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We consider the second-order cone function (SOCF) f: Rn⟶ R defned by f(x) � cTx + d − Ax + b‖ ‖, with parameters
c ∈ Rn, d ∈ R, A ∈ Rm×n, and b ∈ Rm. Every SOCF is concave. We give necessary and sufcient conditions for strict concavity of
f. Te parameters A and b are not uniquely determined. We show that every SOCF can be written in the form

f(x) � cTx + d −

���������������������

δ2 + (x − x∗)
TM(x − x∗)

􏽱

. We give necessary and sufcient conditions for the parameters c, d, δ, M � ATA,
and x∗ to be uniquely determined. We also give necessary and sufcient conditions for f to be bounded above.

1. Introduction

Second-order cone programming is an important convex
optimization problem [1–4]. A second-order cone constraint
has the following form: Ax + b‖ ‖≤ cTx + d, where ·‖ ‖ is the
Euclidean norm. Tis second-order cone constraint is
equivalent to the inequality f(x)≥ 0, where f is what we call
a second-order cone function. Te solution set of the
constraint is convex, and the function f is concave [1, 5].

In the following defnition, we use R to denote the set of
real numbers and Rm×n to denote the set of m × n matrices
with real entries. Of course, m and n are positive integers.

Defnition 1. A second-order cone function (SOCF) is
a function f: Rn⟶ R that can be written as

f(x) � c
T
x + d − Ax + b‖ ‖, (1)

with parameters c ∈ Rn, d ∈ R, A ∈ Rm×n, and b ∈ Rm.

In second-order cone programming, a linear function of
x is minimized subject to one or more second-order cone
constraints, along with the constraint Fx � g, where
F ∈ Rp×n and g ∈ Rp. Te solution set of Fx � g is an afne

subspace, and we will show that the restriction of a SOCF to
an afne subspace is another SOCF. Tus, from a mathe-
matical point of view, the constraint Fx � g is not necessary,
although in applications it can be convenient. In this paper,
we do not consider the constraint Fx � g but instead focus
on understanding the family of SOCFs.

Tere are interior-point methods for solving second-
order cone programming problems. Tese methods usually
use SOCFs to impose the second-order cone constraints
[2, 5–7]. Solvers for second-order cone programming
problems include CVXOPT and MATLAB [8, 9]. Te study
of second-order cone programming and its applications has
continued to generate interest for over three decades
[3, 10–15].

Te current research was started to get a deeper un-
derstanding of SOCFs to improve interior-point algorithms
for fnding the weighted analytic center of a system of
second-order cone constraints [7, 16, 17]. Te current work
can lead to improved algorithms.

In this paper, we give a thorough description of the
family of SOCFs. In equation (1), the parameters A and b are
not uniquely determined, since Ax + b‖ ‖ � Q(Ax + b)‖ ‖ �

(QA)x + (Qb)‖ ‖ for any orthogonal m × m matrix Q. We
show that every SOCF can be written in the following form:
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f(x) � c
T
x + d −

���������������������

δ2 + x − x∗( 􏼁
T
M x − x∗( 􏼁

􏽱

, (2)

with the parameters δ ≥ 0 and x∗ ∈ Rn, and the positive
semidefnite M � ATA ∈ Rn×n replace the parameters A and
b. We show that these new parameters are unique if and only
if M is positive defnite.

It is known that every SOCF f is concave [1, 5]. We show
that f is strictly concave if and only if rank(A) � n and
b ∉ col(A), where col(A) denotes the column space of A. In
terms of the new parameters, the SOCF is strictly concave if
and only if M is positive defnite and δ > 0.

In the case where M is positive defnite, we show thatf is
bounded above if and only if cTM− 1c≤ 1. We show that the
convex set x ∈ Rn | f(x)≥ 0􏼈 􏼉 is bounded if and only if M is
positive defnite and cTM− 1c< 1.

Our results have computational implications for convex
optimization problems involving second-order constraints
such as the problem of minimizing weighted barrier
functions presented in [16, 17]. Tis is related to the
problem of fnding a weighted analytic center for second-
order cone constraints given in [7]. Tere are also com-
putational implications for the problem of computing the
region of weighted analytic centers of a system of several
second-order cone constraints. Tis is under investigation
as part of our current research is an extension of the work
given in [7].

In the problems presented in [7, 16, 17], the bound-
edness of the feasible region guarantees the existence of
a minimizer, and the strict convexity of the barrier function
guarantees the uniqueness of the minimizer. Also, the strict
convexity of the barrier function afects how quickly we can
fnd the minimizer using these algorithms. Te de-
termination of the strict concavity of f is related to the strict
convexity of the barrier function. Te boundedness of the
feasible region of the SOC constraints system is also related
to the boundedness of f. If a single f is bounded, then the
feasible region of the SOC constraints system is also
bounded.

