal cell cycle arrest at the
G1 phase. Te C5a receptor promotes the replication of cell
genetic material and allows the cell cycle to progress to the
G2/M phase [93]. C5a directly acts on vascular endothelial
cells and increases their permeability. C5a combines with its
receptor and attracts neutrophils, eosinophils, monocytes,
and chemotaxis to the damaged site [94]. Furthermore, C5a
receptors can activate the antiapoptotic factor Bcl-2 to in-
hibit apoptosis [37]. C1q can bind to the corresponding
receptor, reducing cell viability and promoting the ex-
pression of the tumor suppressor gene p53. Terefore, ap-
optosis is regulated by the activity of the Bcl-2 family and
mitochondrial function [95].

3.4. Complement and Gut Microbiota. Factors C3 and D are
complements that mainly afect apoptosis. Te gut is one of
the most abundant microbial communities in the human
body, and these colonies play an important role in regulating
functions such as immunity [96]. In order to explore the
relationship between complements and intestinal fora, some
studies have found an increase in Escherichia coli in the
intestinal tract after silencing the CFD gene. Te increased
E. coli not only afects distant target organs through the
“microbiota-gut-retina axis” but also stimulates the mac-
rophages in the intestine to cause digestive system diseases
such as colitis [97]. Te fecal microorganisms in the colon of
16-week-old mice with C3 gene knockout were analyzed,
revealing decreased anaerobic bacteria and kinetobacteria in
the experimental group lacking C3 compared to the control
group; in contrast, the fora of fungi and Bacteroidetes in-
creased compared with the control group [98]. Firmicutes
and Bacteroidetes account for about 75% of the adult in-
testinal fora, which play a role in protecting the structure
and metabolism of intestinal epithelial cells [99]. Yersinia
pseudotuberculosis and Akkermansia muciniphila were in-
cubated in patient serum. Te experiment revealed that C4b
could be involved in the intestinal defense response, which
was positively correlated to the degree of infammation
[100]. CFH and its polymorphism-produced mutants
(rs10490924) may also have an impact on the distribution of
the intestinal fora [101].

3.5. Complement and Lipid Metabolism. Many comple-
ments, such as CFH, CFD, C1, C3, and C7–9, are related to
lipid metabolism. Studies have shown that apolipoprotein E
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can bind to domains 5–7 of CFH and that apolipoprotein J
can bind to C7, C8, and C9 to afect the complement ac-
tivation pathway. Lipoprotein accumulation is seen in RPE
whenmutants are formed due to the presence of SNP sites in
the complement gene [102]. Similarly, ApoE isoforms can
form C1q-ApoE complexes with C1q, causing leukocytes to
infltrate the choroid and also activate the complement
cascade. Studies have shown that overexpression of CFB in
adipocytes promotes the diferentiation and maturation of
adipocytes. Furthermore, CFB also prompts adipocytes to
produce more enzymes related to lipid synthesis, such as
acetyl-CoA carboxylase, thereby increasing lipid levels [59].
Te serum level of CFD in mice increased after a high-fat
diet, and CFD can reduce the expression of infammatory
factors and the absorption and de novo synthesis of fatty
acids in the liver [103]. C3 is involved in the metabolism of
triglycerides in adipocytes, and the level of C3 in serum is
proportional to the level of low-density lipoprotein cho-
lesterol. At the same time, C3 is also regulated by chylo-
microns that carry transthyretin [104]. Te lipid content in
hepatocytes of mice with C5 gene knockout is higher than
that of controls with activated C5 [105]. In addition to af-
fecting the complement system, lipids can also afect related
complement regulatory proteins. For example, CD59 relies
on cholesterol localization for subsequent processes, and
excess cholesterol leads to the accumulation of MAC [106].

