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Hypertensive disorders of pregnancy (HDP) are the most common cardiometabolic complications of pregnancy, affecting nearly
10% of US pregnancies and contributing substantially to maternal and infant morbidity and mortality. In the US, women of
African American race are at increased risk for HDP. Early biomarkers that reliably identify women at risk for HDP remain
elusive, yet are essential for the early identification and targeting of interventions to improve maternal and infant outcomes.
We employed high-resolution metabolomics (HRM) to identify metabolites and metabolic pathways that were altered in early
(8-14 weeks) gestation serum samples of pregnant African American women who developed HDP after 20 weeks’ gestation
(n=20)—either preeclampsia (PE; n=11) or gestational hypertension (gHTN; n=9)—compared to those who delivered full
term without complications (n =80). We found four metabolic pathways that were significantly (p <0.05) altered in women
who developed PE and five pathways that were significantly (p < 0.05) altered in women who developed gHTN compared to
women who delivered full term without complications. We also found that four specific metabolites (p < 0.05) were distinctly
upregulated (retinoate, kynurenine) or downregulated (SN-glycero-3-phosphocholine, 24’ -dihydroxyacetophenone) in women
who developed PE compared to gHTN. These findings support that there are systemic metabolic disruptions that are
detectable in early pregnancy (8-14 weeks of gestation) among pregnant African American women who develop PE and
gHTN. Furthermore, the early pregnancy metabolic disruptions associated with PE and gHTN are distinct, implying they are
unique entities rather than conditions along a spectrum of the same disease process despite the common clinical feature of
high blood pressure.

1. Introduction

Hypertensive disorders of pregnancy (HDP) include gesta-
tional hypertension (gHTN), preeclampsia (PE) that is de
novo or superimposed on preexisting chronic hypertension,
and preexisting chronic hypertension [1]. By conservative
estimates, HDP are responsible for 76,000 maternal and
500,000 infant deaths globally each year. Together they are
the most common cardiometabolic complications of preg-
nancy, affecting nearly 10% of US pregnancies [2] and have

been increasing in recent years [3]. In the US, women of
African American race are at the highest risk for developing
HDP, and their overall pregnancy-related mortality ratio is
3.4 times higher relative to white women [4]. Risk factors
for gHTN include obesity, maternal age less than 20 or more
than 40 years, and family history. Risk factors for PE are less
understood but include both nulliparity and grand multipar-
ity, history of PE or chronic hypertension, diabetes, renal dis-
ease, and obesity [5, 6]. Despite the tremendous morbidity
and mortality burden of HDP, the etiology and pathogenesis
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remain elusive, thereby limiting the development of specific
preventive and treatment strategies. There is a need to iden-
tify early pregnancy clinical biomarkers of risk to enhance the
timely targeting of treatment.

Systems biology and high-throughput omics technolo-
gies offer great promises for understanding molecular
mechanisms of disease risk and pathogenesis. In particular,
high-resolution metabolomics (HRM) provides the most
comprehensive measurement of small molecules (metabo-
lites) in biological samples and can identify metabolic path-
ways that are activated or deactivated in health or disease
[7]. HRM uses liquid chromatography (LC) or gas chroma-
tography (GC) with high-resolution mass spectrometry
(HRMS) and advanced data extraction algorithms to measure
a broad spectrum of chemicals in biologic samples [8]. The
approach complements targeted metabolomics through the
use of computational methods for metabolite and pathway
analysis [9]. HRM is a promising tool for uncovering metabo-
lites and metabolic pathways that may be perturbed early in
the trajectory of metabolic dysfunction and may serve to iden-
tify early onset or those at risk for the condition.

A few recent studies have applied HRM to identify
metabolites and metabolic pathways that are altered in PE
[10-14], and to our knowledge, only one study also examined
gHTN [15]. African American (AA) women are underrepre-
sented in these published studies. The purpose of the current
study was to expand this body of inquiry and employ HRM
on early (8-14 weeks) gestation serum samples to identify
metabolites and metabolic pathways that were altered among
AA women who developed HDP (PE and/or gHTN) com-
pared to those who delivered full term without complications.