Convex optimization algorithms perform well and more
efciently when the problem is known to be bounded and
the objective function is strictly convex. If a second-order
cone function is strictly concave, its gradient and Hessian
matrix is defned, and the Hessian is invertible. Te cor-
responding barrier function is similarly well-behaved, and
Newton’s method and Newton-based methods work well for
the problem. However, many optimization problems are not
bounded or have objective functions that are not strictly
convex. Our results would allow one to recognize convex
optimization problems involving second-order cone con-
straints (as in [7, 16, 17]) that can be solved efciently, or to
assist in reformulating those that are hard to solve.

2. Properties of Second-Order Cone Functions

Te SOCFs of R (that is, n � 1) are the simplest to un-
derstand, and give insight into the general case.

Example 1. We consider f: R⟶ R defned by equation

(1) with A �
1
0􏼢 􏼣 and b �

− x∗
δ􏼢 􏼣. Tus,

Ax + b �
x − x∗

δ􏼢 􏼣, and Ax + b‖ ‖ �

������������

δ2 + (x − x∗)
2

􏽱

, so

f(x) � cx + d −

������������

δ2 + (x − x∗)
2

􏽱

. Figure 1 shows several
graphs with various values of the real parameters δ, x∗, c, and
d. If δ ≠ 0, thenf is smooth and strictly concave, as shown by
the solid graphs. If δ � 0, then f(x) � dx + d − |x − x∗| is
piecewise linear with a corner at (x∗, cx∗ + d), as shown by
the dashed graphs. Note that f(x∗) � cx∗ + d − |δ| for any
value of δ, so the solid graphs in Figure 1 (with δ � 0.2) pass
a distance of 0.2 below the corner of the dashed graphs (with
δ � 0), as indicated by the double arrows.

One important property of SOCFs is that their re-
striction to an afne subspace is another SOCF. We will
frequently restrict to a 1-dimensional afne subspace.

Remark 2. Let f: Rn⟶ R be written in the form of
equation (1). Te restriction of f to the afne subspace
x0 + By ∣ y ∈ Rk􏽮 􏽯, for some x0 ∈ Rn and B ∈ Rn×k is

f x0 + By( 􏼁 � c
T
B􏼐 􏼑y + c

T
x0 + d􏼐 􏼑 − (AB)y + Ax0 + b( 􏼁

����
����,

(3)
which is a SOCF on Rk with the variable y.

We recall that a function f: Rn⟶ R is concave pro-
vided that f((1 − t)x0 + tx1)≥ (1 − t)f(x0) + tf(x1) for all
x0 ≠ x1 ∈ Rn, and all t ∈ (0, 1). Te function is strictly
concave if the inequality is strict. A twice diferentiable
function f: R⟶ R is concave if f″(x)≤ 0 for all x, and
strictly concave if the inequality is strict.

Lemma 3. Let f: R⟶ R be the general SOCF of one
variable, defned by f(x) � cx + d − Ax + b‖ ‖ with param-
eters c, d ∈ R, and A, b ∈ Rm.Te function f is concave for all
parameters, and f is strictly concave if and only if A≠ 0 and
b ∉ col(A).

Proof. If A � 0, then f(x) � cx + d − b‖ ‖ is linear, and
hence concave but not strictly concave.

Assume A≠ 0. Ten, Ax∗, where x∗ � − (ATb)/(ATA) is
the point in col(A) � span(A) closest to − b.
Let δ � Ax∗ + b

����
���� be the distance from Ax∗ to − b. Tus,

Ax + b‖2 � δ2 +
����

����A(x − x∗)‖
2 by the Pythagorean theorem,

and f(x) � cx + d −

���������������

δ2 + A(x − x∗)
����

����
2

􏽱

� cx + d −
�����������������

δ2 + (ATA)(x − x∗)
2

􏽱

. Te constant ATA is a positive real
number. Te geometry is shown in Figure 2. Note that δ � 0
if and only if b ∈ col(A). If δ � 0, then
f(x) � cx + d −

����
ATA

√
|x − x∗| is piecewise linear with

a downward bend at x∗, and hence concave but not strictly
concave.

So far, we have proved that f is concave but not strictly
concave if A � 0 or b ∈ col(A).
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Assume A≠ 0 and b ∉ col(A). Ten, δ > 0, and f is
strictly concave, since

f″(x) �
− δ2AT

A

δ2 + A
T
A x − x∗( 􏼁

2
􏼐 􏼑

3/2, (4)

is defned and negative for all x. □

Theorem  . Every second-order cone function f is concave.
Furthermore, f is strictly concave if and only if rank(A) � n

and b ∉ col(A), by using the parameters in Defnition 1.

Proof. Let x0 ≠x1 ∈ Rn, and we defne that v � x1 − x0. Let
g: R⟶ R be defned by g(t): � f((1 − t)x0 + tx1) �

f(x0+ tv) � cT(x0 + tv) + d − A(x0 + tv) + b
����

����. It follows
directly from the defnition that f is (strictly) concave if and
only if g is (strictly) concave for all x0 ≠x1. Note that
Av ∈ Rm. If Av � 0, then g is linear. If Av≠ 0, then, we have

g(t) � 􏽥c t + 􏽥d −

����������������

􏽥δ
2

+ Av‖ ‖
2

t − t∗( 􏼁
2

􏽲

, (5)

where 􏽥c � cTv, 􏽥d � cTx0 + d, 􏽥δ � A(x0 + t∗v) + b
����

����, and t∗ �

− (Av)T(Ax0 + b)/(Av)TAv are all real numbers. Tus, g is
a second-order cone function of one variable. By Lemma 3, g
is concave for all choices of x0 and x1, and hence f is
concave.