3.6. Complements and Autophagy. C3, C5, and CD46 are
complement proteins that mainly afect autophagy. Te
experiment revealed that the mice with C3a and C5a re-
ceptor knockout had obvious mitochondrial autophagy and
had decreased antihost disease ability than the control
group. Interestingly, some C3 exists in the cytoplasm, and
the autophagy in the cytoplasm that C3 participates in
cannot be replaced by extracellular C3 [107]. In podocytes
cultured in vitro, it was found that MAC can promote the
conversion between LC3-I/II and can also increase the levels
of autophagy-related markers such as p62 and Beclin1 [108].
In general, complements also indirectly regulate autophagy
through related regulatory proteins and corresponding re-
ceptors on the cell surface. Among them, CD46 is a cell
surface transmembrane protein with two transduction cell
membrane signal structures (Cyt-1 and Cyt-2), which hy-
drolyze C3b and C4b with the help of CFI to induce
autophagy in nucleated cells [109]. V-set and immuno-
globulin domain-containing 4 (VSIG4) itself aggregate
autophagy ubiquitin-binding receptor proteins such as p62
to induce autophagy and can also bind to C3b and iC3b to
regulate subsequent autophagy [110].

4. General Situation of Several Common AMD-
Associated Complement Factors and SNPs

4.1. Complement Factor H (CFH)

4.1.1. Function. CFH is a soluble protein synthesized by the
liver and RPE cells. Studies have shown that CFH plasma
levels in young, elderly, and AMDpatients are about 233mg/

L, 269mg/L, and 288mg/L, respectively [111]. However, age,
smoking, and other factors may lead to increased CFH levels
[112]. Complementary control protein modules are encoded
on the chromosome position 1q32 and contain highly
conserved repeat units. CFH tightly connects RPE cells to
each other and protects cells through an apoptotic program
[113]. Its own complementary control protein module in-
hibits C3 convertase activity by electrostatic repulsion with
factor B. Furthermore, CFH competes with factor B to bind
C3b, inactivating C3b with the assistance of factor I, thus
inhibiting the alternative complement pathway [114]. Klein
et al. have reported the presence of CFH in Bruch’s
membrane in AMD patients [115]. Studies have shown that
the complement factor H-related protein (CFHR) exerts
opposite efects on CFH, strengthening the activation of C3b
to activate the complement pathway. Increased levels of
CFHR have been found in the plasma of advanced AMD
patients [116]. In addition to CFH, fve CFHR proteins
(CFHR1∼5) form a structurally related protein family.
However, the biological role of CFHR proteins remains
unclear [117].

4.1.2. SNPs. Complement factor H gene-level changes, such
as single-nucleotide polymorphisms (SNPs), lead to changes
in CFH levels and may result in disease. For example,
mutation of the base thymine T to cytosine C in the com-
plement factor H gene results in a corresponding change in
translation of histidine to tyrosine, leading to the formation
of rs1061170 [118]. Decreased binding to glycosaminogly-
cans on the cell membrane surface alleviates the inhibition of
the alternative pathway and further damages the retina [87].
Another SNP site of CFH is prone to form rs800292, in
which guanine G is mutated to adenine A, resulting in
isoleucine being replaced by valine after translation. Te
protein secreted by rs800292 not only has decreased binding
capacity to C3b but also inhibits its degradation [119]. Te
mutation frequency in the domestic population (43.3%) is
slightly higher than that in the European population
(40.8%). In contrast, the mutation frequency of rs1061170 in
the domestic northern population is much higher than in the
European population [120]. Studies have shown that the risk
of developing AMD in people carrying both rs1410996 and
rs1061170 is 15 times that of the normal population, but
their efects are mutually independent [121]. Moreover, the
SNP sites rsl1200638 (HTRA1 promoter) and rsl10490924
(the upstream 6.6 kb sequence of HTRA1) of the CFH gene
can interact and are positively correlated with the patho-
genesis of both types of AMD [122]. In addition, rs1061170
impairs the binding of H-like protein 1 and FH to Bruch’s
membrane, which can activate the complement pathway and
accelerate the occurrence of AMD [123].

4.2. Complement Factors C1–9

4.2.1. Function. Complement C promotes the occurrence of
AMD. C3 is the most abundant, and its cleavage products,
C3a and C3b, are also the hubs for the activation of the entire
complement system [124]. C3a can stimulate infammatory
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cells to release histamine, increase the permeability of the
blood vessels in the retina, and produce edema; it can
stimulate RPE cells to express VEGF and form new blood
vessels [125]. C3a can also combine with autoantibodies to
promote the production of collagens IV and VI, which are
deposited under RPE [126]. In a previous study, C3
knockout mice developed earlier retinal degeneration after
exposure to UV light [127]. Some studies have detected C3
RNA in the retina of patients, but no C3a receptor has been
found, so it is speculated that the damage of C3a to the retina
may occur through intercellular adhesion molecule-1
(ICAM-1) [128]. Activated C3 can cleave C4 into C4a
and C4b, and C4a also promotes the release of histamine, but
its activity is worse than that of C3a. C4b participates in the
classical pathway of complement to form C3 and C5 con-
vertases [129]. However, the relationship between C4 and
AMD remains to be further studied. C5a is similar to C3a in
some aspects, as it can also stimulate RPE cells to produce
VEGF and can induce local infammation through ICAM-1.
In contrast, C5a receptors have been found on the surface of
RPE cell membranes cultured in vitro [130].