2. Materials and Methods

2.1. Study Design and Population. This nested case-control
study was undertaken on a subset of women who were
enrolled in the Emory University African American Vaginal,
Oral, and Gut Microbiome in Pregnancy Cohort Study,
which is described in detail elsewhere [16]. Briefly, pregnant
women aged 18-40 years presenting with a singleton preg-
nancy at 8-14 weeks of gestation for prenatal care to clinics
affiliated with Grady Memorial Hospital, a publicly-funded
hospital, or Emory Midtown Hospital, a private hospital,
who self-identified as AA are invited to participate in this
ongoing cohort study. Exclusion criteria for study entry
include the presence of any chronic medical condition,
including chronic hypertension. Those who meet the criteria
and provide informed consent undergo data collection at the
time of enrollment (8-14 weeks of gestation). The women
were enrolled between June 2014 and August 2015 and had
venous blood collected at 8-14 weeks of gestation; these blood
samples were then analyzed in a single batch to eliminate any
opportunity for batch effects not accounted for during ana-
Iytic processing. The women selected as cases were those
who had a diagnosis of either PE or gHTN during the preg-
nancy (n = 20), while controls were those whose pregnancy
ended in a full-term birth (between 39-0/7 and 40-6/7
weeks of gestation) without cardiometabolic complications
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of pregnancy (n=280). Women who experienced gesta-
tional diabetes were excluded from all analysis.

2.2. Data Collection. Data collection occurred at the enroll-
ment visit (between 8 and 14 weeks of gestation) and via
medical record abstraction completed postdelivery to capture
the birth and pregnancy outcomes over the course of the
pregnancy. Measures collected as part of the larger cohort
study that are relevant to this study include the following.

Sociodemographic survey based on maternal self-report
and prenatal administrative record review was used to
ascertain maternal age, level of education, marital status,
and insurance status.

Medical chart abstraction was completed by the research
team using a standardized chart abstraction tool to ascertain
the following pre- and perinatal characteristics, conditions,
and birth outcomes. (1) Parity is categorized according to
whether the woman had had any prior term or preterm
birth. (2) Prepregnancy body mass index (BMI) is calculated
from measured height and weight at the first prenatal visit
between 8 and 14 weeks of gestation and categorized
according to accepted definitions (obesity > 30 kg/m?, over-
weight 25-29.99kg/m’ healthy weight 18.5-24.99 kg/m?,
and underweight < 18.5kg/m?). (3) Gestational age at birth:
all participants received early pregnancy dating by last men-
strual period (LMP) and/or early ultrasound, given enroll-
ment criteria. Gestational age at birth was determined from
the delivery record using upon the best obstetrical estimate
[17], based upon the date of delivery in relation to the esti-
mated date of confinement established by the 8- to 14-week
prenatal visit (39 0/7 weeks of gestation through 40 6/7
weeks of gestation). (4) Cardiometabolic complications of
pregnancy: women were considered to have gestational
hypertension (gHTN) if they had new-onset hypertension
(defined as systolic blood pressure>140 mmHg and/or
diastolic blood pressure > 90 mmHg at >20 weeks of gestation
in the absence of proteinuria or new signs of end-organ dys-
function (with blood pressure readings documented on at
least two occasions at least four hours apart)) and were con-
sidered to have preeclampsia if they met the same blood pres-
sure criteria along with proteinuria or new signs of end-organ
dysfunction [18]. Cases of preeclampsia were further catego-
rized as early onset if preeclampsia developed before 34 weeks
of gestation and as late onset if preeclampsia developed at or
after 34 weeks of gestation [19]. Women were considered to
have gestational diabetes if they developed glucose intolerance
after 20 weeks of gestation, as diagnosed by an abnormal oral
glucose tolerance test [20]. Venous blood draw was completed
by a phlebotomist during the enrollment encounter. Serum
aliquots from the venous blood were obtained and stored
at -80 degrees Celsius until later analysis of serum metabolites.

2.3. High-Resolution Serum Metabolomics. HRM was com-
pleted using LC-HRMS (liquid chromatography coupled
high-resolution mass spectrometry) [21, 22]. Serum samples
were prepared and analyzed in batches of 20; each batch
included duplicate analysis of pooled human serum for
quality control purposes and reference standardization. Prior
to analysis, serum aliquots were removed from storage
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at -80°C and thawed on ice. Each cryotube was vortexed
briefly to ensure homogeneity and 50 uL transferred to a
clean microfuge tube. Immediately after, serum was treated
with 100 yL of ice-cold LC-MS grade acetonitrile (Sigma-
Aldrich) containing 2.5 uL of internal standard solution with
eight stable isotopic chemicals selected to cover a range
of chemical properties. Following addition of acetonitrile,
serum was equilibrated for 30 min on ice, upon which precip-
itated proteins were removed by centrifuge (16.1g at 4°C for
10min). The resulting supernatant (100 L) was removed,
added to a low-volume autosampler vial, and maintained at
4°C until analysis (<22h).

