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In the feld of operation research, both linear and fractional programming problems have been more encountered in recent years
because they are more realistic in expressing real-life problems. Fractional programming problem is used when several rates need
to be optimized simultaneously such as resource allocation planning, fnancial and corporate planning, healthcare, and hospital
planning. Tere are several techniques to solve the multiobjective linear fractional programming problem. However, because of
the use of scalarization, these techniques have some limitations. Tis paper proposed two new mean and median techniques to
solve the multiobjective linear fractional programming problem by overcoming the limitations. After utilizing mean and median
techniques, the problem is converted into an equivalent linear fractional programming problem; then, the linear fractional
programming problem is transformed into linear programming problem and solved by the conventional simplex method or
mathematical software. Some numerical examples have been illustrated to show the efciency of the proposed techniques and
algorithm. Te performance of these solutions was evaluated by comparing their results with other existing methods. Te
numerical results have shown that the proposed techniques are better than other techniques. Furthermore, the proposed
techniques solve a pure multiobjective maximization problem, which is even impossible with some existing techniques. Te
present investigation can be improved further, which is left for future research.

1. Introduction

Optimization is the process of fnding the maxima or minima
of a single or several objective functions subject to constraints.
Many real-world problems are modeled as optimization
problems. A linear programming approach has been fre-
quently used to optimize a single linear objective function
subject to fnite linear constraints [1].Tis approach is used to
solve many real-world problems such as manufacturing,
marketing, fnance, advertising, and agriculture. However, it
can be difcult to optimize two or more objectives at the same
time, and it is even more difcult if the objectives are con-
ficting in nature. Te goal was to generate a compromise
solution that achieves all the objective functions simulta-
neously.Multiobjective optimization techniques are helpful in

improving the decision-making process in such situations.
Several methods have been proposed to solve such problems
by various scholars [2]. However, due to the limitations of the
methods, choosing a proper technique remains a subject of
active research. In the optimization problem, linear fractional
programming concerns the optimization problem of a ratio of
two linear functions subject to some constraints. Recently,
linear fractional programming problems have attracted the
interest of many researchers due to their application in dif-
ferent disciplines such as production planning, fnancial and
corporative planning, economics and management science,
healthcare, and hospital planning [3].

In this paper, we focus our interest on a multiobjective
linear fractional programming problem where more than
one linear fractional objective function is optimized
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simultaneously subject to fnite linear constraints. Diferent
researchers have proposed diferent scalarizing techniques to
solve multiobjective optimization problems. Most of these
techniques have been tested with nonconficting objectives
that were not appropriate. A multiobjective optimization
problem with multiple conficting objectives is the pre-
requisite for the application of every multiobjective opti-
mization technique. Besides this, the existing scalarizing
techniques have been evaluated when the denominator
(scalarizing) quantity of the combined multiobjective
function is nonzero. After analyzing the limitations of the
previous scalarization techniques, improved scalarization
techniques are proposed in this study. Tese proposed
scalarizing quantities are very rare to be zero when com-
pared to other existing techniques.

Tis study was motivated by the fact that diferent re-
searchers solved nonconficting multiobjective pro-
gramming problems by converting them into single-
objective programming problems, such as Chandra Sen,
advanced transformation, new arithmetic average, new
geometric average, advanced harmonic average, advanced
mean deviation, and Pearson 2 skewness coefcient.
However, solving the conficting multiobjective fractional
programming problem using the proposed techniques gave
a better result and overcame the limitations of other tech-
niques. Tis study tried to fll this gap.

Te rest of the research is organized as follows. An
overview of the literature is given in Section 2. Section 3
presented the methodology of the proposed methods. Sec-
tion 4 described the problem formulation and the solution
concept. Section 5 presented existing and proposed solving
approaches. Section 6 discussed our algorithm. Section 7
provides illustrative examples, and the result is compared
with the other existing approaches. Section 8 discussed the
comparative study. Lastly, Section 9 presented conclusion
and suggestions for future work.

2. Review of the Literature

Tis section presents a review of diferent pieces of the
literature related to mean and median scalarizing techniques
for multiobjective linear fractional programming problems.

