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Abstract. 
A new approach for multiobjective optimization is proposed in this paper. The method based on the cross-entropy method for single objective optimization (SO) is adapted to MO optimization by defining an adequate sorting criterion for selecting the best candidates samples. The selection is made by the nondominated sorting concept and crowding distance operator. The effectiveness of the approach is tested on several academic problems (e.g., Schaffer, Fonseca, Fleming, etc.). Its performances are compared with those of other multiobjective algorithms. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed method.


1. Introduction
Optimization is a basic tool for several decision making in engineering area. In these fields, we have many conflicting objectives to satisfy. Usually, we convert all objectives to one, single objective (SO) function. The goal is to find out the maximum/minimum of this SO function subject to maintain the physical constraints of the system. The results reflect a compromise between all objectives. The idea is to formulate the function to achieve this desired compromise.
By aggregating all objectives in a weighted function, or by transforming all objectives into only one objective, and retaining one objective which will be added to constraints, the conversion from MO to SO is done. But the weakness and the limitation of the aggregation are as follows.(1)The requirement of a prior knowledge about the relative importance of the objectives, and the limits on the objectives that are converted into constraints.(2)The aggregated function leads to only one solution.(3)Trade-offs between objectives cannot be easily evaluated.(4)The solution may not be attainable unless the search space is convex.
The aggregation is not recommended for the systems with conflicting objectives. Also, we need to know all possible solutions of all objectives simultaneously. In the business word it is called “the trade-off analysis”. There are several areas in engineering where the performing of the trade-off analysis is necessary, such as the following.(1)The design of controllers while reducing the cost, which are two conflicting objectives.(2)The placement of more functional blocks on chip while minimizing the chip area and/or power dissipation.(3)The finding of the vehicle which has the highest range while at the same time consuming minimum amount of energy.(4)The minimization of the operation cost while maintaining a stable work force [1–3].
MO problems are more difficult to solve compared to the SO problems. In case of SO optimization solution is unique. However, in the MO optimization there is a set of acceptable trade-off optimal solutions which is called the Paretofront. In fact, MO optimization is considered as analytical stage of the multicriteria decision making (MCDM) procedure; it consists of the determination of all solutions for the MO problem, which are the optimal in Pareto logic [4]. The preferred solution, desired by the designer or decision maker, (DM) was selected from it.
Pareto set has several advantages. It contains the solutions that are optimum from an “overall” standpoint and allows the DM to make an informed decision by seeing a wide range of compromise (trade-off). This characteristic is helpful, because it provides better knowledge of the system according to the consequences of decisions [5].
There are many metaheuristic methods which use the Pareto ranking in order to determine the probability of replication of an individual. The basic idea is to find the set of nondominated individuals in the population. There are several meta-heuristic methods such as Niched Pareto Genetic Algorithm (NPGA) [6], Nondominated Sorting Genetic Algorithm (NSGA) [7], Strength Pareto Evolutionary Algorithm (SPEA) [8], the Nondominated Sorting Genetic Algorithm-II (NSGAII) [9], and, recently, Multiobjective Particle Swarm Optimization (MOPSO) [10–12].
In the determinist methods there is only one method, the Normal boundary Intersection (NBI) based [13] to generate Pareto optimal solutions for a general nonlinear multiobjective optimization.
Since 1997, the cross-entropy (CE) (or Kullback-Leibler CE) was proposed by Rubinstein for solving rare event simulation problems [14] and was afterward extended to solving combinatorial problems and continuous mono objective optimization. Several randomized optimization algorithms based on CE method have been proposed in the literature and have been shown to lead to good performances on many optimization problems, often outperforming other randomized algorithms [15]. In this decade, CE method has been applied in several engineering applications (see, e.g., [16–18]).
In [19] the authors have extended the negative-log-likelihood (NLL) approach on combination with a multiobjective evolutionary algorithms (MOEA) to resolve an Multiobjective Optimization, and in [20] the CE method was extended to multiobjective optimization in general and to multiobjective water distribution systems design in particular; this was done by converting the MO optimization to the SO optimization via a weighting method. Hence, the Pareto set will be generated by using different weighting of objectives. Recently, in [21], an extension of the CE method to MO optimization where the CE’s parameters are tuning based on information collected from clustered nondominated solution based on fuzzy c-means algorithm (FCM), and in [22] a cross-entropy used with Pareto ranking is developed.