Since A ∈ Rm×n, it follows that rank(A)≤ n. If
rank(A)< n, then ATA is singular, and there exists x0 ≠ x1 �

x0 + v such that Av � 0 and hence g is linear. If b ∈ col(A),
then there exists x0 such that Ax0 + b � 0. Tus, t∗ � 0 and
􏽥δ � 0, and g is piecewise linear with a downward corner.
Tus, if rank(A)< n or b ∈ col(A) (or both), we can fnd

x0 ≠ x1 such that g is concave but not strictly concave, and
hence f is not strictly concave.

Now, assume rank(A) � n and b ∉ col(A). It follows that
Av≠ 0 and 􏽥δ > 0 for all x0 ≠x1. Lemma 3 implies that g is
strictly concave for all x0 ≠x1, and it follows that f is strictly
concave. □

Note that A ∈ Rn×n cannot satisfy rank(A) � n and
b ∉ col(A). Terefore, any SOCF with A ∈ Rn×n is concave
but not strictly concave.

Example 2. We give four examples of SOCFs on R2, with
diferent truth values of rank(A) � 2 or b ∈ col(A). Tese
SOCFs have c � 0 and d � 0, so f(x) � − Ax + b‖ ‖

(Figure 3).

(a) A �

1 0
0 1
0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ and b �

0
0
0.3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ yields

f(x) � −

������������

0.09 + x2
1 + x2

2

􏽱

.

(b) A �
1 0
0 1􏼢 􏼣 and b �

0
0􏼢 􏼣 yields f(x) � −

������

x2
1 + x2

2

􏽱

.

(c) A �

1 0
0 0
0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ and b �

0
0
0.3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ yields

f(x) � −

��������

0.09 + x2
1

􏽱

.

(d) A �
1 0
0 0􏼢 􏼣 and b �

0
0􏼢 􏼣 yields f(x) � − |x1|.

Notice that, we have frequently rewritten Ax + b‖ ‖ in
terms of a square root, as shown in Examples 1 and 2. We
have also noted that Ax + b‖ ‖ � QAx + Qb‖ ‖ for any
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Figure 1: Graphs of second-order cone functions f(x) � cx + d −

������������

δ2 + (x − x∗)
2

􏽱

, as described in Example 1. In each of the three plots, the
parameters c, d, and x∗ are indicated. Te dashed curve has δ � 0, and the solid curve has δ � 0.2.

col (A)

A

Ax*

Ax

−b

δ

||Ax + b||

||A (x – x*)||

Figure 2:Te geometry of a SOCF onR. In this case,A ∈ R2 � R2×1. Note thatAx∗ is the point in col(A) that is closest to − b (see Lemma 3).
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orthogonal matrix Q, so many diferent choices of A and b

defne the same SOCF. Te next theorem describes a useful
way to write a SOCF.

Tis theorem uses the Moore–Penrose Inverse of
a matrix, also called the pseudoinverse, which has many
interesting properties found in [18]. For example, x � A+b is
the least squares solution to Ax � b, where A+ ∈ Rn×m is the
pseudoinverse of A ∈ Rm×n.

Te next theorem mentions the well-known fact that
ATA is a positive semidefnite matrix, which means that it is
symmetric with non-negative eigenvalues. A positive def-
nite matrix is a symmetric matrix with all positive eigen-
values. If A ∈ Rm×n, then ATA is positive defnite if and only
if the rank of A is n.

Theorem 5. Every SOCF of the form f(x) �

cTx + d − Ax + b‖ ‖ is identically equal to

f(x) � c
T
x + d −

���������������������

δ2 + x − x∗( 􏼁
T
M x − x∗( 􏼁

􏽱

, (6)

where M � ATA is positive semidefnite, x∗ � − A+b, and
δ � Ax∗ + b

����
����.

Proof. It is well-known that the least squares solution to
Ax � − b is x∗ � − A+b, and that Ax∗ � − AA+b is the or-
thogonal projection of − b onto col(A). Tat is, Ax∗ is the
point in col(A) that is closest to − b. Tus, the distance
squared from Ax to − b is the distance squared from Ax to
Ax∗ plus the distance squared from Ax∗ to − b. Tat is,

Ax + b‖ ‖
2

� ‖Ax − Ax∗‖
2

+ ‖Ax∗ + b‖
2

� ‖A x − x∗( 􏼁‖
2

+ ‖Ax∗ + b‖
2

� x − x∗( 􏼁
T

A
T

A x − x∗( 􏼁 + ‖Ax∗ + b‖
2

� x − x∗( 􏼁
T

M x − x∗( 􏼁 + δ2.

