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Ectoparasites like fleas, mites, and ticks that are key carriers of harmful pathogens such as viruses, bacteria, cestodes, and
nematodes live on rodents and shrews. It should be noted that rodents’ ecological adaptability makes them suitable as parasite
hosts. The main objective of the study was to determine the ectoparasite assemblages in rodents and shrews along a
degradation gradient, while comparing infestation levels in different habitats with varying levels of degradation. The study was
conducted in Mabira Central Forest Reserve. Ectoparasites were collected following rodent and shrew removal trapping which
was done using Sherman’s traps set along transects of 200 meters in three habitat strata that included adjacent forest habitats,
degraded forest edge, and regenerating forest interior. Data was collected intermittently with a break every two months for one
year from November 2018 to December 2019. A total of 1411 rodents and shrews were collected, yielding a total of 5692
ectoparasites from 22 host species (17 rodents and 5 shrews). The most prevalent group of ectoparasites was mites followed by
fleas, lice, ticks, and earwig. Ectoparasite prevalence significantly differed depending on hosts species (P = 0 001) and host age
(P = 0 022), but not host sex (P = 0 78), while mean infestation significantly varied basing on host species (P = 0 001), host sex
(P = 0 001), season (P = 0 001), and habitat (P = 0 001). Prevalence (P = 0 001) and mean infestation (P = 0 001) significantly
varied across studied habitats. The study has emphasized the significance of Praomys jacksoni and Hylomyscus stella as
significant hosts for mites and S. congicus as a significant host for fleas. Additionally, environment and host characteristics
have a bearing on prevalence and infestation of ectoparasites with habitat degradation playing a significant role in the
occurrence of ectoparasites, thereby emphasizing its contribution to zoonotic outbreaks.

1. Introduction

Uganda has a rich and diverse fauna of rodents and shrews
[1–3]. These shrews and rodents serve as hosts for various
ectoparasites within the phylum Arthropoda [4] that are
possible zoonotic disease vectors [5, 6]. The ectoparasites
of the rodent and shrew fauna of the African tropics are also

little understood [4]. Fleas and ticks are some of the most
well-known rodent and shrew ectoparasites [4, 7]. These
parasitic ectoparasites serve as secondary hosts or reservoirs
for a number of infections, including Bartonella spp., Rick-
ettsia spp., and Yersinia pestis [8]. Consequently, ectopara-
sites vector pathogens to their hosts as they feed or
defecate [9].
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Rodents are hosts for a variety of ectoparasites mostly
due to their vast range of lifestyles, adaptable behavior, and
capacity to adjust to environmental changes [10]. It should
be noted that various rodent and shrew species occupy vary-
ing habitats which influences the diversity and abundance of
ectoparasites they host [11, 12]. High global diversity of
rodent and shrew species and ectoparasites that infest them
results in a wide range of associations; these associations
are affected by copious characteristics of the host (sex and
age), parasite species, and other biotic and abiotic fac-
tors [10].

Buchholz and Dick [13], noted that establishment of a
successful host parasite association is associated with the
likelihood of an ectoparasite encountering a host. This phe-
nomenon was however conceptualized by Combes [14, 15]
and Kołodziej-Sobocińska [16], as an encounter filter. The
encounter filter eliminates possible hosts that a parasite
would not encounter because of the host’s or the parasite’s
ecological or behavioral traits. This motivates the parasite’s
ecology and evolution to target the hosts that it is most likely
to encounter [16]. Furthermore, Bitam et al. [17] highlighted
that ectoparasites tend to occupy microhabitats of the host
species where they wait until a suitable host is present, con-
sequently allowing the parasite to colonize the host. Social
behavior of the host species can also facilitate transfer of
ectoparasites from one host to another [18].

Although not given much attention, through their direct
and indirect effects on their hosts, the various species of
ectoparasites have been and continue to be a threat to
humans and their livestock [19, 20]. Over the years, the asso-
ciations between ectoparasites and their hosts have been
subjected to a number of dramatic changes with many hosts
becoming synanthropic. Most of the changes are mediated
by human activities, which have resulted in a substantial
shift in the nature of many parasite-host relationships [9,
19, 21].

With the rapid increment in human population world-
wide, many natural and seminatural habitats inside and out-
side protected areas have been encroached on for settlement
and other developments. Coupled with this, increased rates
of human movements worldwide and increasing urbaniza-
tion have the potential to affect the distribution of ectopara-
sites with pathogenic microorganisms and their hosts.
Paramasvaran et al. [21] indicated that most ectoparasites
are believed to have lived in close association with their ani-
mal hosts in stable habitats which have for a long time been
in equilibrium with the climate and soil, undisturbed by
humans. Once this equilibrium is altered due to anthropo-
genic activities, there is a great danger of zoonotic infections
being transmitted to humans and their livestock [19].