Life is about making decisions, and the choice of op-
timal solutions is not an exclusive subject of scientists,
engineers, and economists. Decision-making is present in
daily life; when looking for an enjoyable vacancy, everyone
will formulate an optimization problem like with a mini-
mum amount of money, visiting a maximum number of
places in a minimum amount of time and with the max-
imum comfort [4]. Multiobjective programming is a part of
mathematical programming dealing with decision prob-
lems characterized by multiple conficting objective
functions that must be simultaneously optimized on
a feasible set of decisions [5]. Fractional programming is
used in several practical applications, such as cutting stock
problems, shipping schedule problems, and diferent felds
such as education, hospital administration, court systems,
air force maintenance units, resource allocation, trans-
portation, and bank branches. Diferent methods were

suggested to solve linear fractional programming problem
such as the variable transformation approach [6] and
updated solution procedures [3].

Many researchers and scholars have studied how to
convert multiobjective optimization problems into single-
objective optimization problems and solve them using
several techniques. Some of them are listed in Ref. [7].
Improved scalarization techniques using mean, harmonic
mean, and geometric mean have been applied for solving
multioptimization linear programming problems. Reference
[8] solved the multiobjective linear fractional programming
problem by using mean and median. New average tech-
niques (geometric and arithmetic) had been proposed by
Refs. [9, 10], which suggested harmonic average and ad-
vanced harmonic average techniques to solve multiobjective
linear fractional programming problems. Advanced trans-
formation and new statistical averaging techniques have
been applied to solve a multiobjective linear programming
problem [11–13]. Also, new mean deviation and advanced
mean deviation to solve a multiobjective fractional pro-
gramming problem have been proposed. Moreover, re-
garding mean and median, Ref. [14] ofered the Pearson 2
skewness coefcient technique to turn a multiobjective
linear fractional programming problem into a single-
objective linear fractional programming problem. Te
main goal of this research is to solve a multiobjective linear
fractional programming problem with less computational
difculties using the new proposed techniques. Further-
more, the proposed techniques address the limitations of
existing approaches.

3. Methodology

In this methodology, we have used two new mean and
median techniques to solve a multiobjective linear fractional
programming problem. First, the multiobjective linear
fractional programming problem was converted into an
equivalent linear fractional programming problem by the
proposed techniques. Second, the linear fractional pro-
gramming problem was transformed into a linear pro-
gramming problem by variable transformation and solved
by the conventional simplex method or mathematical
software, which compared their results with the other
existing methods. Lastly, to illustrate the proposed methods,
numerical examples are given.

4. Mathematical Formulation and
Solution Concept

4.1. Linear Fractional Programming Problem. Te general
linear fractional programming problem is formulated as
follows:

subject to
Max z ��

c
t
x + α

d
t
x + β

,

S � x ∈ Rn
: Ax≤ b, x≥ 0􏼈 􏼉,

(1)
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where ctx + α, dtx + β are the real valued and continuous
functions on S, dtx + β≠ 0 for all x ∈ S, and c, d ∈
Rn, b ∈ Rm are the column vectors,α, β ∈ R are scalars, and
A ∈ Rm×n represent the m × n matrix.

According to the method introduced by Charnes and
Cooper [6], problem (1) is changed into the following linear
problem by the use of variable transformations.

Let λ � 1/dtx + β, y � λx. Ten,

Max c
t
y + αλ

subject to
,

Ay − bλ≤ 0

d
t
y + βλ≤ 1,

y, λ≥ 0.

, (2)

Teorem [15]: let (y∗, λ∗) be the optimal solution of (1),
then x∗ � (y∗/λ∗) is the optimum solution for (1).

4.2. Multiobjective Linear Fractional Programming Problem
(MOLFPP). In this section, the techniques for transforming
amultiobjective linear fractional programming problem into
a linear fractional linear programming problem will be
explained.

Te general problem of linear fractional programming
with multiple objectives may be expressed as [16]

MaxZ1 �
c

t
1x + α1

d
t
1x + β1

MaxZ2 �
c

t
2x + α2

d
t
2x + β2

⋮

MaxZr �
c

t
rx + αr

d
t
rx + βr

minZr+1 �
c

t
r+1x + αr+1

d
t
r+1x + βr+1

⋮

MinZn �
c

t
nx + αn

d
t
nx + βn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3)

Subject to

S � x ∈ Rn
: Ax≤ b, x≥ 0􏼈 􏼉, (4)

where r denotes the quantity of objective functions that must
be maximized, n − r is the number of objective functions
that need to be minimized, and n is the total number of
objective functions that must be maximized plus minimized,
A ∈ Rm×n, b ∈ Rm, and ci, di ∈ Rn, αi, βi ∈ R for all
i � 1, 2, . . . , n.