Motivated by the satisfaction given through the applications of the CE method for the resolution of the SO optimization, in this paper an original use of the CE to resolve an MO optimization was presented. A novel approach for computing the Pareto optimal front based on rare event simulation, the nondominated sorting ranking, and a crowding operator [9] to select the elitist solutions was proposed. It is simple compared to the algorithm proposed in [21].
This document is divided into three parts. In the first part, the basics such as the rare event simulation (RES), the Nondomination, the crowded distance computation and the crowded distance operator are defined. In the second one, the proposed algorithm is presented, and, at the last, the testing application of the proposed algorithm via very known test problem was done, a comparison with other meta-heuristic methods, and concurrent MOCE approach was done.
2. The Multiobjective Optimization via CE Method
The CE method has been designed to solve rare event simulation problems and extended to optimize SO problems. This section proposes an new extension to MO optimization. The first part is devoted to the presentation of CE method for SO optimization and is inspired by [16].
2.1. From Rare Event Simulation to SO Optimization
The CE method is a method to evaluate the probability that a rare event occurs. Let 
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If this probability is very low, this estimator requires a great number of samples. For example, in order to estimate 
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Obviously the best estimator would be based on the ideal importance sampling pdf given by (3) since 
	
		
			

				𝑙
			

		
	
 is constant using this “ideal” importance sampling (3) would lead to an estimator (2) having a zero variance
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The main idea of the CE method for rare event simulation is to find inside a prior given set 
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A particularly convenient measure of distance between two pdfs 
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The CE method reduces the problem of finding an appropriate importance sampling pdf to the optimization problem given by
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One can show through simple mathematical derivations that solving (5) is equivalent to solve (6) which does not explicitly depend on 
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Of course the solution of (7) is a better estimation of the solution of (6) when the number of samples such as 
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This approach evaluates the probability that the function 
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Starting from a prior pdf to draw samples, the method iteratively computes series of pdf that increase the probability to draw a sample near the global optimal solution. With respect to the previous problem the main difference is that the event that is used to iteratively compute the pdf is not given by the problem but has to be chosen. Generally, this is done by choosing a given number 
	
		
			

				𝑘
			

		
	
 and considering that the relevant event is that the sample belongs to the 
	
		
			

				𝑘
			

		
	
 better samples according to the objective function 
	
		
			
				𝑆
				(
				𝑥
				)
			

		
	
. At each step the new pdf is computed according to (11), where Elite is the set of the 
	
		
			

				𝑘
			

		
	
 best samples that can be analytically computed in some cases. For example, when 
	
		
			
				𝒳
				⊂
				ℝ
			

		
	
 and 
	
		
			

				𝑛
			

		
	
-dimensional exponential distributions with independents components specified by (8) are chosen the parameters of the solution of (11) are given by a formula close to (9)
								
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				a
				r
				g
				m
				a
				x
			

			
				𝑀
				𝑔
				∈
				𝒢
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝐼
				
				𝑋
			

			

				𝑗
			

			
				
				
				𝑋
				∈
				E
				l
				i
				t
				e
				l
				n
				𝑔
			

			

				𝑗
			

			
				
				𝑊
				
				𝑋
			

			

				𝑗
			

			
				
				.
			

		
	

The rare event simulation is used to maximize an objective function. However, the use of this method in MO optimization amounts to resolve (11). Hence, this approach can be used in minimization via the modification of the belonging to the Elite’s set.
2.2. Multiobjective Optimization
In MO problems a set of real value objective functions (
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The Pareto front is then defined as the subset of 
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In order to apply the CE approach to MO optimization the same approach as for single objective is used. At each step a random sample is generated according to a pdf, and a new pdf is computed as the solution of (11) with respect to a subset Elite.
The nondominated criterion is used to build the Elite set. From the initial sample 
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3. CE for Multiobjective Optimization Algorithm
The main algorithm is very simple; it is based on rare event simulation with an original event as shown in Algorithm 1.
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	      Step 6  c. Check the next front for inclusion (
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	      Step 7. Calculate crowding distance in 
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	      Step 9. If stopping conditions are met, then return 
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 and stop. Otherwise go to Step 10.
	      Step 10. Set 
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. Go to Step 2.