Mabira Central Forest Reserve (MCFR) is the largest for-
est reserve in Central Uganda [22] and managed by Uganda
National Forestry Authority (NFA) as a Central Forest
Reserve (CFR). According to Howard [23] and Mulugo
et al. [24], MCFR is considered “secondary regenerating,”
in which the most dominant vegetation represents subculmi-
nation communities, heavily influenced by man through
continued excess illegal resources use from the forest and
encroachment. The status of forests in Uganda is a result

of continued deforestation [24, 25] with a deforestation rate
of 1.9% the highest in East Africa [25]. Most of the forest
land cleared especially on private land has been converted
into settlements, gardens, and plantations [24]; this has
greatly increased the interaction between humans and their
livestock with wildlife especially rodents and shrews Mulugo
et al. [24].

Mabira Central Forest Reserve (MCRF) is located
between metropolitans of Lugazi, Mukono, Jinja, and
Kampala, which put the forest under immense pressure
for resources leading to changes in forest habitat structure.
This coupled with the unpredictable weather patterns has
a significant impact on the biological dynamics of fauna
hosts and their associated ectoparasites. It is, however,
unclear how these factors will interact over time to affect
the dynamics of ectoparasite communities. The study is
aimed at determining the ectoparasite assemblages in
rodents and shrews along a degradation gradient, while
assessing how habitat characteristics, host characters, and
seasonality affect ectoparasite prevalence and infestation
in rodents and shrews.

2. Methods

2.1. Study Area. The study was conducted in MCFR in
Uganda (0° 26′ 14.28″ N, 32° 57′ 14.31″ E, 1179m). Locally,
the word “Mabira” translates as great forest. Mabira Central
Forest Reserve is located in Central Uganda, 57 km from
Kampala, the capital city of Uganda, and 26 km from Jinja,
formerly the industrial town of Uganda. The reserve covers
306 km2 and is one of the important protected areas (PAs)
in Uganda with 47% of Uganda’s timber species [24, 25],
including three tree species (Milicia excelsa (NT), Entandro-
phragma Angolense (VU), and Warburgia ugandensis (VU))
listed by the International Union for Conservation of Nature
(IUCN) [25, 26].

2.2. Study Design. From November 2018 to December 2019,
the study was conducted in the village of Namusa in the
MCFR. Data were intermittently collected (with a one-
month break after two months of data collection, totaling
10 sampling regimes) along a gradient of habitat degradation
that included a primary forest interior, a degraded forest
edge, adjacent habitats, and homesteads (Figure 1 and
Table 1). For every sampling regime, three randomly
selected transect replicates were set in each of the subjec-
tively selected sites (Figure 1 and Table 1).

2.3. Trapping and Identification of Rodents and Shrews.
Rodents and shrews were captured using transect lines
established in each arbitrary selected sampling site. For every
sampling regime, three transects of 200m were set in each of
the sampling sites. Each transect had 20 sampling stations
spaced 10m apart; at each sampling station, a Sherman
removal trap was set baited with a combination of peanut
butter, maize flour, ripe bananas, and silver fish [28]. Each
transect line was left in the same spot for three nights,
checked every morning and evening to remove any captured
specimen. Specimens were then processed by recording their
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age, sex, and morphometric measurements (hind foot, head
and body, tail, ear length (mm), and weight (g)) and given a
unique field number. Utilizing morphometric data, speci-
mens were identified down to species level [1, 3, 29, 30].
Rodent and shrew identifications were confirmed by
sequencing of partial mitochondrial cytochrome b gene
(i.e., DNA barcoding) from 96% ethanol-preserved samples
at the Institute of Vertebrate Biology (IVB) of the Czech

Academy of Sciences. Obtained sequences were compared
with the sequences in GenBank and further unpublished
sequences in the database of IVB. The barcoding protocol
(i.e., used primers, PCR conditions, and sequencing) is
described in Bryja et al. [31].

2.4. Examination of Ectoparasites. Specimens were anesthe-
tized using halothane, and the fur of each anesthetized rat

Table 1: Summary of habitat description and study design.

Habitat Vegetation cover Trapping effort for every trapping regime

Homesteads
These represented in and out human habitations; inside stores,

kitchens, and gardens or bush nearby
Number of traps = 5 @ house

Number of nights = 3

Adjacent habitat
Consisting of a mosaic of sugarcane plantations, fallows,

and gardens in communities adjacent to the forest

Transect replicates = 3
Transect length = 200m
Number of traps = 40
Number of nights = 3

Degraded forest edge

Characterized by the prevalent presence of the invasive
Broussonetia papyrifera, along with dense undergrowth and

an open canopy, within the production zone primarily covering
33% (11,230 ha). N of the entire forest cover (30,000 ha)

Transect replicates = 3
Transect length = 200m
Number of traps = 40
Number of nights = 3

Primary forest interior

Dominated by Funtumia africana and other native large
trees like Celtis mildbraedii and Teclea nobilis, characterized
by a dense canopy and little undergrowth within the strict
nature reserve zone, which encompasses 23% (7,350 ha).