Defnition 1. A point x∗∈ Rn is said to be an efcient so-
lution of a multiobjective linear fractional programming
problem (3) if there is no x∈ Rn such that Zi(x)≥Zi(x∗) for
all i � 1, 2, . . . r, and Zi(x)>Zi(x∗) for at least one i, and
Zr+1(x)≤Zi(x∗) for all i � r + 1, r + 2, . . . ., n, and
Zi(x)<Zi(x∗) for at least one i � r + 1.

5. Applied Techniques of Converting
Multiobjective Linear Fractional
Programming Problem into Single Linear
Fractional Programming Problem

Tere are many techniques, such as Chandra Sen, advanced
transformation, new arithmetic average, new geometric
average, advanced harmonic average, advanced mean de-
viation, and Pearson 2 skewness coefcient, presented in the
literature to solve multiobjective programming problems.
Tese techniques are concisely described in the following.

After individually optimizing all fractional objective
functions subject to the given constraints using the above
variable transformation (2), we get

MaxZ1 � c1

MaxZ2 � c1

⋮

MaxZr � cr

minZr+1 � cr+1

⋮

MinZn � cn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

where ci(i � 1, 2, . . . , n) are the aspiration values of the
objective functions.

5.1. Chandra Sen Technique [17]. According to Chandra
Sen’s technique, the multiobjective linear fractional pro-
gramming problem given in (3) can be converted into
a single-objective function as

MaxZ �
􏽐

r
i�1Zi

ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

−
􏽐

n
i�r+1Zi

ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (6)

Tis can be solved using the simplex method with the
same constraints (3).

5.2. Advanced Transformation Technique [11]. According to
advanced transformation technique, the multiobjective
linear fractional programming problem given in (3) is
converted into a single-objective function as

MaxZ �
􏽐

r
i�1Zi − 􏽐

n
i�r+1Zi

OAt

, (7)

where OAt � 1/1/m, m � min m1, m2􏼈 􏼉, where m1 � min
|ci|􏼈 􏼉,∀i � 1, 2, . . . , r. m2 � min |ci|􏼈 􏼉,∀i � r + 1, r + 2, . . . .,

n,

subject to the same constraints as in (3).
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5.3. New Arithmetic Average Technique [9]. According to
a new arithmetic average technique, the combined objective
function under the same constraints (3) can be formulated as

MaxZ �
􏽐

r
i�1Zi − 􏽐

n
i�r+1Zi

m
, (8)

where m � m1 + m2/2, where m1 � min |ci|􏼈 􏼉, ∀i � 1,

2, . . . , r and m2 � min |ci|􏼈 􏼉∀i � r + 1, r + 2, . . . , n.

5.4. New Geometric Average Technique [9]. Te combined
objective function by a new geometric average technique
under the same constraints (3) is expressed as follows:

MaxZ �
􏽐

r
i�1Zi − 􏽐

n
i�r+1Zi

NGA
, (9)

where NGA �
�����
m1m2

√ , where m1 � min |ci|􏼈 􏼉,

∀i � 1, 2, . . . , r.

m2 � min ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯,∀i � r + 1, r + 2, . . . , n. (10)

5.5. Advanced Harmonic Average Technique [10]. Te
combined objective function by the advanced harmonic
average technique under the same constraints (3) is
expressed as follows:

MaxZ �
􏽐

r
i�1Zi − 􏽐

n
i�r+1Zi

AHav

, (11)

where AHav � ((2|m1||m2|)/(|m1| + | m2)), where m1 �

min |ci|􏼈 􏼉,∀i � 1, 2, . . . , r.

m2 � max ci

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯,∀i � r + 1, r + 2, . . . , n. (12)

5.6. AdvancedMeanDeviation Technique [13]. According to
the advanced mean deviation technique, the combined
objective function under the same constraints (3) can be
formulated as

MaxZ �
􏽐

r
i�1 Zi − 􏽐

n
i�r+1 Zi

AMD
, (13)

where AMD � MD1 + MD2/S, where MD1 � 􏽐
r
i�1

| ci − c1|/r, c1 � 􏽐
r
i�1ci/r,∀i � 1, 2, . . . , r, MD2 � ((􏽐

r
i�r+1

|ci − c2|)/(n − r)), c2 � ((􏽐
r
i�r+1ci)/(n − r)),∀i � r + 1, r +

2, . . . .n. S is the total number of objective functions.