Samples were analyzed in triplicate using 10 uL injec-
tions and separate HILIC chromatography columns with
detection by high-resolution mass spectrometry (Thermo
Scientific Dionex Ultimate 3000RSLCnano, Thermo Scientific
Orbitrap Fusion Tribrid Mass Spectrometer). During HILIC
chromatography, the electrospray ionization (ESI) source is
operated in positive ion mode.

The high-resolution mass spectrometer was operated in
full scan mode at 120,000 resolution and mass-to-charge
ratio (m/z) range 85-1275. Raw data files were extracted
and aligned using apLCMS [23] and xMSanalyzer [24].
Uniquely detected ions consisted of accurate mass m/z,
retention time, and ion abundance, referred to as mj/z
features. Prior to data analysis, m/z features were batch
corrected using ComBat [25]. Data from HILIC column with
positive ion mode were used for this analysis.

2.4. Metabolite Annotation. For the HRM method used, iden-
tities of more than 400 metabolites have been confirmed by
retention time and MS/MS fragmentation criteria relative to
authentic standards (Schymanski et al. [26]) Level 1 criteria.
For the workflow used, metabolic features were annotated
using xMSannotator in which the confidence scores for
annotation are derived from a multistage clustering algo-
rithm [27]. For features selected using linear regression and
partial least squares-discriminant analysis (PLS-DA), identi-
fication of the metabolites was confirmed by criteria of
Schymanski et al. [26], either by Level 1 identification, which
involves comparing mass spectrum and coelution relative to
authentic standards, or by Level 2 identification, which
involves comparison to METLIN spectral database (http://
metlin.scripps.edu/index.php). Lower confidence annota-
tions designated as Level 3-5 identification by Schymanski
et al. [26] were made using HMDB (Human Metabolome
Database, http://www.hmdb.ca/) [28] and KEGG (Kyoto
Encyclopedia of Genes and Genomes, http://www.genome
jp/kegg/) [29]. Additional manual search was done using
METLIN at 5ppm tolerance [30]. Only metabolites corre-
sponding to Level 1 identification are reported in this
manuscript.

2.5. Bioinformatics and Statistics. Descriptive statistics were
used to evaluate participant characteristics, using chi-square
or Fisher’s exact test as appropriate for categorical variables
and Student’s t-test for continuous variables. A one-way
analysis of variance (ANOVA) was calculated on demo-
graphic and clinical variables to determine differences

between the three groups. For any test that failed homogene-
ity of variance, we used the Welch’s robust test of equality.
Metabolomics data were filtered to remove features not
present in at least 80% of one group or >80% of all samples.
After filtering, missing values were imputed by one-half of
the lowest signal detected for that feature across all samples
[31]. Data were then log, transformed and quantile normal-
ized [32, 33]. Generalized linear regression methods were
used to compare groups (PE vs. healthy controls, gHTN vs.
healthy controls, and PE vs. gHTN) and control for covari-
ates (age, prior term pregnancy, prior preterm pregnancy,
and first prenatal BMI). Each m/z feature is used as the inde-
pendent variable while class (comparisons described above)
and other covariates act as dependent variables. Multiple
hypothesis correction was performed using the Benjamini-
Hochberg false discovery rate (FDR) correction method with
threshold g value of 0.20 [34]. Because the goal of this study
was to explore metabolic differences among women with and
without hypertensive disorders in pregnancy for future
hypothesis testing, less stringent methods were used (raw
p values vs. FDR threshold) in all visualization methods.
Previously published studies have shown that FDR correc-
tion results in type II statistical error while protecting for type
I statistical error [35]. Pathway enrichment analysis using
features significant at raw p value provides a 2-step approach
which protects against both type I and type II errors [8]. In
order to explore the direct comparison between hypertensive
disorders (PE vs. gHTN), we used partial least squares-
discriminant analysis (PLS-DA) and used a Variable Impor-
tance for Projection (VIP) > 2 for further annotation. Type 1
(-log,o p vs. m/z) and Type 2 (-log,, p vs. retention time)
Manhattan plots were used to visualize the pattern of differ-
ential expression across all features with respect to molecular
mass and chemical properties, respectively. Discriminatory
features were analyzed through an unsupervised multivariate
approach using principal component analysis (PCA) to visu-
alize the participant samples. All analysis was performed
using several R packages using an automated workflow
package (xmsPANDA version 1.0.7.4) and R version 3.4.3.
Mummichog v2.0 was used to perform pathway
enrichment analysis using m/z features that were significant
at p <0.05 and had VIP > 1 [36]. Mummichog was designed
to perform pathway and network analysis for untargeted
metabolomics. The software compares the enrichment pat-
tern of the significant metabolite subsets with null distribu-
tion on known metabolic reactions and pathways, thereby
allowing prioritization of pathways for further evaluation [8].