(7)

Te last equality uses the defnitions of M and δ. Te
results are as follows. □
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1.0
0.5

0.0
–0.5

–1.0
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–0.5

0.0

(d)

Figure 3: Graphs of four SOCFs onR2. Note that the graph of the SOCF (b) is indeed a cone.Te top row shows functions with rank(A) � 2
and the bottom row shows rank(A) � 1. Te left column shows b ∉ col(A) and the right column shows b ∈ col(A). All the functions
graphed are concave, but only the upper left function is strictly concave, which is in agreement with Teorem 4 (see Example 2).
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Remark 6. For A ∈ Rm×n, note that rank(A) � n if and only
if ATA ∈ Rn×n is positive defnite. Te defnition of δ in
Teorem 5 makes it clear that b ∈ col(A) if and only if δ � 0.
Terefore, Teorem 4 implies that a SOCF written in the
form of equation (6) is strictly concave if and only if M is
positive defnite and δ > 0.

Example 3. Te left half of Figure 4 shows the critical point
and one contour of the SOCF f(x) � − Ax + b‖ ‖, with

A �

1 0

− 1 1

0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

b �

1

1

− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(8)

Te right part of the same fgure shows the geometry
behind Teorem 5, which describes how to write the

function in the form f(x) � −

���������������������

δ2 + (x − x∗)
TM(x − x∗)

􏽱

.
Te calculations show that

A
+

�
1
9

5 − 4 2

1 1 4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

M � A
T
A �

2 − 1

− 1 5
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

x∗ �
1
9
,
2
9

􏼒 􏼓, and

δ �
5
3
.

(9)

Te image of the square in R2 under A is the light blue
parallelogram inR3, shown on the right side of Figure 4.Te
vectors inR3 are the frst (blue) and second (red) columns of
A. Tese span the column space of A in R3. Te dot in R2 is
x∗, and the dot in the column space is Ax∗
� − AA+b � (1/9, 1/9, 4/9), which is the orthogonal pro-
jection of − b onto col(A). Te other dot in R3 is − b. Te
distance from Ax∗ to − b is δ � 5/3, so f(x∗) � − 5/3. Te
ellipse on the left is the contour of f with height − 2. Te
image of the ellipse under A is the circle on the right, which
is the set of points in the column space that are at a distance
of 2 from − b.

Te proof Teorem 5, to follow, is subtle. While it is
obvious that changing one parameter will change the
functionf, it is difcult to eliminate the possibility that more
than one parameter can be changed while leaving the
function unchanged. For example, with the form of equation
(1), the function f is unchanged when A↦QA and b↦Qb
for an orthogonal matrix Q. Te strategy in the proof is to
uniquely determine one parameter at a time in
a specifc order.

Theorem 7. We assume a SOCF is written in the form of
equation (6), and that the same SOCF is written with possibly
diferent parameters satisfying the same requirements, so

f(x) � c
T
x + d −

���������������������

δ2 + x − x∗( 􏼁
T
M x − x

∗
( 􏼁

􏽱

� 􏽥c
T
x + 􏽥d −

����������������������

􏽥δ
2

+ x − 􏽥x∗􏼒 􏼓
T

􏽥M x − 􏽥x
∗

􏼒 􏼓

􏽳

, (10)

for all x.

(i) If M � 0 (the zero matrix), then 􏽥c � c, 􏽥M � 0,
􏽥d − 􏽥δ � d − δ, and 􏽥x∗ is arbitrary.

(ii) If M≠ 0, then 􏽥c � c, 􏽥d � d, 􏽥δ � δ, 􏽥M � M, and
M􏽥x∗ � Mx∗.

As a consequence, the parameterization of a SOCF in the
form of equation (6) is unique if and only if M is positive
defnite.

Proof. We recall that M and, 􏽥M are positive semidefnite. It
follows that Mv � 0 if and only if vTMv � 0. Also, we recall
that δ and 􏽥δ are non-negative real numbers. □

For nonzero v ∈ Rn and t ∈ [0,∞), we consider the
function f(vt) and its asymptotic behavior as t⟶∞. If
vTMv � 0, then f(vt) � cTv t + d −

����������

δ2 + xT
∗Mx∗

􏽱

. If
vTMv ≠ 0, then, we have

Journal of Optimization 5



f(vt) � c
T
vt + d −

����������������������

δ2 + vt − x∗( 􏼁
T
M vt − x∗( 􏼁

􏽱

� c
T
vt + d −

���������������������������

v
TMvt

2
− 2v

TMx∗t + x
T
∗Mx∗ + δ2

􏽱

� c
T
vt + d −

�����

v
TMv

􏽱

t

�����������������������

1 +
− 2v

TMx∗t + x
T
∗Mx∗ + δ2

v
TMvt

2

􏽳

� c
T
v −

�����

v
TMv

􏽱

􏼠 􏼡t + d +
v

TMx∗�����
v

TMv
􏽰 + O

1
t

􏼒 􏼓 as t⟶∞.

(11)

Te third equation uses the fact that t≥ 0, and the fourth
equation uses the Taylor series

����
1 + ε

√
� 1 + ε/2 + O(ε2) as

ε⟶ 0. Te fourth equation describes the slant asymptote
of the graph of f(vt), and is crucial for the remainder of
the proof.