N of the entire forest cover (30,000 ha).

Transect replicates = 3
Transect length = 200m
Number of traps = 40
Number of nights = 3

N = Nabanoga et al. [27].

MABIRA

Rivers
Legend

Road
Primary forest interior
Homestead
Degraded forest edge
Adjacent habitat
Mabira

90 0 90 180 270 360m

UGANDA

Figure 1: Map of a stratified sampling area representing a degradation gradient in Mabira Central Forest Reserve, Central Uganda.
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or shrew was combed using a tooth brush to remove any
ectoparasites and place them on an enamel tray. When ticks
and mites were difficult to remove by combing, fine forceps
were employed to extract them from the skin of the rodents
and shrews.

Each cloth bag in which the rat was housed was turned
upside down over the enamel tray to collect ectoparasites
that had become loose and dropped in the bag. With the
aid of a hand lens, the contents of the enamel tray were
carefully examined. Any ectoparasites discovered were
then retrieved using a small, moistened paintbrush and
placed in individual cryovials that contained 70 percent
alcohol [32, 33].

All fleas, lice, mites, and ticks were collected, counted,
and stored in 70% ethanol. For taxonomic identification,
ectoparasites were removed from the alcohol and rinsed in
water. They were next placed in lactophenol (a clearing
agent) for up to 5 days at room temperature. Cleared speci-
mens were washed once in distilled water and mounted in
Hoyer’s medium [34].

After mounting, the parasites were examined under a
light microscope at magnifications of ×10 for large parasites
(ticks, fleas, and mites) and ×40 for small parasites (lice).
Published identification instructions [35–40] served as the
basis for identification. Mite expert Barry OConnor from
the University of Michigan Museum of Zoology was con-
sulted to help in the identification of cryptic mite species.

2.5. Data Analysis. Ectoparasite mean abundance in rodents
and shrew was calculated from the formula = number of
ectoparasites collected from examined rodents and shrews/total
number of examined rodents and shrews. The constituent ratio
(C) and prevalence (P) were calculated according to Xing-
Yuan et al. [41], using the following formulas: C =Ni/N × 100
%, where Ni represents the number of individual ectoparasites
in group i (total ectoparasites, ticks, fleas, lice, and mites) and
N represents the total number of ectoparasites, and P =Hi/H
× 100%, where H represents the total number of rodents and
shrews sampled and Hi represents the number of individual
rodent and shrew hosts parasitized by group i. Mean
infestation = total number of ectoparasites on a specific rodent
or shrew species/total number of rodents or shrews of the same
host [42].

In order to have an insight of the association between
hosts and their parasites, we used Kendall’s correlation coef-
ficient. This coefficient is a nonparametric measure of the
strength and direction of association that exists between
the two variables [43, 44].

All the data collected was also entered in Excel processed
and exported to Stata (Stata 14) for analysis. Since our orig-
inal continuous data (mean infestation and parasite preva-
lence) did not follow the bell curve, we log transformed it
to make it as “normal” as possible in order to validate the
statistical analysis results. We used one-way ANOVA to test
whether the parasite prevalence and mean infestation vary
depending on host sex, host age, habitat, and seasonality.
To further examine the strength of explanatory variables in
the mean infestation or parasite prevalence, we perform a
natural log-level regression with dummies (multiple linear

regression with dummies). The regression model was speci-
fied as

Ln Yi = β0 + βi′Xi + εi, 1

where Ln Yi is the log-transformed mean infestation/para-
site prevalence, βi′ are the vector regression coefficients, Xi′
are the vector of covariates corresponding to each of the
rodents, and εi are the errors which represent the unex-
plained variations in the log-transformed mean infestation/
parasite prevalence. We therefore log transformed the
dependent/response variable simply because its distribution
did not follow a normal distribution. Exponentiate the coef-
ficient, subtract one from this number, and multiply by 100,
and this gives the percent increase (or decrease) in the
response for every one-unit increase in the explanatory/
dummy variables (Table 2).

2.6. Ethical Clearance. This study was first approved by
Sokoine University of Agriculture Directorate of Post Grad-
uate Studies (Ref. no: PFC/D/2017/0004) (20 Feb 2018),
which was followed by other ethical approvals in Uganda
from relevant authorities: Uganda Wildlife Authority
(UWA) (Ref. no: UWA/COD/96/02) (26 April 2018);
National Forest Authority (NFA) (Ref. no: NFA/N/2.1/17,
License no: 291) (17 August 2018); and Uganda National
Council for Science and Technology (UNCST) (Ref. no:
NS54ES) (30 October 2018).