3. Results

3.1. Study Sample Characteristics. The study sample included
100 participants: 20 who developed HDP (11 PE, 9 gHTN)
and 80 who had uncomplicated, full-term pregnancies. Of
the 11 cases of PE, a single case was early onset (with onset
occurring at 33 weeks and 5 days of gestation), while the
remainder onset at or after 34 weeks of gestation. Demo-
graphic and clinical characteristics of participating women
according to case or control status are given in Table 1; with
exception to parity, these characteristics did not vary across
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TaBLE 1: Demographics and clinical characteristics of participants.

Full-term, healthy controls Gestational hypertension Preeclampsia p value
n=2380 n=9 n=11

Age, years, mean (SD) 24.3 (4.4) 21.3 (2.8) 24.5 (4.7) 0.15
Marital status, married (n, %) 10 (12.5) 0 2 (18.2) 0.45
Medical insurance status (1, %)

Medicaid 60 (75) 7 (77.8) 8 (72.7) 1.00

Private 20 (25) 2(22.2) 3(27.3)
Education (1, %)

<HS diploma 14 (17.5) 1(11.1) 3(27.3)

HS diploma 19 (23.8) 5 (55.6) 4 (36.4) ols

Some college 35 (43.8) 2(22.2) 3(27.3)

College grad 7 (8.8) 1(11.1) 1(9.1)
First prenatal BMI, mean (SD) 28.7 (7.8) 26.3 (4.5) 30.6 (11.4) 0.33
Parity, nulliparous (n, %) 33 (41.3) 7 (77.8) 8 (72.7) 0.03
Gestational weeks at enrollment, mean (SD) 11.4 (2.3) 10.9 (1.7) 10.8 (2.0) 0.61

the three groups. Nulliparity is a known risk factor for HDP
and was controlled for in the analyses.

To determine if there were early pregnancy metabolic
differences between women who developed HDP (n = 20)
and controls (n=280), HRM was performed and provided
16,481 m/z features. In addition, women who developed par-
ticular subtypes of HDP, including PE (n=11) and gHTN
(n=9), were compared to controls (n = 80) and to each other
to determine potential discriminatory features, as described
below. The number of features considered in each compari-
son differs as the samples included in a given comparison dif-
fer according to the clinical outcome groups being compared.
No metabolites were significant by FDR g value of 0.20.

3.1.1. Preeclampsia vs. Healthy Controls. After preprocess-
ing, 9326 features remained for analysis. Using a multivar-
iate approach, controlling for parity, maternal age, and
first prenatal body mass index (BMI), 470 significant fea-
tures (raw p value < 0.05) were selected as discriminatory
between PE (1 = 11) and healthy, full-term controls (n = 80)
(Figures 1(a) and 1(b)). Manhattan plots show discrimina-
tory features with a broad range of both mass-to-charge ratio
(Figure 1(a)) and retention time (Figure 1(b)). Two-way hier-
archical cluster analysis aided in visualization of correlations
between biological samples and metabolic features, show-
ing distinct clustering for cases vs. controls (Figure 1(c)).
Principal component analysis (PCA) was performed using
the discriminatory features to visualize the differences
between biological samples (Figure 1(d)). Pathway enrich-
ment analysis using Mummichog showed significant enrich-
ment (p value < 0.05) of pathways that have been indicated in
blood pressure regulation including porphyrin metabolism,
steroid hormone biosynthesis, and vitamin A and arachi-
donic acid metabolism (Figure 1(e)).