5.7. Pearson 2 Skewness Coefcient Technique [14].
According to Pearson 2 skewness coefcient technique, the
combined objective function under the same constraints (3)
can be formulated as

MaxZ �
􏽐

r
i�1 Zi − 􏽐

n
i�r+1 Zi

Sk2
, (14)

where Sk2 � 3|mean(ci) − median(ci)/s|∀i � 1, 2, . . . , n,
where s is a standard deviation for the value of all objective
functions.

5.8. Proposed Techniques. Te mean, median, and standard
deviation have been used for scalarizing the multiobjective
linear fractional programming problem. Te proposed
techniques to solve themultiobjective fraction programming
problem based on the mean and median idea are briefy
described in the following.

Te process of translating a multiobjective fraction
programming problem into a single linear fractional pro-
gramming problem is as follows:

MaxZ �
􏽐

r
i�1 Zi − 􏽐

n
i�r+1Zi

NMMT1
andMaxZ �

􏽐
r
i�1 Zi − 􏽐

n
i�r+1Zi

NMMT2
,

(15)

where NMMT denotes new mean and median techniques
and is calculated as

NMMT1 �
min M, Md, S􏼈 􏼉

M + Md + S
􏼠 􏼡

1
N

􏼒 􏼓, (16)

NMMT2 �
1

M + Md + S
􏼠 􏼡

1
N

􏼒 􏼓, (17)

where M � Mean of |ci|∀i � 1, 2, . . . , n. Md � Median of
|ci|,∀i � 1, 2, . . . , n. S � Standard of deviation of |ci|, ∀i � 1,

2, . . . , n. N � Total number of objective functions.

6. The New Mean and Median Algorithm for
Solving MOLFPP

We propose an algorithm for solving multiobjective linear
fractional programming problem (3) as follows:

Step 1: fnd the individual optimal value of each of the
fractional objective functions subject to the constraints
using variable transformation.
Step 2: calculate NMMT1 and NMMT2 using
formula (17).
Step 3: construct the combined single fractional ob-
jective functions using formula (15).
Step 4: optimize the combined fractional objective
function under the same constraints.

MaxZ �
􏽐

r
i�1 Zi − 􏽐

n
i�r+1Zi

NMMT1
andMaxZ �

􏽐
r
i�1 Zi − 􏽐

n
i�r+1Zi

NMMT2
. (18)
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7. Numerical Examples

In this section, illustrative examples are presented to
demonstrate how the techniques and the algorithm work.
Some examples have been taken from previous studies to
show the diferences with our proposed techniques.

Example 1. (see Ref. [18]):

MaxZ1 �
12x1 + 13x2

40x1 + 55x2 + 500
,

MaxZ2 �
12x1 + 13x2

1.5x3 + 1.6x4
,

Subject to

2x1 + x2 ≤ 250

5x1 + 4x2 ≤ 500

45x1 + 30x2 ≤ 1500

0.1x1 + 0.1x2 − x3 − x4 ≤ 0

0.1x1 − x3 ≤ 0

0.05x2 − x4 ≤ 0

−x1 + x3 ≤ 0

−x2 + x4 ≤ 0

x1, x2, x3, x4 ≥ 0

.

(19)

It is clear from the results of Table 1 that both objectives
are individually achieved by diferent solutions (values of
x1, x2, x3, and x4).

7.1. New Mean and Median Techniques 1. MaxZ � (􏽐
2
i�1

Zi/NMMT1), NMMT1 � ((min 41.946, 41.946, 41.728{ })/
(41.949 + 41.946 + 41.728)) (1/2) � (41.728/251.24) �

0.166.
So,

Subject to

MaxZ � 6.024
12x1 + 13x2

40x1 + 55x2 + 500
+

12x1 + 13x2

1.5x3 + 1.6x4
􏼢 􏼣,

2x1 + x2 ≤ 250

5x1 + 4x2 ≤ 500

45x1 + 30x2 ≤ 1500

0.1x1 + 0.1x2 − x3 − x4 ≤ 0

0.1x1 − x3 ≤ 0

0.05x2 − x4 ≤ 0

−x1 + x3 ≤ 0

−x2 + x4 ≤ 0

x1, x2, x3, x4 ≥ 0

.

(20)
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After solving problem (20), we get Max Z� 505.05 at
(2.564, 46.153, 2.564, 2.308).

7.2. New Mean and Median Technique 2. MaxZ�

(􏽐
2
i�1Zi),NMMT2 � (1/41.946 + 41.946 + 41.728) (1/2) �

(1/251.24) � 0.004.