3. Results

3.1. Occurrence of Ectoparasites in Rodent and Shrew Hosts
of Mabira Central Forest Reserve. The trapped animals
yielded a total of 5692 ectoparasites from 22 species, that
is, 17 rodents and 5 shrews (Table 3). There were three spe-
cies of mites, five species of fleas, three species of lice, one
species of tick, and one earwig among them, altogether 13
ectoparasites (Table 3). Out of the 1411 rodents and shrews
identified in the three sampling areas, only 883 exhibited
infestations by ectoparasites. Among the captured rodents,
only three species (Oenomys hypoxanthus, Grammomys
macmillani, and Mus triton) were found without any ecto-
parasite infestations. Conversely, all other documented spe-
cies of rodents and shrews had ectoparasite infestations.
Notably, only four species were infested by a solitary ecto-
parasite species (see Figure 2).

Table 2: Explanatory/dummy variable description.

Variables Description Coding

Habitat Habitat of the host

0 = adjacent habitat
1 = degraded forest edge
2 = primary forest interior

3 = homestead

Sex Sex of the host 0 = female, 1 =male

Season Trapping season 0 = dry, 1 =wet

Age Host age 0 = juvenile, 1 = adult
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All examined rodents and shrews were found to have
more than one species of ectoparasite with rodents Praomys
jacksoni, Hylomyscus stella, and Lemniscomys striatus being
important hosts for a wide range of ectoparasites (Table 3
and Figure 2). Mus minutoides, Crocidura luna, Malacomys
longipes, and Cricetomys gambianus were infested by only
one parasite type (Table 3). Only two species of ectoparasite,
the earwig Hemimerus talpoides (Cricetomys gambianus)
and lice Hoplopluera neumanii (Gerbilliscus validus), were
found to be with only one rodent host (Figure 2).

There is an observed level of association between rodents
and shrews and the type of parasite, though not very strong
due to the small value of Kendall’s tau − b = −0 0326. The
importance of each host species for a given ectoparasite is
however illustrated in Figure 2. For example, you can
observe that most Laelaps nuttallimites were recovered from
H. stella and P. jacksoni. Lophuromys stanleyi and Lemnisc-
omys striatus are important hosts for the mite Androlaelaps
fahrenholzi, the latter being also important for the tick Hae-
maphysalis leachi. Rattus rattus is a major host for the flea
Xenopsylla cheopis having 96% of all recovered specimens

of this flea (Table 3 and Figure 2), while Cricetomys gambia-
nus is a major host for the earwig Hemimerus talpoides
(Table 3 and Figure 2).

The mite Laelaps nuttalli occurred in larger numbers
representing 60.8% of all the recovered ectoparasites
(Table 3). Of all the fleas recovered, Xenopsylla cheopis was
the most abundant (1.25%); it was however recovered from
only three hosts. Fleas Dinopsyllus lypusus (0.88%) and
Nosopsyllus Incisus (0.9%) were recovered from most hosts
(Table 3) showing no particular host specificity even though
the former was hosted most in the forest environments.

Different habitats yielded varying percentages of ecto-
parasite species (Table 4). The mite Androlaelaps setosus
(54%) was most prevalent in adjacent habitats, while Laelaps
nuttalli was the most abundant in degraded forest edge
(83%) and primary forest interior (88.1%). Among lice,
Hoplopluera neumanii was recovered from one habitat
(adjacent habitat), but Polyplax spinulosa and Hoplopleura
intermedia were found in all habitats, with the former being
more abundant (14.7%) in homesteads (Table 4). Flea abun-
dance was highest in adjacent habitats, followed by degraded

Ectoparasite Host

Praomys jacksoni

Mus minutoides

Mastomys erythroleucus

Hybomys lunaris

Gerbilliscus giffardi

Lophuromys stanleyi

Lemniscomys striatus

Arvicanthis niloticus

Deomys ferrugeneus

Praomys misonnei

Aethomys hindei
Lophuromys ansorgei

Rattus rattus

Androlaelaps fahrenholzi

Haemaphysalis leachi

Xenopsylla cheopis

Dinopsyllus lypusus

Ctenophthalmus cabirus

Nosopsyllus Incisus

Leptopsylla segnis

Hoplopleura intermedia

Hoplopluera neumanii

Polyplax spinulosa

Malacomys longipes
Mus bufo

Cricetomys gambianusHemimerus talpoides

Laelaps nuttalli

Dermanyssus gallinae

Crocidura olivieri

Crocidura luna

Crocidura nigrofusca
Scutisorex congicus

Crocidura turba

Hylomyscus stella

Figure 2: Plot web of ectoparasites and their hosts in Mabira central forest. Key, ectoparasite side: blue = fleas, green = mites, red = lice, and
black = earwig. Host side: blue = shrews and black = rodents.
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forest edge with Leptopsylla segnis showing the highest abun-
dance in the two habitats and least in primary forest interior
with Dinopsyllus lypusus (1.6%) showing the highest abun-
dance (Table 4).