3.1.2. Gestational Hypertension vs. Healthy Controls.
After preprocessing, 9270 features remained for analysis.
Using a multivariate approach, 388 significant features
(raw p value < 0.05) were selected as discriminatory between

gHTN (n=9) and healthy control (n=280) (Figures 2(a)
and 2(b)). Manhattan plots show discriminatory features with
a broad range of both mass-to-charge ratio (Figure 2(a)) and
retention time (Figure 2(b)). Two-way hierarchical cluster
analysis aided in visualization of correlations between biolog-
ical samples and metabolic features and showed distinct
clustering among case vs. control (Figure 2(c)). Principal
component analysis (PCA) was performed using the dis-
criminatory features to visualize the differences between
biological samples (Figure 2(d)). Pathway enrichment
analysis using Mummichog showed significant enrichment
(p value < 0.05) of pathways related to fructose and mannose
metabolism; amino acid metabolism involving aspartate,
asparagine, glycine, serine, alanine, threonine, arginine, and
proline; and urea cycle metabolism (Figure 2(e)).

3.1.3. Preeclampsia vs. Gestational Hypertension. After pre-
processing, 8954 features remained for analysis. Using a mul-
tivariate approach, 486 significant features (raw p value <
0.05) were selected as discriminatory between PE (n=11)
and gHTN (n =9) (Figures 3(a) and 3(b)). Manhattan plots
show discriminatory features with a broad range of both
mass-to-charge ratio (Figure 3(a)) and retention time
(Figure 3(b)). Two-way hierarchical cluster analysis aided in
visualization of correlations between biological samples and
metabolic features and showed distinct clustering among
gHTN (n=9) vs. PE (n = 11) (Figure 3(c)). Principal compo-
nent analysis (PCA) was performed using the discriminatory
features to visualize the differences between biological sam-
ples (Figure 3(d)). Pathway enrichment analysis using
Mummichog showed significant enrichment (p value < 0.05)
of the vitamin A metabolism pathway.

To select the features most likely to discriminate between
women who developed PE (n=11) and those with gHTN
(n=9), Variable Importance for Projection (VIP) scores
were obtained from a partial least squares-discriminant anal-
ysis (PLS-DA) model. There were 169 features significant
both by p value < 0.05 and VIP > 2 (Figures 4(a) and 4(b)).
Of'those, four significant features were verified and designated
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FI1GURE 1: Metabolic profiles of women with PE versus healthy controls. (a) Type 1 Manhattan plot, -log;, p vs. mass-to-charge ratio. 470 m/z
features were found significant at p value 0.05. No metabolites were significant by false discovery rate (FDR) g value 0.20. Red dots represent
those features upregulated in preeclampsia (PE), and the blue dots represent features that were downregulated in PE; the dashed line
represents significance cut-off of p value < 0.05. (b) Type 2 Manhattan plot, -log,, p vs. retention time, the majority of features had
retention time below 2 minutes; the dashed line represents significance cut-off of p value < 0.05. (c) 2-way hierarchical cluster analysis, PE
is represented in green and healthy full term in red across the x-axis; significant features are clustered on the y-axis. (d) Principal
component analysis. (¢) Mummichog-enriched pathways at p value < 0.05 represented by the green dotted line.
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FIGURE 2: Metabolic profiles of women with gestational hypertension versus healthy controls. (a) Type 1 Manhattan plot, -log,, p vs. mass-to-
charge ratio. 388 m/z features were found significant at p value 0.05. No metabolites were significant by false discovery rate (FDR) g value 0.20.
Red dots represent those features downregulated in gestational hypertension (gHTN), and the blue dots represent features that were
downregulated in healthy full-term women; the dashed line represents significance cut-off of p value < 0.05. (b) Type 2 Manhattan
plot, -log,, p vs. retention time. Majority of features had retention time below 2 minutes; the dashed line represents significance
cut-off of p value < 0.05. (c) 2-way hierarchical cluster analysis. gHTN is represented in red and healthy full term in green across
the x-axis; significant features are clustered on the y-axis; there is a clean separation seen between biological samples. (d) Principal
component analysis. (¢) Mummichog-enriched pathways at p value < 0.05 represented by the green dotted line.
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across the x-axis; significant features are clustered on the y-axis; there is clear separation between the two groups of women. (d) Principal

component analysis.

by Schymanski Level 1 criteria, including SN-glycero-3-
phosphocholine, retinoate, kynurenine, and 2'4'-dihydrox-
yacetophenone (Figure 4(c)).