	Algorithm 1: A cross-entropy approach for the computation of the nondominated solutions.


The selection of the Elite solutions is based on two steps. At the first one, The nondominated sorting is applied to generate all possible fronts the best fronts are totally added to the Elite set 
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. At the second step, the remaining elements to reach the total size of 
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 are chosen from the next front based on crowding operator. More detail about these operators (crowding distance, nondominated sorting) can be founded in [9].
The complexity of this method is the overall of the below algorithm complexity, which is 
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.(2)The cross entropy (empirical result) 
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 [24].
4. Simulation Results
In this section, we first describe the cases studies used to compare the CE approach to compute the Pareto front with the method based on CE proposed by [21] and the other meta-heuristic methods such as NSGA-II, the Pareto Archived Evolution Strategy (PAES), and Strength Pareto Evolutionary Algorithm (SPEA). The CE with RES approach was implemented in two steps. First, the goal is to tune the CE’s parameters; these parameters are obtained by trial and error. The obtained best parameters are 
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. In the second step, we use 
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, where the goal is the building of a significant nondominated solutions curves. All runs are repeated 10 times and the starting points are changed. The outcomes correspond to the best solutions. For the problems which have constraints or boundaries, the acceptance-rejection method is used.
4.1. Cases Studies
In this section the examples are described. We propose to review the ten tests problems (nine without constraints): the Schaffer’s study (SCH), the Fonseca and Fleming’s study (FON), the Poloni’s study (POL), Kursawe’s study (KUR), Zitzler’s studies (ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6), and one constrained study (CONSTR or DEB) as in [9].
4.2. Performance Metrics
Since our approach is a Pareto-based approach, which will obtain a set of nondominated solutions 
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. Here, we introduce several metrics based on the obtained nondominated solutions to measure the searching quality of the algorithm, which can be used for comparison between different algorithms [25].
4.2.1. Overall Nondominated Vector Generation (ONVG)
For an obtained nondominated solution set 
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, the metric ONVG is defined as 
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 which is the number of distinct nondominated solutions.
4.2.2. C Metric (CM)
A CM is used to compare two nondominated solution sets 
	
		
			

				Ω
			

		
	
 and 
	
		
			

				Ω
			

			

				′
			

		
	
 obtained by two algorithms, which maps the ordered pair (
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 that are not dominated to each other.
4.2.3. Distance Metrics (
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)
Two distance metrics were used to measure the performance of nondominated solution set 
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. More details can be found in [25].
4.2.4. Tans Spacing (TS)
The following spacing metric was used to measure how evenly the solutions are distributed:
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.
4.2.5. Maximum Spread (MS)
This metric is developed to measure how well the true Pareto front is covered by the obtained nondominated solutions in the set 
	
		
			

				Ω
			

		
	
 through the hyperboxes formed by the extreme function values observed in the optimal Pareto front and 
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th objective in the true Pareto front.
4.2.6. Average Quality (AQ)
This metric was proposed to measure the quality of the solution set, which was originally expressed in the form of weighted Tchebycheff function 
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. But that function may hide certain aspects about the quality of solution set because poor performance with respect to proximity could be compensated by good performance in the distribution of solutions. Therefore, diversity indicators of spread and space are added to the formulation to overcome the limitation, and a metric is given by the average value of a scalarizing function over a representative sample of weight vectors as follows: 
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4.2.7. Running Time (
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)
To reflect the efficiency of a multiobjective optimization algorithm, running time is also used as a metric.
4.3. Computation Results
To evaluate the performance of the results, we use the convergence metric and the diversity metric parameters as described in [9].
Table 2 shows the convergence metric 
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 obtained using six algorithms, CE with RES, CE with FCM, NSGA-II, SPEA, and PAES. The data for CE with FCM is provided from [21] and the data of the four meta-heuristic algorithm are provided from [9]. CE with RES is able to converge better in the problems SCH, ZDT1, ZDT4, and ZDT6.
Table 3 shows the diversity metric 
	
		
			

				Δ
			

		
	
 using the five algorithms. It is deduced that the diversity of the proposed method is small compared to the diversity of other methods because it uses an exponential pdf. The better diversity is obtained by the CE based on FCM which is assured using clustering. We project in the future works the use of other distribution function as normal distribution.
In Table 1, a comparison of our method with the NSGA-II method is shown. To properly evaluate both algorithms and highlight the contribution of our approach, the parameters of the previous subsection are calculated (we choose the algorithm NSGA-II for comparison, given its obvious success). We conclude that both approaches have almost identical performance. However, in computation time, our method shows its efficiency (calculated with Inter processor Core i3 CPU M370 @ 2.40 GHz). The comparison of the proposed method with the true Pareto front is yield in Figures 1–10. Our method gives solutions which are closes to the true Pareto fronts.
Table 1: Other metric comparison based.
	