The most prevalent group of ectoparasites in rodents was
mites (61%, n = 716) followed by fleas (11%, n = 146) and
lice (7.4%, n = 98), while in shrews, fleas were the most prev-
alent (21.4%, n = 18) compared to all other parasites
(Table 5). Mites represented the highest ectoparasite index
in rodents while in shrews, fleas had the highest ectoparasite
index, but mean abundance for mites was equally high in
rodents and shrews compared to other parasite groups
(Table 5).

The prevalence of several parasite types within rodent
and shrew species was low. High prevalence of mites was
found in rodents Hylomyscus stella (17.61%) and Praomys
jacksoni (16.16%), as well as in shrews Crocidura turba
(4.76%) and Crocidura olivieri (4.76%) (Table 6). Overall
prevalence of fleas was highest among shrews Scutisorex con-
gicus (7.14%) and Crocidura olivieri (5.95%) with only Rat-
tus rattus among rodents recording a prevalence above 2%
(Table 6). Crocidura olivieri also showed high prevalence
(8.33%) for ticks, much higher than any shrew or rodent
species recorded. Other notable observations are rodent spe-
cies Mastomys erythroleucus and Lophuromys stanleyi from
which all ectoparasite species besides Xenopsylla cheopis
(Flea) and Hemimerus talpoides (Earwig) were recovered
(Table 3).

3.2. Effect of Host and Environmental Characteristics on
Ectoparasite Prevalence and Mean Infestation. Ectoparasite
prevalence significantly differed depending on host species
(P = 0 001) and host age (P = 0 022), but not host sex
(P = 0 78). Furthermore, prevalence varied greatly depend-

ing on the kind of habitat (P = 0 001) but not according to
the season (P = 0 075) (refer to Table 7).

As a result, we only took into account host age, habitat,
and season, when looking at the potential determinants of
prevalence. It was noted that being a subadult increases
prevalence by 8.6% compared to juveniles and reduces by
4.8% among adults (Table 8). Prevalence of ectoparasites
on rodents and shrews habiting homesteads reduced by
6.2%, while in degraded forest edge and primary forest inte-
rior, it significantly reduced by 54.3% and 56.5%, respec-
tively, compared to those habiting adjacent habitats. Also
during the wet season parasite, prevalence significantly
reduced by 18.5% compared to the dry season (Table 8).

Ectoparasite mean infestation significantly varied basing
on host species (P = 0 001), host sex (P = 0 001), season
(P = 0 001), and habitat (P = 0 001) but not host age
(P = 0 788) (refer to Table 7).

Therefore, to examine the possible predictors of mean
infestation, we considered only host sex, habitat, parasite
type, and season. And it was ascertained that being a male
increases the mean infestation by 16.2% as compared to
females. Compared to adjacent habitats, mean infestation
in degraded forest edge significantly reduced by 13.7% while
in primary forest interior, it reduced by 6.4%, and in home-
steads, it increased by 2.4% (Table 9). In the wet season,
mean infestation of ectoparasites on rodents and shrews sig-
nificantly reduced by 12% as compared to the dry season
(Table 9).

4. Discussion

Muridae are an important group of rodent hosts that have
diversely adapted to habiting various habitats even follow-
ing anthropogenic changes [45]. Praomys jacksoni and

Table 4: Ectoparasites of rodents and shrews and the habitats they inhabit.

Homestead Adjacent habitat Degraded forest edge
Primary forest

interior

Androlaelaps fahrenholzi 66 (31.3) 1119 (54) 115 (9) 22 (1.0)

Ctenophthalmus cabirus 2 (0.9) 5 (0.2) 8 (0.6) 5 (0.2)

Dermanyssus gallinae 1 (0) 3 (0.1)

Dinopsyllus lypusus 11 (0.5) 6 (0.5) 33 (1.6)

Haemaphysalis leachi 18 (8.5) 98 (4.7) 9 (0.7) 3 (0.1)

Hemimerus talpoides 9 (0.7) 66 (3.1)

Hoplopleura intermedia 9 (4.3) 90 (4.3) 40 (3.1) 66 (3.1)

Hoplopluera neumanii 1 (0)

Laelaps nuttalli 5 (2.4) 538 (26) 1060 (83) 1857 (88.1)

Leptopsylla segnis 9 (4.3) 51 (2.4) 1 (1) 1 (0.0)

Nosopsyllus Incisus 2 (0.9) 39 (2) 6 (0.5) 4 (0.2)

Polyplax spinulosa 31 (14.7) 136 (7) 27 (2.1) 49 (2.3)

Xenopsylla cheopis 69 (32.7) 2 (0.2)

Number of rodent and shrew in each habitat 5 15 14 12

Diversity (Shannon-Weiner’s index) of rodents
and shrews in each habitat

0.94 1.97 1.67 1.39

In parenthesis is the percentage abundance of each parasite in a given habitat.
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Hylomyscus stella were the most important hosts in the
forested environment while L. striatus was an important
host in adjacent habitats; this is consistent with findings
of Mawanda et al. [46], who found Praomys jacksoni to
have the highest infestation of ectoparasites in Bwindi for-
est reserve. This could be explained by the high abundance
of these species in their preferred habitat which increases
the chance of them encountering ectoparasites [47].