4.2.2. SNPs. C1 SNP rs2511989 and C2 SNP rs9332739
alleviate AMD [131]. rs2230199 (Arg80Gly) is formed by
a mutation of the SNP site of C3 (most commonly, a base
located in exon 3) from cytosine C to guanine G, leading to
the posttranslational replacement of arginine to glycine.Tis
mutation increases the risk of early AMD. Furthermore, the
incidence ratio (2.6) of homozygous GG after mutation is
roughly 1.5 times the incidence ratio of heterozygous CG
(1.7) [132]. Te knock-on efect between rs1047286 and
rs2230199 results in the formation of another C3 variant,
which could be related to AMD [133]. Grassmann et al.
reported the correlation between C4 copy number variations
(CNVs) and AMD [134].

4.3. Complement Factor B (CFB)

4.3.1. Function. Factor B is a single-chain glycoprotein
mainly secreted by hepatocytes, with a plasma concentration
of about 200 μg/mL. It is cleaved into Ba and Bb by activated
factor D [135]. Bb can combine with C3b under the action of
Mg2+ to form the polymer C3bBb, which is the rate-limiting
step of the complement pathway [1]. Te crystal structure of
factor B contains the homologous repeat sequence of Ba in
an antiparallel dimer, which may inhibit the binding of C3b
to Bb, despite Ba not being directly involved in the process
[136]. Te study found that CFB can be expressed in the
retina. AMD patients exhibit elevated CFB levels, which
exert a stronger efect on drusen and Bruch’s membrane
compared to other layers [137]. CFB also causes RPE damage
and promotes neovascularization [138] and can be detected
in the aqueous humor of AMD patients with neo-
vascularization [137].

4.3.2. SNPs. Te CFB gene is located on chromosome
6p21.3, and its SNPs rs4151667, rs641153, rs12614, and

rs9332739 have decreased binding ability to C3b. Tis sig-
nifcantly reduces the incidence of AMD [139]. Some studies
suggest that the CFB gene may be related to the C2 gene as
the CFB gene and the C2 gene are only 500 bp apart on the
same chromosome. However, the interaction between these
two and their efect on the pathogenesis of AMD remains to
be further studied [140].

4.4. Complement Factor D (CFD)

4.4.1. Function. CFD is a serine protease, mainly produced
by adipocytes and macrophages, which cleaves factor B in
the alternative complement pathway and promotes the
formation of C3bBb [141]. People with a higher body mass
index (BMI) have relatively higher CFD content, which may
be related to the amount of adipose tissue [142]. Elevated
serum CFD levels have been observed in AMD patients. In
addition, gender and age also impact the body fat content,
and the CFD content varies accordingly. Te normal range
fuctuates between 1 and 2 µg/mL [143]. When the body is in
a healthy state, factor D is almost completely absorbed by the
renal tubules after being fltered by the glomerulus. How-
ever, some diseases may cause increased levels of factor D in
plasma and lead to nephron damage [144]. Factor D is
produced in the form of a zymogen, and its maturation
requires the excision of excess amino acids; this process is
quick and may be completed during secretion, so factor D is
generally found in its mature form [145]. However, this
mature form is not in an active state. When factor B and C3b
bind, factor D changes from a “locked” mature inactive state
to a mature active state. When factor B and C3b are cleaved,
factor D can be reabsorbed by the kidneys and utilized by the
body [146]. A previous study exposed mice to constant light
for 12 hours for 10 consecutive days, revealing that the CFD
gene knockout mice had a lower prevalence of AMD and
a lower degree of damage to retinal receptor cells than in the
control group [147].