A summary of the metabolic pathways showing signifi-
cant enrichment (p value < 0.05) based on Mummichog
pathway enrichment analysis for the intergroup comparisons
that were made is shown in Table 2. When examining results
for PE (n=9) vs. healthy controls (n = 80) and gHTN (n =9)
vs. healthy controls (n=80), it is notable that among the
pathways for which there was significant enrichment there
were no overlapping pathways. When examining results for
PE (n=11) vs. healthy controls (n = 80) and PE (n=11) vs.

gHTN (n=9), the vitamin A metabolic pathway was signifi-
cantly enriched in both comparisons.

4. Discussion

In this high-resolution metabolomics study, we identified key
serum metabolites and metabolic pathways that were altered
in early pregnancy (8-14 weeks of gestation) in AA women
who developed HDP (n =20) compared to those who deliv-
ered full term without complications (n = 80). To our knowl-
edge, this is the first metabolome study of HDP to focus
solely on pregnant African American women, the population



8 Journal of Pregnancy

gHTN Preeclampsia VIP >2 P-value < 0.05
P e
S B0 g
S e
= S T T AU
g . .o, . . . . | |
s 0+ --- S ‘ 301
S . 169 486
= o
t[?l .......... D L RSP,
& =30 g
A
---------- R R -
............... S
T T
-40 0 40

PLS1 (42.6% variation)
(a) (®)

o SN-glycero-3-phosphocholine = Retinoate
= T =t T
g - S 5 194 :
L = - .
g 24+ : flis
fnli! P 7 I
z g g g = ,
§ £ E 2 18 ' ’
;| E <§D - |
N '
0 . Q
S 20 i .
T T - T T
gHTN PE gHTN PE
Kynurenine 2’4’dihydroxy-acetophenone
= =
= —
< <
. _ B .=
' B N
25 2184 : 22
5 g £ 10- :
g g E = !
N T 1
g 214 : & 5 |
— -1 T = T L
gHTN PE gHTN PE

(0

FIGURE 4: Gestational hypertension vs. preeclampsia. (a) Partial least squares-discriminant analysis (PLS-DA). This supervised
discriminatory analysis shows preeclampsia (PE) in orange triangles and gestational hypertension (gHTN) in blue circles. (b) Venn
diagram showing 169 overlapping significant features between linear regression (p value < 0.05) and PLS-DA (VIP > 2). (c) Box and
whisker plots for 4 significant verified features (from left to right) SN-glycero-3-phosphocholine (m/z 258.1094; RT 765), retinoate
(m/z 301.2174; RT 28s), L-kynurenine (m/z 209.0922; RT 40s), and 2’4/—dihydroxyacetophenone (m/z 153.0577; RT 42s).

TaBLE 2: Summary of metabolic pathways showing significant enrichment for intergroup comparisons.

Preeclampsia vs. healthy control Gestational hypertension vs. healthy control Gestational hypertension vs. preeclampsia
Porphyrin metabolism Fructose and mannose metabolism Vitamin A metabolism
C21-steroid hormone biosynthesis Aspartate and asparagine metabolism Purine metabolism

Vitamin A metabolism Glycine, serine, alanine, and threonine metabolism

Arachidonic acid metabolism Arginine and proline metabolism

Urea cycle/amino group metabolism

of women most severely affected by HDP [37]. We examined  in the conditions examined separately, when compared to
two HDP conditions—both gHTN and PE—and identified ~ controls, than when combined into a single category. This
distinct metabolite and metabolic pathway differences  finding together with the four distinct metabolites that were
between the two. Furthermore, when we compared gHTN to  differentiated when we compared gHTN and PE suggests that
PE with discriminatory analyses, we found greater variation =~ gHTN and PE are distinct entities with unique mechanistic
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pathways and not necessarily a spectrum in severity of the
same disease process, despite the common clinical feature of
high blood pressure [5].

There were four pathways that were significantly
enriched in women who developed PE (n=11) compared
to women with healthy, full-term pregnancies (n=80) in
our study. One of those pathways was related to porphyrin
metabolism. Alterations in porphyrin metabolism have been
reported to be associated with porphyria, a group of enzy-
matic deficiency disorders of the heme biosynthetic pathway
[38]. Porphyrias are classified as either erythropoietic or
hepatic based upon where the overproduction of porphyrins
occurs or classified based on symptomology. The individual
metabolites that were altered in our sample of women who
developed PE were those associated with the liver. Porphyrias
are also classified as either chronic or acute. Chronic or cuta-
neous porphyrias affect the skin, while the acute porphyrias
affect the nervous system. One of the acute forms is acute
intermittent porphyria (AIP). While only 10-15% of gene
carriers demonstrate the clinical syndrome, symptoms are
often unrecognized or misdiagnosed and can become exacer-
bated during pregnancy. Though not well-studied, AIP has
been linked with adverse pregnancy outcomes, including
pregnancy-induced hypertension [39], while altered porphy-
rin metabolism has been linked with PE in individual case
studies [40, 41]. It is unknown if any of our participants
had AIP, since this condition is not routinely screened in
clinical care.