The study revealed that mites were the most abundant
ectoparasites followed by fleas, lice, and lastly the ticks. Most
species of mites show a narrow host specificity being able to
infest a wide number of hosts which tends to perpetuate
their numbers in any given habitat [46]. Their ability to stay
long between blood meals so long as they have mite islands
(James H. [48]) helps them to survive until they find a suit-
able host. These observations concur with those of Mawanda
et al. [46] in Uganda, Shayan et al. [49] in Iran, and Para-

masvaran et al. [21] in Malaysia who found mites to be the
predominant ectoparasites in their studies.

The mites of the genus Laelaps (Laelapidae) are common
ectoparasites of small mammals, particularly rodents. From
this study. Laelaps nuttalli, a hematophagous parasite of
humans and rodents [50], was found to be the most abun-
dant ectoparasite species hosted by majority of rodents and
shrews (Table 3 and Figure 2). This implies low host speci-
ficity by L. nuttalli and ability to utilize a variety of mite
islands including humans.

Androlaelaps fahrenholzi was the most dominant mite in
habitats outside forest compared to Laelaps nuttalli which
was dominant in forested environments. However, these
species have been documented to occupy a wide range of
habitats [46, 49, 51]. It can therefore be deduced that these
are widespread species with a similar host range. In such a
scenario, habitat partitioning tends to occur as explained
by Wisheu [52]. Here, the dominant, intolerant species
(Laelaps nuttalli) occupies the preferred segment of the
habitat gradient (forest with high densities of hosts) while
the tolerant subordinate species (Androlaelaps fahrenholzi)
occupies habitat with suboptimal levels of resources in this
case adjacent habitats.

Species from the genus Laelaps have been implicated in
being reservoirs of Rickettsia spp. [50]. The high abundance
of L. nuttalli perpetuated in forested areas, coupled with its
ability to occur in peridomestic rodents and potential to vec-
tor Rickettsia, highlights its importance in the public health
of people around MCFR. With continued habitat degrada-
tion, this risk becomes more apparent as peridomestic
rodents become more abundant and dominant L. nuttalli
can easily switch its preferred hosts.

The recording of Dermanyssus gallinae, a known galli-
form mite on two rodent species (P. Jacksoni and L. stanleyi)
occupying different habitats, highlights possible interactions
between commensal rodents that interact with hens and wild
rodents and ultimately humans in the same environment.
This is exacerbated with the ongoing forest encroachment
and consequential degradation increasing interactions
between peridomestic and wild rodent and shrew species.
These interactions could be a significant channel for the
transmission of infections carried by D. gallinae, thus posing
a health risk to communities surrounding MCFR.

Polyparasitism which refers to the presence of many spe-
cies on a single host [47] was exhibited by most species par-
ticularly in P. jacksoni and H. stella habiting forested
ecosystems, L. stanleyi, Lemniscomys striatus, and Mastomys
erythroleucus in adjacent habitats. This implies that the ecol-
ogy of these rodents provides favorable environment for the
survival and proliferation of these parasites. According to
Obiegala et al. [47], polyparasitism leads to higher abun-
dance as well as higher prevalence rates for most ectoparasite
species in rodents and shrews.

The plethora abundance of X. cheopis on Rattus rattus
observed in this study concurs with the findings of Moore
et al. [53] and Eisen et al. [54], in Uganda, whose results
all showed great association between Rattus rattus and X.
cheopis. The recording of X. cheopis which is the most effi-
cient vector of Y. pestis [55] around homes raises the risk

Table 6: Percentage prevalence of various ectoparasite types in
rodent and shrew species.