4.4.2. SNPs. Some studies believed that CFDmutation could
promote AMD progression [148]. rs1683564, rs35186399,
rs1683563, rs3826945, and rs34337649 are the more com-
mon SNPs [149].

4.5. Complement Factor I (CFI)

4.5.1. Function. CFI is a serine protease with a special
structure and has poor activity in the free state [150], but it
can cleave and inactivate C3b and C4b with the assistance of
the complement activity regulator protein family [151]. It
also accelerates the degradation of C3 convertase and C3bBb
and inhibits the activation of the alternative complement
pathway [8]. At the tissue level, CFI combines with
β-amyloid in drusen, leading to retinal infammation. At the
same time, β-amyloid also inhibits the cleavage of C3b by
CFI [152]. Te incidence of AMD may be increased in
patients with β-amyloid-related Alzheimer’s disease. CFI
activity increases with the progressive aggravation of AMD,
along with its ability to degrade and passivate [153]. Recent
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studies have shown that a small amount of factor I can be
detected in the serum of patients with advanced AMD [154].
However, since factor I is a normal component in plasma,
elevated levels do not increase the risk of immunogenicity in
the body [153]. Serum CRP (C-reactive protein) levels are
also raised in AMD patients, which may be positively
correlated with complement factor I [155].

4.5.2. SNPs. rs141853578 is unfavorable for patients with
advanced disease [156]. In contrast, rs13117504 allele G and
rs10033900 allele C play a protective role in patients with
advanced AMD [157]. rs2285714 allele T has a negative
impact on advanced AMD patients [158]. However, a study
investigated the mutant rs10033900 in a British population
found no association between the mutant and AMD [156].
More than half of the CFI genetic variants are found in AMD
patients, and lower serum CFI levels have been observed in
these patients [159].

5. Conclusion

In view of the interaction between complements and AMD,
it has been found that inhibiting complement activation can
reduce the damage of RPE cells, thereby inhibiting the
pathogenesis of AMD [106]. Terefore, many complement
inhibitors were discovered. For example, POT-4 inhibits the
conversion of C3 to C3a and C3b, whereas ARC1905 and
eculizumab inhibit C5a. Ranibizumab is a factor D inhibitor,
and CD59 inhibits MAC deposition on the retina [160].
Although complement inhibitors have entered the clinical
research stage, their specifc efcacy and safety may need
further exploration. Recent clinical trials have shown that

complement inhibitors APL-2 and Zimura have promising
efects on geographic atrophy (GA). Te combination of
Zimura and ranibizumab has a favorable efect on vision in
wet AMD patients [161]. However, the incidence of AMD
and the mutation rate of related genes are also related to
region and ethnicity, and the characteristics of the pop-
ulation in this region should also be considered [162].

Te pathogenesis of AMD is complex. Infammation,
apoptosis, autophagy, mitochondrial dysfunction, gut
microbiota, and lipid disorders are involved, and comple-
ments are closely related to the occurrence of these factors.
Complements contribute to the pathogenesis of AMD and
potentiate other factors leading to AMD. Te formation of
MAC activates Fas, TNF, INF, and other pathways, which
can regulate the cell cycle and promote apoptosis and
autophagy. Activation of the caspase family of proteins
afects the cell cycle and induces cellular infammation. Te
production of ROS can damage mtDNA, leading to mito-
chondrial dysfunction. Intracellular lipids can also be oxi-
dized, resulting in lipid accumulation. Moreover, elevated
blood lipids also change the gut microbiota, acting on the
retina through the “microbiota-gut-retina axis” to cause
AMD (Figure 2).Terefore, studying the role of complement
molecules in the occurrence and development of AMD can
help clinicians formulate efective treatment plans for AMD
patients. It will lay the foundation for AMD research in the
future.
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AMD: Age-related macular degeneration
RPE: Retinal pigment epithelium
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Figure 2: Changes in complement function accelerate the formation of MAC and activate PI3K, Fas, TNF, and other pathways. Excessive
ROS and infammatory factors are produced in retinal cells, causing cellular mitochondrial dysfunction, oxidative stress, lipid metabolism
disorders, infammatory response, apoptosis, and autophagy response. Studies have shown that changes in the structure of the intestinal
fora can also exacerbate the formation of choroidal neovascularization. Te combination of the above factors exceeds the compensatory
capacity and results in AMD.
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