For all v≠ 0, equation (11) implies that

f(vt) − f(− vt)
2

�

c
T
v t, if v

TMv � 0,

c
T
v t +

v
TMx∗
v

TMv
+ O

1
t

􏼒 􏼓, if v
TMv ≠ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

Which is a similar expression where c is replaced by 􏽥c

holds. If vTMv � 0, then 􏽥c
T
v � cTv. If vTMv ≠ 0, then the

slope of the slant asymptote is the same for both sets of
parameters, so again 􏽥c

T
v � cTv. Tis holds for all v, so 􏽥c � c.

For all v≠ 0, equation (11) implies that

f(vt) + f(− vt)
2

�

d −

����������

δ2 + x
T
∗Mx∗

􏽱

, if v
TMv � 0,

d −
�����
v

TMv
􏽰

t + O
1
t

􏼒 􏼓, if v
TMv ≠ 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

along with a similar expression where d is replaced by 􏽥d, etc.
If 􏽥M≠M, then there is some vector v such that
vT 􏽥Mv≠ vTMv.Tis leads to a contradiction since the slope of
the slant asymptote in equation (13) would be diferent.
Tus, 􏽥M � M.

Assume M � 0.Ten, f(x) � cTx + d − δ � cTx + 􏽥d − 􏽥δ,
since 􏽥c � c, and 􏽥M � M � 0. Tus, 􏽥d − 􏽥δ � d − δ.

Assume M≠ 0. Ten, there exists v ∈ Rn that satisfes
Mv ≠ 0. Using equation (13) with vT 􏽥Mv � vTMv ≠ 0, we fnd
that 􏽥d � d. At this point, we conclude that from the equality
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Figure 4: Te geometry of the second-order cone function f(x) � − Ax + b‖ ‖, with A ∈ R3×2 and b ∈ R3, is defned in Example 3. Te

function can also be written as f(x) � −

���������������������

δ2 + (x − x∗)
TM(x − x∗)

􏽱

, where M � ATA. Te maximum of f is at x∗ � − A+b, and the
maximum value is f(x∗) � − δ. Te orthogonal projection of − b onto the column space of A is Ax∗ � − AA+b. Te distance from Ax∗ to − b

is δ. One contour of f is shown. Te image of this contour is a circle of points in col(B) that are equidistant from − b.
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of the two expressions for f, that δ2 + (x − x∗)
T

M(x − x∗) � 􏽥δ
2

+ (x − 􏽥x∗)
TM(x − 􏽥x∗)

T for all x. By
expanding the quadratic term and canceling like terms, we
fnd that δ2 − 2xTMx∗ � 􏽥δ

2
− 2xTM􏽥x∗ for all x. Tus, 􏽥δ � δ

and M􏽥x∗ � Mx∗.
Now, we show that the parameterization of f is unique if

and only ifM is positive defnite. If M is not positive defnite,
there exists x∗ ≠ 􏽥x∗ such that M􏽥x∗ � Mx∗. If M is positive
defnite, thenM≠ 0 and M is invertible, so 􏽥x∗ � x∗ and all of
the parameters are unique.

Example 4. Let f(x1, x2) � −

�����������

4 + (x1 − 1)2
􏽱

be the SOCF

on R2 defned by c � 0, d � 0, δ � 2, M �
1 0
0 0􏼢 􏼣, and

x∗ � (1, 0). Note that M is not positive defnite. Te null
space of M is span (0, 1){ }. Te parameterization is not
unique since any x∗ ∈ (1, a) | a ∈ R{ } yields the same SOCF.

While many choices of A and b in the form of equation
(1) yield the same function, there is a canonical choice for A

and b starting with the function in the form of equation (6).
We recall that a positive semidefnite matrix M has a unique
positive semidefnite square root, denoted by M1/2.

Theorem 8. Let M ∈ Rn×n be positive semidefnite, x∗ ∈ Rn,
and δ ∈ R. Ten, δ2 + (x − x∗)

TM(x − x∗) � Ax + b‖ ‖
2 for

A �
M

1/2

0
⎡⎣ ⎤⎦, and

b �
− M1/2x∗

δ
⎡⎣ ⎤⎦.

(14)

Te last row of A ∈ R(n+1)×n is all 0s, and the last
component of b ∈ Rn+1 is δ.

Proof. Note that M1/2 is symmetric, and

Ax + b �
M

1/2
x

0
⎡⎣ ⎤⎦ +

− M
1/2

x∗

δ
⎡⎣ ⎤⎦ �

M
1/2

x − x∗( 􏼁

δ
⎡⎣ ⎤⎦.

(15)

Tus, Ax + b‖ ‖
2 � δ2 + (x − x∗)

TM1/2M1/2(x − x∗) �

δ2 + (x − x∗)
TM(x − x∗). □

Remark 9. It follows from this theorem that any SOCF can
be defned in the form of equation (1) with A ∈ R(n+1)×n.
While A is an m × n matrix with any m, using m> n + 1 is
never needed.