So,

Max Z � 250
12x1 + 13x2

40x1 + 55x2 + 500
+

12x1 + 13x2

1.5x3 + 1.6x4
􏼢 􏼣,

Subject to

2x1 + x2 ≤ 250

5x1 + 4x2 ≤ 500

45x1 + 30x2 ≤ 1500

0.1x1 + 0.1x2 − x3 − x4 ≤ 0

0.1x1 − x3 ≤ 0

0.05x2 − x4 ≤ 0

−x1 + x3 ≤ 0

−x2 + x4 ≤ 0

x1, x2, x3, x4 ≥ 0

.

(21)

After solving problem (21), we get Max Z� 20968 at
(2.564, 46.153, 2.564, 2.308).

Now, solve Example 1 using other possible techniques
such as

(1) By Chandra Sen [17], the result is ??? Z� 1.96 at
(33.333, 0, 33.333, 0).

(2) By the new arithmetic average [9], the result is Max,
Z� 11.048 at (2.564, 46.153, 2.564, 2.308).

(3) By advanced mean deviation [13], the result is Max
Z� 3499 at (2.564, 46.153, 2.564, 2.308).

Here, most of recently proposed methods such as ad-
vanced transformation, new arithmetic average, advanced
harmonic average, and Pearson 2 skewness coefcient did
not solve the problem.

Example 2 (see Ref. [14]):

MaxZ1 �
x1 − x2 + 7.5
2x1 + 2x2 + 2

,

MaxZ2 �
x1 + x2 + 4
x1 + x2 + 1

,

MaxZ3 �
x1 − x2 + 4.5
3x1 + 3x2 + 3

MaxZ4 �
x1 + x2

x1 + x2 + 1

MinZ5 �
−2x1 − 2x2

3x1 + 3x2 + 3

MinZ6 �
−5x1 − x2

x1 + x2 + 1

MinZ7 �
−4x1 + x2

2x1 + 2x2 + 2

Subject to

−x1 + x2 ≤ 2,

2x1 + 2x2 ≥ 1,

9x1 + 3x2 ≤ 3

x2 ≤ 1,

x1, x2 ≥ 0.

,

.

(22)

It is clear from the results of Table 2; all seven objectives
are not individually achieved by the same solution.

Table 1: After all objective functions have been optimized individually, the results of Example 1 are given below.

Objective functions (x1, x2, x3, x4) Z∗i � |ci| Mean � (Z∗i ) Median � (Z∗i ) Standard deviation

1 (33.333, 0, 33.333, 0) 0.218 41.946 41.946 41.7282 (2.564, 46.154, 2.564, 2.3077) 83.674
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7.3. NewMean andMedian Technique 1. MaxZ � (􏽐
4
i�1 Zi −

􏽐
7
i�5Zi/NMMT1), NMMT1 � ((min 1.226, 1, 1.01{ })/

(1.226 + 1 + 1.01))(1/7) � (1/3.236)1/7 � 0.044.

So,

Subject to

Max �
63x1 + 14x2 + 55.5
0.264(x1 + x2 + 1)

,

−x1 + x2 ≤ 2,

2x1 + 2x2 ≥ 1

9x1 + 3x2 ≤ 3

x2 ≤ 1,

x1, x2 ≥ 0,

,

(23)

After solving problem (23), we get Max Z� 188.769 at
(1/4, 1/4).

7.4. NewMean andMedianTechnique 2. MaxZ � (􏽐
4
i�1Zi −

􏽐
7
i�5Zi/NMMT2),NMMT2 � (1/1.226 + 1 + 1.01)(1/7) �

(1/3.236)1/7 � 0.044.

So,

Subject to

Max �
63x1 + 14x2 + 55.5
0.264(x1 + x2 + 1)

,

−x1 + x2 ≤ 2,

2x1 + 2x2 ≥ 1,

9x1 + 3x2 ≤ 3

x2 ≤ 1,

x1, x2 ≥ 0.

.

(24)

After solving problem (24), we get Max Z� 188.769 at
((1/4), (1/4)).

Now, solve Example 2 by other techniques such as

(1) By Chandra Sen [17], the result is Max Z� 17.853 at
((1/4), (1/4)).

(2) By advanced transformation [11], the result is Max
Z� 33.189 at ((1/4), (1/4)).

(3) By the new Arithmetic average [9], the result is Max
Z� 22.126 at ((1/4), (1/4))

(4) By the new geometric average [9], the result is Max
z� 23.42 at((1/4), (1/4)).