A second pathway that was significantly altered in PE was
steroid hormone biosynthesis. Clinically, women with PE
will often present with high circulating testosterone and
reduced estradiol production and are considered to experi-
ence endocrine disorders [42, 43]. This has been demon-
strated in pregnant AA women as well [44]. Given that the
estradiol metabolite was upregulated in our sample, our find-
ings conflict with these previous findings. However, another
very recent study has revealed that a high level of testosterone
in PE patients could lead to a marked suppression in estrogen
production via targeting of the specific estrogen receptors in
the placenta [45]. The placenta is an important source of
steroid hormone production throughout gestation, and
placental deficiencies are widely recognized as a principal
pathological component of PE [46].

Another pathway of steroid hormone biosynthesis
involves glucocorticoids. Hyperactivity of the hypothalamic
pituitary adrenal (HPA) axis and hypercortisolism is a
normal physiologic response in healthy pregnancies [47].
Both PE and gHTN have been characterized by lower cor-
tisol levels as compared to normotensive pregnant women,
suggesting that there may be increased cortisol metabolism
in these conditions [48, 49]. Our findings support this
decreased level with a downregulation of the tetrahydro-
corticosterone metabolite.

The retinol metabolism pathway was altered in women
with PE, with all three metabolites in this pathway downreg-
ulated. Retinol is a key vitamin in pregnancy with its role in
cell differentiation and the growth and development of the
embryo [50]. Retinol binding protein 4 (RBP4) is the adipo-
kine that delivers retinol from the liver to the peripheral

tissue. Although retinol metabolism has not been previously
identified as a significant factor in PE, there are numerous
studies that have examined the role of RBP4, and to date,
the findings are mixed with some studies finding upregula-
tion, others finding downregulation, and some finding no
differences [51-54].

Finally, in women who later developed PE (n = 11) in our
study, the fourth metabolic pathway to show alterations was
that of arachidonic acid metabolism. Three metabolites
within the arachidonic acid metabolism were downregulated
in women who later developed PE and included leukotriene
A4, 13,14-dihydroxy-retinol, and semialdehyde. The associa-
tion with arachidonic acid metabolism and PE has been
described before [55] and appears to be related to the lipid
peroxidation and oxidative stress [56], although the findings
are mixed and inconclusive [57]. However, a more recent
study published has also identified that placental metabolites
of arachidonic acid are altered in PE and may contribute to
the increases in placental vascular resistance, alterations in
uterine hemodynamics, and dysregulation of placental vascu-
lar remodeling seen in women with PE [58].

As compared to PE, gHTN has not been well studied
using metabolomics technologies. In our study, women with
gHTN had five metabolic pathways that were significantly
enriched with four involving amino acid metabolism or
catabolism and one involving fructose metabolism. Diets
high in fructose consumption have been linked with cardio-
metabolic disease [59], and recent animal studies have shown
an association between maternal fructose consumption and
the incidence of hypertension in their offspring [60].

Alterations in amino acid metabolism have been linked
with hypertension in nonpregnant populations [61], and
specific combined amino acid pathways (such as forglycine/-
serine/alanine/threonine) have also been found to be signifi-
cantly altered with metabolic syndrome [62]. In pregnancy,
many of the amino acid pathways we found to be associated
with gHTN have been associated with PE in other studies,
including arginine, alanine, serine, glycine, and asparagine
[11, 14, 63]. Of particular significance is our finding related
to altered metabolism with arginine given its role as the
immediate precursor of nitric oxide, which is involved in
vasodilation and blood pressure regulation [63]. In the only
other published study that specifically used metabolomics
technologies to examine gHTN in pregnancy, the develop-
ment of gHTN was associated with upregulated triglycer-
ides and downregulated high-density lipoprotein, lactate,
N-acetyl glycoproteins, phosphatidylcholine, and glucose
in early gestation (11-13 weeks) [15].