	Algorithm 	 Method 	 SCH 	 FON 	 POL 	 KUR 	 ZDT1 	 ZDT2 	 ZDT3 	 ZDT4 	 ZDT6 
	

	 ONVG	 CE method 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 
	 NAGA-II 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 
	CM 	 CE method 	 1.000 	 0.915 	 0.96 	 1 	 0.37 	 1 	 0.81 	 0.01 	 0.9200 
	 NAGA-II 	 0.996 	 0.89 	 0.57 	 0.2 	 1 	 0.75 	 0.975 	 1 	 1 
	
	
		
			

				𝐷
			

			
				a
				v
			

		
	
	 CE method 	 0.0022 	 0.0014 	 −0.0001 	 0.0154 	 0.0069 	 0.0092 	 0.0020 	 0.0066 	 0.0229 
	NAGA-II 	 0.0012 	 0.0009 	 0.0009 	 0.0067 	 0.0106 	 0.0053 	 0.0022 	 0.3292 	 0.0025 
	
	
		
			

				𝐷
			

			
				m
				a
				x
			

		
	
	CE method 	 0.0111 	 0.0116 	 0.0079 	 0.0453 	 0.0368 	 0.0316 	 0.0055 	 0.0317 	 0.1045 
	 NAGA-II 	 0.0073 	 0.0043 	 0.0046 	 0.0213 	 0.0221 	 0.0143 	 0.0067 	 0.3736 	 0.0119 
	TS 	CE method 	 0.0017 	 0.0030 	 0.0034 	 0.1908 	 0.0126 	 0.0020 	 0.0032 	 0.0090 	 0.3012 
	 NAGA-II 	 0.0005 	 0.0003 	 0.0019 	 0.0582 	 0.0022 	 0.0042 	 0.0045 	 0.0022 	 0.0018 
	MS 	CE method 	 1.0005 	 0.9856 	 0.9976 	 0.9631 	 0.9982 	 0.9967 	 1.0038 	 1.0042 	 1.0000 
	 NAGA-II 	 1.0000 	 1.0028 	 0.9990 	 1.0000 	 1.0055 	 0.9976 	 0.9996 	 1.3387 	 1.6902 
	 AQ 	CE method 	 0.5235 	 0.3346 	 −1.2381 	 −5.8113 	 0.2061 	 0.3272 	 0.1317 	 0.2047 	 0.085469 
	 NAGA-II 	 0.5271 	 0.3294 	 −1.2440 	 −6.0626 	 0.2039 	 0.3256 	 0.1318 	 0.5111 	 0.006664 
	
	
		
			

				𝑡
			

		
	
	CE method 	 13.01548 	 13.776714	 24.715435	 13.708412	 28.320879	 41.6873 	 16.4662 	 13.344223 	11.692149 
	 NAGA-II 	 67.06799 	 70.4706 	 38.285153	 35.7219 	 98.879344	 101.7208 	 101.95494	 99.9021 	 108.873080 
	



Table 2: Mean (first row) and variance (second row) of the convergence metric 
	
		
			

				Υ
			

		
	
.
	