(5) Advanced harmonic average [10], the result is Max
Z� 12.458 at((1/4), (1/4))

(6) By advanced mean deviation [13], the result is Max
Z� 44.20 at ((1/4), (1/4)).

(7) By the Pearson 2 skewness coefcient [14], the result
is Max. Z� 12.458 at ((1/4), (1/4)).

Example 3. Consider the following multiobjective linear
fractional programming problem:

MaxZ1 �
x1 + 2x2 − x3

9x1 + 6x2 + 3x3

MaxZ2 �
6x1 + x2

3x1 + 2x2 + x3

MaxZ3 �
6x1 + x2 + x3 + 6
9x1 + 6x2 + 3x3

MinZ4 �
x1 − 3x2 + 2x3

3x1 + 2x2 + x3

Subject to

2x1 + 3x2 − 5x3 ≥ 10,

,

x1 + x2 + x3 ≤ 8,

x1 + x3 ≥ 4,

x1, x2, x3 ≥ 0.

(25)

Using the value of mean, median, and standard deviation
from Table 3, we fnd the following.

Table 2: After all objective functions have been optimized individually, the results of Example 2 are given below.

Objective functions (x1, x2) Z∗i � | ci| Mean (Z∗i ) Median (Z∗i ) Standard deviation

1 (0.25, 0.25) 2.5

1.226 1 1.01

2 (0, 0.5) 3
3 (0.25, 0.25) 1
4 (0, 1) 0.5
5 (0, 1) 1

3
6 (0.25, 0.25) 1
7 (0.25, 0.25) 0.25
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7.5. NewMean and Median Technique 1. MaxZ � (􏽐
3
i�1Zi −

􏽐
4
i�4Zi/NMMT1), NMMT1 � (min 0.85, 0.6, 0.698{ }/

2.148)(1/4) � 0.6/8.592 � 0.07.
So,

subject to

MaxZ �
1

0.07
22x1 + 15x2 − 6x3 + 6
3 3x1 + 2x2 + x3( 􏼁

􏼢 􏼣,

2x1 + 3x2 − 5x3 ≥ 10,

x1 + x2 + x3 ≤ 8,

x1 + x3 ≥ 4,

x1, x2, x3 ≥ 0.

(26)

After solving problem (26), we get Max Z� 37.144 at
(4, 0.667, 0).

7.6. NewMean andMedianTechnique 2. MaxZ � (􏽐
3
i�1Zi −

􏽐
4
i�4Zi/NMMT2),NMMT2 � (1/2.148)(1/4) � 1/8.592 �

0.116
So,

subject to

MaxZ �
1

0.116
22x1 + 15x2 − 6x3 + 6
3 3x1 + 2x2 + x3( 􏼁

􏼢 􏼣,

2x1 + 3x2 − 5x3 ≥ 10,

x1 + x2 + x3 ≤ 8,

x1 + x3 ≥ 4,

x1, x2, x3 ≥ 0.

(27)

After solving problem (27), we get Max Z� 22.386 at
(4, 0.667, 0).

Now, solve Example 3 by other techniques such as

(1) By Chandra Sen [17], the result is Max Z� 1.11 at
(5, 0, 0).

(2) By advanced transformation [11], the result is Max
Z� 1 0.56 at (4, 0.667, 0).

(3) By the new arithmetic average [9], the result is Max
Z� 8.658 at (4, 0.667, 0).

(4) By the new geometric average [9], the result is Max
Z� 9.188 at (4, 0.667, 0).

(5) By advanced harmonic average [10], the result is Max
Z� 9.75 at (4, 0.667, 0).

(6) By advanced mean deviation [13], the result is Max
Z� 15.6 at (4, 0.667, 0).

(7) By the Pearson 2 skewness coefcient [14], the result
is Max Z� 2.418 at (4, 0.667, 0).

Example 4. Consider the following multiobjective linear
fractional programming problem:

MaxZ1 �
x1 + 2x2

x1 + x2 + x3

MaxZ2 �
3x1 + 2x2

2x1 + 2x2 + 2x3

MaxZ3 �
3x1 + x2 + 4x3

x1 + x2 + x3

MinZ4 �
3x1 + x2 + x3

5x1 + 5x2 + x3

MinZ5 �
−x1 + x3

10x1 + 10x2 + 2x3

MinZ6 �
4x1 + x2 − x3

10x1 + 10x2 + 2x3

MinZ7 �
−6x1 − x2 + x3

5x1 + 5x2 + x3

Subject to

x1 + x2 + x3 ≤ 40,

,

2x1 + x2 + x3 ≤ 100,

x1, x2, x3 ≥ 0.