Mite Flea Tick Lice

Aethomys hindei 0.46 1.45 0.00 0.08

Arvicanthis niloticus 0.38 0.30 0.08 0.08

Deomys ferrugeneus 0.08 0.08 0.00 0.00

Gerbilliscus validus 0.84 0.38 0.08 0.69

Hybomys univittatus 0.69 0.23 0.00 0.15

Hylomyscus stella 17.61 0.23 0.00 0.91

Lemniscomys striatus 9.07 1.22 1.91 0.99

Lophuromys ansorgei 1.52 0.38 0.69 0.23

Lophuromys stanleyi 4.50 1.22 0.69 0.84

Malacomys longipes 0.08 0.00 0.00 0.00

Mastomys erythroleucus 4.34 0.99 0.38 0.69

Mus minutoides 0.23 0.00 0.00 0.00

Mus musculoides 0.46 0.00 0.08 0.30

Praomys jacksoni 16.16 1.37 0.00 1.30

Praomys misonnei 0.84 0.53 0.00 0.76

Rattus rattus 0.76 2.74 0.46 0.46

Scutisorex congicus 2.38 7.14 0.00 0.00

Crocidura turba 4.76 4.76 1.19 0.00

Crocidura luna 0.00 1.19 0.00 0.00

Crocidura nigrofusca 1.19 2.38 0.00 0.00

Crocidura olivieri 4.76 5.95 8.33 2.38

Table 7: A one-way ANOVA for parasite prevalence and mean
infestation.

Variable Df
F/t (prevalence/mean

infestation)
Prob > F (prevalence/
mean infestation)

Host sex 1 0.08/10.22 0.779/0.001

Host age -0.828/0.649 0.022/0.788

Host habitat 3 92.46/14.58 0.001/0.001

Season 1 3.18/10.26 0.075/0.001

Host species 21 68.76/8.28 0.001/0.001
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of plague outbreak around MCFR. Other fleas recorded were
Ctenophthalmus cabirus, Dinopsyllus lypusus, Nosopsyllus
incises, and Leptopsylla segnis, which are also important zoo-
notic vectors of bacteria such as Bartonella spp. and Rickett-
sia spp. Even though not the primary hosts, Dinopsyllus

lypusus and Leptopsylla segnis have been documented to vec-
tor Yersinia pestis by Bai et al. [56] and Jones et al. [57], in
Uganda. These flea species were collected from domestic,
peridomestic, and wild rodents suggesting increased interac-
tions between peridomestic and wild rodent and shrew

Table 8: A log-transformed multiple regression model with dummies for ectoparasite prevalence in rodents and shrews of Mabira Central
Forest Reserve.

Source SS Df MS F-ratio P value

Model 1532.5 10 153.25 119.52 0

Residual 1471.95 1149 1.28

Total 3004.45 1158

Model results

Ln (prevalence) Exp(coef.) Std. err. T P > t Percentage ±
Host age

Juvenile∗

Subadult 1.086 0.239 0.38 0.707 8.6

Adult 0.952 0.169 -0.28 0.782 -4.8

Season

Dry∗

Wet 0.815 0.055 -3.02 0.003 -18.5

Habitat

Adjacent habitat∗

Primary forest interior 0.435 0.036 -10.06 0.001 -56.5

Degraded forest edge 0.457 0.042 -8.56 0.001 -54.3

Homestead 0.938 0.137 -0.44 0.663 -6.2
∗Reference variable per category.

Table 9: A log-transformed multiple regression model with dummies for mean infestation in rodents and shrews of Mabira Central Forest
Reserve.

ANOVA

Source SS Df MS F-ratio P value

Model 246.8 9 27.42 57.54 0.001

Residual 547.62 1149 0.48

Total 792.42 1158

Model results

Ln (mean infestation) Exp(coef.) Std. err. T P > t Percentage ±
Sex

Female∗

Male 1.167 0.048 3.79 0.001 16.7

Habitat

Adjacent habitat∗

Degraded forest edge 0.863 0.048 -2.65 0.008 -13.7

Primary forest interior 0.936 0.047 -1.31 0.19 -6.4

Homestead 1.024 0.091 0.27 0.787 2.4

Season

Dry∗

Wet 0.88 0.036 -3.1 0.002 -12

Constant -4.62 0.24 -19.27 0
∗Reference variable per category.

10 Journal of Parasitology Research



species as a result of forest habitat degradation. This creates
a risk of transfer of zoonotic pathogens from the wild into
communities and vice versa as in Jones et al. [57].

Widely active plague foci exist in Southern and Eastern
Africa, Uganda, inclusive. In these areas, Xenopsylla and
Dinopsyllus species are the principal flea vectors of wild
rodent hosts while X. cheopis and X. brasiliensis are the prin-
cipal flea species involved in transmission among commen-
sal rats and humans [58]. Rattus rattus is one of the
primary natural hosts of Xenopsylla cheopis [21, 59, 60]
which explains why 95% of all recorded X. cheopis from this
study were recovered from Rattus rattus. Xenopsylla cheopis
is a parasite of many mammalian species, including Rattus
rattus and humans. Because of its parasitic nature, Xenop-
sylla cheopis is a vector for pathogens such as plague bacilli,
Yersinia pestis, and murine typhus, Rickettsia typhi. Mabira
Central Forest Reserve has a history of zoonotic outbreaks
where in the past, around 1914 people who had settled in
the enclaves of the forest were driven out by outbreaks of
plagues [61].