When we combined gHTN and PE into one group of
HDP and compared to women with healthy, full-term preg-
nancies (data included in Supplemental file (available here)),
the only pathway to remain significant was that of vitamin A,
which we also found in the PE group alone and as a specific
metabolite among the PE group (n = 11) when compared to
women with gHTN (n =9). The significance of this metabo-
lite in relation to PE was described earlier. Additionally,
when we compared gHTN (n=9) to PE (n=11), we found
three additional distinct metabolites that were either upregu-
lated or downregulated in either condition. SN-glycero-3-



10

phosphocholine is a phospholipid that serves a precursor to
choline biosynthesis and an intermediate in the metabolism
of phosphatidylcholine. Choline metabolites have been asso-
ciated with unfavorable cardiometabolic risk factors, while
phosphatidylcholine has been associated with a lower odds
of hypertension [64]. L-Kynurenine is a metabolite derived
from the amino acid L-tryptophan and used in the produc-
tion of niacin. It has also been found to be important for
arterial vessel relaxation and control of blood pressure [65,
66]. The final metabolite which was lower in the PE group
as compared to the gHTN group was 2’4’ -dihydroxyaceto-
phenone. This is a chemical compound used as a flavoring
ingredient in food (http://www.hmdb.ca/) and has not been
investigated with its role in PE, hypertension, or any other
health outcome.

In summary, our findings highlight some metabolic func-
tions and pathways that have been described before in HDP
and also identify new and novel metabolites and pathways
that are unique to PE and gHTN, specifically in a population
of AA women. Our study also provides evidence that the
metabolic signatures of these two conditions are unique, with
little or no overlap apparent. As only metabolites corre-
sponding to Level 1 identification, meaning those metabolites
whose identity is confirmed by retention time and MS/MS
fragmentation criteria relative to authentic standards [27],
were reported in this manuscript, we have confidence in the
identity of the metabolites for which intergroup differences
were found.

Although our study has important strengths as highlighted
previously, some limitations are worth noting. First, the
sample size of this study is small, though comparable to other
pilot metabolomics studies, while representing a unique
focus solely on African American women, a population with
the most disparate rates and outcomes related to hyperten-
sive disorders of pregnancy [12, 15]. Because of the small
sample size, however, the results of this study should be
interpreted as exploratory; dedicated studies on a larger
sample size are needed to confirm the findings from this
study. Furthermore, the small sample size, with only a single
case of PE that was early onset and the remaining 10 cases
being late onset, limited our ability to evaluate differences
between early- vs. late-onset disease. Using nuclear magnetic
resonance spectrometry, a platform substantially different
from the LC-HRMS (liquid chromatography coupled high-
resolution mass spectrometry) platform used in this study,
Bahado-Singh et al. did find significant differences in some
metabolites in the first-trimester serum samples obtained
from those who later developed late-onset vs. early-onset PE
[11]. As these analyses represent an initial, pilot study
designed to be hypothesis generating, our findings will help
inform our next analyses in a larger sample of women with
PE, including more cases of both early-onset and late-onset
PE. Second, our window of data collection was limited to
women who were clinically verified to be between 11 and 14
weeks of gestation, but that range in gestational age could con-
tribute to variability in pregnancy-specific metabolites and
subclinical HDP disease progression—both conditions that
have received little study to date, so it is unknown how they
might confound our findings.

Journal of Pregnancy

The use of metabolomics for the early identification of
metabolites associated with PE is of growing interest [67].
While most studies have identified particular metabolites as
significantly associated with or predictive of the later devel-
opment of PE, the field is still young and it is challenging to
compare findings due to variability in study design, biospeci-
men type, gestational age and disease severity at the time of
sampling, and methods of bioinformatics analyses. Our anal-
yses in particular included identifying metabolic pathways
using Mummichog [36], which has not previously been
reported in metabolomics studies of HDP.

Metabolomics is a powerful approach for identifying the
underlying mechanisms, metabolites, and metabolic path-
ways associated with the spectrum of HDP. Our study adds
to the growing body of literature using metabolomics tech-
nologies to identify early metabolites and metabolic path-
ways that may signal important mechanisms early in the
trajectory of HDP development, specifically in both gHTN
and PE. The ability to accurately identify women at risk of
developing HDP is essential to enable early initiation of
interventions to improve maternal and infant outcomes. As
the population most severely impacted by HDP, African
American women must continue to be well represented in
HDP metabolomics studies. Continued progress in this field
of study should enable greater understanding of the mecha-
nisms and etiology of HDP, which will inform future preven-
tive and treatment efforts.
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