	  Algorithm 	 SCH 	 FON 	 POL 	 KUR 	 ZDT1 	 ZDT2 	 ZDT3 	 ZDT4 	 ZDT6 
	

	 CE method with RES 	 0.000140 	 0.002704 	 0.057898 	 0.162699 	 0.001282 	 0.005001 	 0.003321 	 0.002771 	 0.009426 
	 0 	 0.000005 	 0.005125 	 0.011727 	
									0	 0 	 0.000007 	 0.000007 	 0.000001 
	 CE method with FCM	 	 0.0026 	 	 	 0.0434 	 0.1002 	 0.0245 	 1.2056 	 0.0029 
	 NSGA-II 	 0.003391 	 0.001931 	 0.015553 	 0.028964 	 0.033482 	 0.072391 	 0.114500 	 0.513053 	 0.296564 
	Real coded 	 0 	 0 	 0.000001 	 0.000018 	 0.004750 	 0.031689 	 0.007940 	 0.118460 	 0.013135 
	 NSGA-II 	 0.002833 	 0.002571 	 0.017029 	 0.028951 	 0.000894 	 0.000824 	 0.043411 	 3.227636 	 7.806798 
	Binary coded 	 0.000001 	 0 	 0.000003 	 0.000016 	 0 	 0 	 0.000042 	 7.307630 	 0.001667 
	 SPEA 	 0.003403 	 0.125692 	 0.037812 	 0.045617 	 0.001799 	 0.001339 	 0.047517 	 7.340299 	 0.221138 
	 0 	 0.000038 	 0.000088 	 0.00005 	 0.000001 	 0 	 0.000047 	 6.572516 	 0.000449 
	 PEAS 	 0.001313 	 0.151263 	 0.030864 	 0.082085 	 0.126276 	 0.023872 	 0.023872 	 0.854816 	 0.085469 
	 0.000003 	 0.000905 	 0.000431 	 0.011989 	 0.008679 	 0.036877 	 0.000001 	 0.527238 	 0.006664 
	



Table 3: Mean (first row) and variance (second row) of the diversity metric 
	
		
			

				Δ
			

		
	
.
	

	Algorithm 	 SCH 	 FON 	 POL 	 KUR 	 ZDT1 	 ZDT2 	 ZDT3 	 ZDT4 	 ZDT6 
	

	 CE method with RES	 1.130705 	 0.427151 	 0.984515 	 0.630363 	 0.867578 	 0.754868 	 0.733369 	 0.736887 	 0.767926 
	 CE method with FCM	 	 0.2504 	 	 	 0.0921 	 0.1777 	 0.1686 	 0.5697 	 1.0459 
	 NSGA-II 	 0.477899 	 0.378065 	 0.452150 	 0.411477 	 0.390307 	 0.430776 	 0.738540 	 0.702612 	 0.668025 
	Real coded 	 0.003471 	 0.000639 	 0.002868 	 0.000992 	 0.001876 	 0.004721 	 0.019706 	 0.064648 	 0.009923 
	 NSGA-II 	 0.449265 	 0.395131 	 0.503721 	 0.442195 	 0.463292 	 0.435112 	 0.575606 	 0.479475 	 0.644477 
	Binary coded 	 0.002062 	 0.001314 	 0.004656 	 0.001498 	 0.041622 	 0.024607 	 0.005078 	 0.009841 	 0.035042 
	 SPEA 	 1.021110 	 0.792352 	 0.972783 	 0.852990 	 0.784525 	 0.755148 	 0.672938 	 0.798463 	 0.849389 
	 0.004372 	 0.005546 	 0.008475 	 0.002619 	 0.004440 	 0.004521 	 0.003587 	 0.014616 	 0.002713 
	 PEAS 	 1.063288 	 1.162528 	 1.020007 	 1.079838 	 1.229794 	 1.165942 	 0.789920 	 0.870458 	 1.153052 
	 0.002868 	 0.008945 	 0 	 0.013772 	 0.004839 	 0.007682 	 0.001653 	 0.101399 	 0.003916 
	





	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 1: Optimal front for SCH’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
	













Figure 2: Optimal front for FON’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 3: Optimal front for POL’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
		
			
		
		
			
			
		
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 4: Optimal front for KUR’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 5: Optimal front for ZDT1’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 6: Optimal front for ZDT2’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 7: Optimal front for ZDT3’s study.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	
	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
	
	
		
	


	
		
	
	
		
	













Figure 8: Optimal front for ZDT4’s study.




	
		
		
		
	


	
		
		
		
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
	













Figure 9: Optimal front for ZDT6’s study.




	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	




	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	













Figure 10: Optimal front for CONSTR’s study.


5. Conclusion
In this paper a simple original algorithm for solving a multiobjective optimization based on the cross-entropy method (particularly the rare event simulation) is developed and tested through several cases. This method is fast and very simple to implement in economic and engineering fields.
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