We recall that any nonconstant SOCF is not bounded
below, since it is concave. We give necessary and sufcient
conditions for a SOCF to be bounded above with the two
theorems. Te next theorem assumes that M is positive
defnite, and the case where M is positive semidefnite is
handled in Teorem 13.

Theorem 10. Te SOCF f: Rn⟶ R can be written in the
form of equation (6).

f(x) � c
T
x + d −

���������������������

δ2 + x − x∗( 􏼁
T
M x − x∗( 􏼁

􏽱

, (16)

with M positive defnite is bounded above if and only if
cTM− 1c≤ 1.

(1) If cTM− 1c< 1 and δ � 0, then x∗ is the unique critical
point of f, and f(x∗) � cTx∗ + d is the global
maximum value of f.

(2) If cTM− 1c � 1 and δ � 0, then every point in the ray
x∗ + tM− 1c | t≥ 0􏼈 􏼉 is a critical point of f, on which f

attains its maximum value of f(x∗) � cTx∗ + d.
(3) If cTM− 1c> 1 and δ � 0, then x∗ is the unique critical

point of f, but f is not bounded above.
(4) If cTM− 1c< 1 and δ > 0, then xcp:� x∗+

δM− 1c/
����������
1 − cTM− 1c

√
is the unique critical point of f,

and f(xcp) � cTxcp + d − δ
����������
1 − cTM− 1c

√
is the global

maximum value of f.
(5) If cTM− 1c � 1 and δ > 0, then f has no critical points

and f does not have a global maximum value, but f is
bounded above by cTx∗ + d.

(6) If cTM− 1c> 1 and δ > 0, then f has no critical points
and f is not bounded above.

Proof. To simplify the proof, we will analyze the SOCF
􏽥f(x):� cTx −

���������
δ2 + xTMx

􏽰
. Note that f(x + x∗) �

􏽥f(x) + (d + cTx∗), and 􏽥f(x − x∗) � f(x) − d + cTx∗, so we
can easily relate the critical points, and the upper bounds, of
f and 􏽥f. □

Case 1. δ � 0. In this case, 􏽥f(x) � cTx −
�����
xTMx

√
. Let v be

any nonzero vector in Rn. Since vTMv > 0, the function
t↦ 􏽥f(vt) � (cTv)t −

�����
vTMv

√
|t| is not diferentiable at t � 0.

Tus, 0 ∈ Rn is a critical point of 􏽥f at which 􏽥f is not dif-
ferentiable, and f has a critical point at x∗. To determine if 􏽥f

has a global maximum at 0, we defne gv: [0,∞)⟶ R by
gv(t) � 􏽥f(vt) � (cTv)t − t

�����
vTMv

√
. Note that gv is a linear

function giving the value of 􏽥f along a ray starting at 0 ∈ Rn

with the direction vector v. Te function 􏽥f is bounded above
if and only if the slope of gv is nonpositive for all directions v.

Let E � x ∈ Rn | xTMx � 1􏼈 􏼉. Note that E is an ellipsoid
centered at 0, since M is positive defnite. Furthermore,
gv(0) � 0, so 􏽥f is bounded above if and only if the maximum
value of 􏽥f, restricted to E, is nonpositive. We compute this
maximum value by using the method of Lagrange multi-
pliers.Te extreme values of 􏽥f restricted toE occur at places
where ∇(cTx) � λ∇

�����
xTMx

√
. Tis is equivalent to

c � λMx/
�����
xTMx

√
or λMx � c since xTMx � 1 on E. Tus,

the extrema of 􏽥f are at x � 1/λM− 1c, where λ is determined
by xTMx � 1. Tus, 1/λ2cTM− 1MMc � 1, so λ2 � cTM− 1c.
Tere are two antipodal points on E, x± � ±1/�������

cTM− 1c
√

M− 1c, with extreme values of 􏽥f restricted toE. We
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see that 􏽥f(x±) � cTx± − 1 � ±
�������
cTM− 1c

√
− 1.Te maximum

value of 􏽥f restricted to E is
�������
cTM− 1c

√
− 1, which occurs at

x+. Tus, the maximum slope of gv occurs when v is
a positive scalar multiple of M− 1c, and that the maximum
slope has the same sign as

�������
cTM− 1c

√
− 1. Tus, 􏽥f is bounded

above if and only if cTM− 1c≤ 1.
If cTM− 1c< 1, then 0 is the unique critical point of 􏽥f, and

􏽥f(0) � 0 is the global maximum value of 􏽥f. Tus, x∗ is the
unique critical point of f, and f(x∗) � cTx∗ + d is the global
maximum value of f. Tis proves part 1 in the theorem. If
cTM− 1c � 1, then the linear function gv has a slope 0 when
v � M− 1c, and 􏽥f achieves its maximum value of 0 at each
point on the ray from 0 through M− 1c. Every point in this
ray, C � tM− 1c | t≥ 0􏼈 􏼉, is a critical point. Translating this
result to the original f proves part 2. If cTM− 1c> 1, then the
slope of gv is positive for some v. Tus, 􏽥f has an isolated
critical point at 0, but 􏽥f is not bounded above. Tis proves
part 3 of the theorem.