(28)

Table 3: After all objective functions have been optimized individually, the results of Example 3 are given below.

Objective functions (x1, x2, x3) Z∗i � | ci| Mean (Z∗i ) Median (Z∗i ) Standard deviation

1 (4, 4, 0) 0.2

0.85 0.6 0.6982 (8, 0, 0) 2
3 (5, 0, 0) 0.8
4 (4, 4, 0) 0.4
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Using the value of mean, median, and standard deviation
from Table 4, we fnd the following.

7.7. New Mean and Median Technique 1. Max .Z (􏽐
3
i�1Zi −

􏽐
4
i�4Zi/NMMT2), NMMT1 � ((min 1.357, 1.2, 1.26{ })/

(1.357 + 1.2 + 1.26)) (1/7) � 1.2/26.72 � 0.045.

So,

subject to

MaxZ �
1

0.045
11x1 + 8x2 + 8x3

2 x1 + x2 + x3( 􏼁
−

−x1 + x2 + 4x3

2 5x1 + 5x2 + x3( 􏼁
􏼢 􏼣,

x1 + x2 + x3 ≤ 40,

2x1 + x2 + x3 ≤ 100,

x1, x2, x3 ≥ 0.

(29)

After solving problem (29), we get Max Z� 124.43 at (40,
0, 0).

7.8. NewMean andMedianTechnique 2. MaxZ � (􏽐
3
i�1Zi −

􏽐
4
i�4Zi/NMMT2), NMMT2(1/3.82)(1/7) � 1/26.74 �

0.037.

So,

subject to

MaxZ �
1

0.037
11x1 + 8x2 + 8x3

2 x1 + x2 + x3( 􏼁
−

−x1 + x2 + 4x3

2 5x1 + 5x2 + x3( 􏼁
􏼢 􏼣,

x1 + x2 + x3 ≤ 40,

2x1 + x2 + x3 ≤ 100,

x1, x2, x3 ≥ 0.

(30)

After solving (30), we get Max Z� 151.35 at (40, 0, 0).
Now, solve Example 4 using other techniques such as

(1) By Chandra Sen [17], the result is Max Z� 1.217 at
(40, 0, 0).

(2) By advanced transformation [11], the result is Max
Z� 0.56 at (40, 0, 0).

(3) By new arithmetic average [9], the result is Max Z� 7
at (40, 0, 0).

(4) By the new geometric average [9], the result is Max
z� 14.47 at (40, 0, 0).

(5) By advanced harmonic average [10], the result is Max
Z� 29.014 at (40, 0, 0).

(6) By advanced mean deviation [13], the result is Max
Z� 29.014 at (40, 0, 0).

(7) By Pearson 2 skewness coefcient [14], the result is
Max Z� 14.98 at (40, 0, 0).
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Example 5 (see Ref. [19]):

MaxZ1 �
−3x1 + 2x2

x1 + x2 + 3

MaxZ2 �
7x1 + x2

5x1 + 2x2 + 1

MaxZ3 �
x1 + 4x2

2x1 + 3x2 + 2

Subject to

x1 − x2 ≥ 1,

,

2x1 + 3x2 ≤ 15,

x1 + 9x2 ≥ 9,

x1 ≥ 3,

x1, x2 ≥ 0.

(31)

Using the value of mean, median, and standard deviation
from Table 5, we fnd the following.

7.9. New Mean and Median Technique 1. MaxZ � (􏽐
3
i�1

Zi/NMMT1), NMMT1 � ((min 0.92, 0.82, 0.31{ })/(0.92+

0.82 + 0.31))(1/3) � 0.31/6.15 � 0.05.
So,

subject to

MaxZ �
1

0.05
−3x1 + 2x2

x1 + x2 + 2
+

7x1 + x2

5x1 + 2x2 + 1
+

x1 + 4x2

2x1 + 3x2 + 2
􏼢 􏼣,

x1 − x2 ≥ 1,

2x1 + 3x2 ≤ 15,

x1 + 9x2 ≥ 9,

x1 ≥ 3,

x1, x2 ≥ 0.

(32)

Table 4: After all objective functions have been optimized individually, the results of Example 4 are given below.