Case 2. δ > 0. Te gradient of 􏽥f at x is

∇􏽥f(x) � c −
Mx

���������
δ2 + x

TMx
􏽰 . (17)

In this case, 􏽥f is smooth, and the critical points of 􏽥f are
solutions to ∇􏽥f(x) � 0. Since M is positive defnite, 􏽥f is
strictly concave byTeorem 4, and 􏽥f has at most one critical
point. If 􏽥f has a critical point then it must be a global
maximum and hence 􏽥f is bounded above. We denote the
critical point of 􏽥f as xcp, if it exists, which satisfes

Mxcp � c
������������
δ2 + xcp

TMxcp
􏽱

. It follows that the critical point is
a scalar multiple of M− 1c. Let xcp � αM− 1c. Te scalar α

satisfes α �

���������������������

δ2 + α2(M− 1c)TM(M− 1c)

􏽱

�
������������
δ2 + α2cTM− 1c

􏽰
.

If cTM− 1c< 1, then the unique solution is
αs � δ/

����������
1 − cTM− 1c

√
, and if cTM− 1c≥ 1, then there are no

solutions for α. Tus, if cTM− 1c< 1, the function 􏽥f has the
critical point αsM

− 1c, and the critical point of f is
xcp � x∗ + αsM

− 1c, and a calculation of f(xcp) completes
the proof of part 4.

We have already seen that 􏽥f, and therefore f, has no
critical points when cTM− 1c≥ 1. Te results about bound-
edness and upper bounds need the following asymptotic
analysis. When x‖ ‖ is large, then xTMx is large of order

O( x‖ ‖2) because M is positive defnite, and
���������
δ2 + xTMx

􏽰
�

�����
xTMx

√ ������������

1 + δ2/(xTMx)

􏽱

>
�����
xTMx

√
. Te

Taylor expansion
����
1 + ε

√
� 1 + ε/2 + O(ε2) shows that���������

δ2 + xTMx
􏽰

�
�����
xTMx

√
(1 + δ2/(2xTMx) + O( x‖ ‖− 4)). Tus,

a SOCF with δ > 0 is always less than the corresponding
SOCF with δ � 0, and the diference approaches 0 as
x‖ ‖⟶∞. We now present parts 5 and 6 of the theorem
which are given as follows.

Example 5. Figure 5 shows the contour diagrams of 6 SOCFs
of the form f(x) � cTx −

���������
δ2 + xTMx

􏽰
, with

M �
2 − 1

− 1 5􏼢 􏼣. Te eigenvalues of M are (7 ±
��
13

√
)/2, so

M is positive defnite and Teorem 10 applies with the
parameters d � 0 and x∗ � (0, 0). A calculation shows that

M− 1 � (1/9)
5 1
1 2􏼢 􏼣. Te other parameters are δ � 0 in the

top row, δ � 1 in the bottom row, c � (0.7, 0.7) in the left
column, c � (1, 1) in the middle column, and c � (1.3, 1.3)

in the right column. Tese values of c give cTM− 1c � 0.72, 1,
and 1.32, respectively. In the top row, (0, 0) is always the
critical point and f(0, 0) � 0. In the top middle fgure, the
contour with height 0 is the ray in the direction
M− 1c � (2/3, 1/3). In the bottom left fgure, we fnd that
xcp � (1.4/3, 0.7/3)/

������
1 − .72

√
≈ (0.65, 0.33) and f(xcp)

� −
������
1 − .72

√
≈ − .71. In the bottom middle fgure, f is

bounded above by 0.

Theorem 11. Te SOCF f: Rn⟶ R written in the form of
equation (6)

f(x) � c
T
x + d −

���������������������

δ2 + x − x∗( 􏼁
T
M x − x∗( 􏼁

􏽱

, (18)

with M positive semidefnite is bounded above if and only if
c ∈ col(M) and cTM+c≤ 1.

Proof. Since M is symmetric, the fundamental theorem of
linear algebra states that the null space of M is the or-
thogonal complement of the column space of M. We can
write any x ∈ Rn as x � xn + xr for unique xn ∈ N(M) and
xr ∈ col(M). Similarly, we split c � cn + cr. For a fxed x∗, we
write x ∈ Rn as x � x∗ + xn + xr. Tus, M(x − x∗) �

M(xn + xr) � Mxr, and the general second-order cone
function is

f x∗ + xn + xr( 􏼁 � c
T
n xn + c

T
r xr + c

T
x∗ + d􏼐 􏼑 −

�����������

δ2 + xr
TMxr

􏽱

. (19)
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Assume c ∉ col(M). Ten, cn ≠ 0 and f is not bounded
since f(x∗ + xn) � cT

n xn + (cTx∗ + d − δ) is an unbounded
linear function.

Assume c ∈ col(M), so cn � 0. We defne
g: col(M)⟶ R by

g xr( 􏼁 ≔ f x∗ + xn + xr( 􏼁 � c
T
r xr + c

T
x∗ + d􏼐 􏼑 −

�����������

δ2 + xr
TMxr

􏽱

. (20)

Note that M, restricted to col(M) is a nonsingular map,
so we can apply Teorem 10 to g as follows. Te pseu-
doinverse of M satisfes the following equation:

M
+

xn + xr( 􏼁 � M
+
xr,

MM+
xn + xr( 􏼁 � M

+
M xn + xr( 􏼁 � xr.

(21)

Tus, the restriction of M+ to col(M) is the inverse of the
restriction of M to col(M). Teorem 10 says that g is
bounded above if and only if cT

r M+cr ≤ 1. Note that cTM+c �

cT
r M+cr for any c ∈ Rn.

We have shown that f is not bounded above if
c ∉ col(M). We have also shown that if c ∈ col(M), then f is
bounded above if and only if cTM+c≤ 1. Tese two state-
ments can be combined into one: f is bounded above if and
only if c ∈ col(M) and cTM+c≤ 1. □

Remark 12. If M is posivite defnite, then c ∈ col(M) � Rn

and M+ � M− 1. Tus, Teorem 13, in the case where M is
posivite defnite, implies that f is bounded above if and only
if cTM− 1c≤ 1, which is the frst part of Teorem 10.

Example 6. We consider the SOCF onR2 with M �
4 0
0 0􏼢 􏼣,

d � 0, and x∗ � (0, 0) as

f(x) � c1x1 + c2x2 −

�������

δ2 + 4x
2
1

􏽱

. (22)

Note that f(0, x2) � c2x2 − δ is not bounded above if
c2 ≠ 0. If c2 � 0, then f(x) � c1x1 −

�������

δ2 + 4x2
1

􏽱

≤ c1x1 − 2|x1|

and f(x)⟶ c1x1 − 2|x1| as x1⟶ ±∞. Tus, f is
bounded above if and only if c2 � 0 and c21 ≤ 4.

Tis observation is predicted by Teorem 11. Te col-
umn space of M is col(M) � (a, 0) | a ∈R{ }, so c ∈ col(M) is
equivalent to c2 � 0. Te pseudoinverse of M is

M+ � 1/4 1 0
0 0􏼢 􏼣, so cTM+c � c21/4, and cTM− 1c≤ 1 is

equivalent to c21 ≤ 4.

One of the main uses of SOCFs is to defne convex sets
for optimization problems. Optimization over a bounded set
is very diferent from optimization over an unbounded set,
so we fnish this paper with a simple characterization.

cTM−1c < 1 cTM−1c = 1 cTM−1c > 1

δ = 0

δ = 1
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Figure 5: Contour plots of six diferent second-order cone functions defned in Example 5. All functions have the same positive defnite
matrix M. Te parameters c and δ are chosen to illustrateTeorem 10, which says that f is bounded above if and only if cTM− 1c≤ 1.Te six
parts ofTeorem 10 correspond to the six contour plots. Te contour with f(x) � − 1 is a thick red curve, and the spacing between contours
is Δf � 0.5.
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Theorem 13. Let f: Rn⟶ R be defned by

f(x) � cTx + d −

���������������������

δ2 + (x − x∗)
TM(x − x∗)

􏽱

, where M is
positive semidefnite. Ten the set R: � x ∈ Rn ∣ f(x)≥ 0􏼈 􏼉

is closed and convex. Assuming R is not the empty set, R is
bounded if and only if M is positive defnite and cTM− 1c< 1.

Proof. Te setR is convex sincef is concave, and it is closed
since f is continuous. If M is not positive defnite, then
Teorem 11 implies that R is not bounded, since f is
unbounded if c ∈ col(M), and f satisfes f(x + xr) � f(x)

for all xr ∈ N(M) if c ∈ col(M). If M is a positive defnite,
then Teorem 10 implies that R is bounded if and only if
cTM− 1c< 1. □

Remark 14. In the case where M is positive defnite and
cTM− 1c< 1, the compact R might be trivial. Let
􏽥d: � d − δ

����������
1 − cTM− 1c

√
. Te set R is the empty set if

􏽥d< 0, R is the singleton set x∗􏼈 􏼉 if 􏽥d � 0, and R has
a nonempty interior if 􏽥d> 0.

3. Conclusion

Te second-order cone function has important applications in
optimization problems. Our work gives necessary and sufcient
conditions for strict concavity of a second-order cone function.
We show that every SOCF can be written in the following form:

f(x) � cTx + d −

���������������������

δ2 + (x − x∗)
TM(x − x∗)

􏽱

, which has
unique parameters in many cases. Tis alternative parameter-
ization gives a deep understanding of the family of SOCFs.Tis
alternative description leads to new results on SOCFs. We
characterize the critical points and global maxima of f,
depending on the parameters. We give necessary and sufcient
conditions for f to be bounded above, and for the set
x ∈ Rn ∣ f(x)≥ 0􏼈 􏼉 to be bounded. Our results can lead to
improved algorithms for optimization problems involving
second-order cone constraints.
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