Objective functions (x1, x2, x3) Z∗i � | ci| Mean (Z∗i ) Median (Z∗i ) Standard deviation

1 (0, 40, 0) 2

1.357 1.2 1.26

2 (40, 0, 0) 1.5
3 (0, 0, 40) 4
4 (0, 40, 0) 0.2
5 (0, 40, 0) 0.1
6 (0, 0, 40) 0.5
7 (0, 0, 40) 1.2
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After solving problem (32), we get Max Z� 25.79 at
(3.6, 2.6).

7.10. New Mean and Median Technique 2. MaxZ �

(􏽐
3
i�1Zi/NMMT1),NMMT2 � (1/2.05) (1/3) � 1/6.15 �

0.16.

So,

subject to

MaxZ �
1

0.16
−3x1 + 2x2

x1 + x2 + 2
+

7x1 + x2

5x1 + 2x2 + 1
+

x1 + 4x2

2x1 + 3x2 + 2
􏼢 􏼣,

x1 − x2 ≥ 1,

2x1 + 3x2 ≤ 15,

x1 + 9x2 ≥ 9,

x1 ≥ 3,

x1, x2 ≥ 0.

(33)

After solving (33), we get Max Z� 8.058 at (3.6, 2.6).
Now, solve Example 5 by other possible techniques such

as

(1) By Chandra Sen [17], the result is Max Z� 0.716
at (3.6, 2.6).

(2) By the new arithmetic average [9], the result is Max
Z� 4.29 at (3.6, 2.6 ).

(3) By advanced mean deviation [13], the result is Max
Z� 4.53 at (3.6, 2.6).

(4) By the Pearson 2 skewness coefcient [14], the result
is Max Z� 1.29 at (3.6, 2.6 ).

In Example 5, advanced transformation, advanced
harmonic average, and Pearson 2 skewness coefcient did
not also solve the problem. Tis is one of the limitations.

8. Comparative Study

Te following table summarizes the results of the MOLFPP
using diferent techniques. It shows the comparison between
the techniques studied in this paper and other techniques.
Te solution to the problem obtained by the proposed
techniques gave a better result than the other techniques that
were previously studied, as shown in Table 6. In addition to
this, the proposed techniques solve problems that could not
be solved by some existing techniques.

From Table 6, “—” represents that the techniques did not
solve the given problems. It is evident from this table that the
results of Examples 1–5 show that when using the two
proposed techniques called New Mean and Median Tech-
nique 1 and NewMean and Median Technique 2, the results
are better than other techniques.

Table 5: After all objective functions have been optimized individually, the results of Example 5 are given below.

Objective functions (x1, x2) Z∗i � | ci| Mean (Z∗i ) Median (Z∗i ) Standard deviation

1 (3.6, 2.6) 0.6
0.92 0.82 0.312 (7.2, 0.2) 1.35

3 (3.6, 2.6) 0.82

Table 6: Te comparison of the fve numerical results that are obtained from previous examples is presented as follows.

Techniques Example 1 Example 2 Example 3 Example 4 Example 5
Chandra Sen 1.96 17.853 1.11 1.217 0.716
Advanced transformation — 33.189 1.56 0.56 —
New arithmetic average 11.048 22.126 8.658 7 4.29
New geometric average — 23.42 9.188 14.47 —
Advanced harmonic average — 12.458 9.75 29.014 —
Advanced mean deviation 3499 44.2 15.6 29.014 4.53
Pearson 2 skewness coefcient — 12.458 2.418 14.98 1.29
New Mean and Median technique 1 505.05 188.769 37.144 124.43 25.79
New Mean and Median Technique 2 20968 188.769 22.386 151.35 8.058
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9. Conclusion and Future Work

In this paper, we have proposed two new techniques to
convert a multiobjective linear fractional programming
problem into a single linear fractional programming
problem, and then the single linear fractional programming
problem is solved by variable transformation in simple and
easy ways. Tese techniques provided a more compressive
and efective solution to the conficting multiobjective linear
fractional programming problem. To illustrate the solution
process and motivation, some numerical examples have
been solved and the techniques were compared with the
other existing techniques that were previously studied, as
shown in Table 6. Te numerical results confrm that our
proposed techniques optimize the problem better than those
other techniques. Furthermore, the limitations of the
existing methods have been pointed out.

Future studies would compare these new mean and
median techniques with other techniques other than Chandra
Sen, advanced transformation, new arithmetic average, new
geometric average, advanced harmonic average, advanced
mean deviation, and Pearson 2 skewness coefcient to re-
inforce the results and come upwith better results. In addition
to this, the proposed algorithm can be improved to solve
multilevel multiobjective fractional programming problems.
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