The process of host selection by ectoparasite follows rig-
orous adaptations to the biotic (morphological and biologi-
cal) and abiotic (host surroundings) characteristics of the
host [18]. This process is so complex occasionally resulting
in some parasites choosing to infest one host. Notably is
the parasite Hemimerus talpoides which was only recovered
from Cricetomys gambianus, as also reported by Ashford
[62]. This kind of host specificity can only be attributed to
generations of adaptations and coevolution between Cricet-
omys gambianus and Hemimerus talpoides [63].

With regard to rodents and shrews, species richness
and diversity have been known to follow the intermediate
disturbance hypothesis which states that species richness is
at maximum with intermediate levels of disturbance [64].
Similar observations were observed in our data set with
species richness and diversity being highest along the
degraded forest edge compared primary forest interior
(Table 4). When it came to rodent and shrew ectopara-
sites, however, the highest mean infestation was observed
in the primary forest interior. This could be explained
with the dilution effect, which implies that where species
vary in susceptibility to infestation by parasites, higher
diversity leads to lower infestation prevalence in hosts
[65, 66]. This observation may however be explained by
other factors such as habitat characteristics, seasonality,
or a combination of all [51].

The difference in infestation levels of rodents and shrews
can be explained by the ecology and behavior of the two
small mammal groups. Shrews are mainly insectivorous
[67] while most rodents can be grouped as herbivores [68].
With their diet consisting more of arthropods, it can be
argued that shrews can potentially prey on their ectopara-
sites unlike rodents, hence low infestation. Some rodent spe-
cies also occur in high densities (P. jacksoni) Mizerovská
et al. [69], which increases their chances of encountering
ectoparasites [16].

The high prevalence of fleas on S. congicus can be
explained by its ecology and behavior of using tunnels and
burrows when feeding in its habitat as highlighted in Kasozi

[69]. The study of Kreppel et al. [71] highlighted that fleas
are known to prefer living in burrows and only crawl onto
hosts in order to feed. The study also noted that animal bur-
row networks provide the necessary humidity for immature
flea development and also lessen the harsh effects of weather
above ground, creating conditions that are more suited to
the growth and population dynamics of fleas. Therefore, it
might be suggested that S. congicus picks up the many fleas
as it moves through the tunnels and burrows.

Crocidura olivieri, another shrew with high prevalence
of fleas, is a very adaptive shrew occurring in natural and
modified habitats within its range [72]. This high adapt-
ability implies that C. olivieri can cross various habitat
strata interacting with various rodent while preying on
some (personal observation), which increases its encounter
rate with potential ectoparasites. It was also found to have
a high prevalence of the only tick species recorded Haema-
physalis leachi. H. leachi primary hosts are dogs, but its lar-
vae and nymphs usually infest common murid rodents
[73]. The fact that C. olivieri can also be commensal leav-
ing in fallows and homesteads increases chances of picking
up larvae and nymphs of H. leachi. This makes C. olivieri
an important player in the transmission of the protozoan
Babesia canis to dogs, causing canine babesiosis, and the
bacterium Rickettsia conorii which causes tick typhus in
humans [73].

4.1. Predictors of Ectoparasite Prevalence and Infestation in
Rodents and Shrews. From our results, it has been construed
that both host and environmental characters affect ectopar-
asite prevalence and infestation which is consistent with
studies of Hammond et al. [74], in USA, and Shilereyo
et al. [51], in Serengeti, Tanzania. Among host characters,
age is much more an efficient predictor of ectoparasite prev-
alence compared to sex as in Marcela [75]. Compared to
juveniles that stay close to their nesting sites, adults range
far and wide in search of food and mates and as such have
high chances of parasite encounter compared to juveniles.
Even though host sex was found to be a poor predictor of
parasite prevalence, previous studies have found males to
have a higher prevalence compared to females. Matthew
and Carl [42] hypothesized that males would have higher
prevalence and mean intensity of flea and tick infestation
due to male rodents having generally larger dispersal areas.
Bitam et al. [17], from their study on fleas across the world,
noted that most ectoparasites rely on the host coming to the
parasite instead of the parasite searching out a host; active
hosts that cover larger spatial areas would likely encounter
parasites more frequently. This would be true in places with
resource scarcity, but in places like forests with high host
densities and high resources, availability dispersal in both
sexes might be almost the same which explains the observa-
tions in our study.

Environmental factors are also very important in pre-
dicting parasite prevalence and infestation as shown from
our results. Seasonality affects ectoparasite prevalence and
intensity as observed by Kordiyeh et al. [76]. From this
study, it was observed that ectoparasite infestation and prev-
alence were high during the dry season which is consistent
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with findings of Kordiyeh et al. [76], in Iran, and Weleger-
ima et al. [77], in Ethiopia. This can be explained by the
assumption that parasite prevalence and infestation follow
host abundance. In this case, even though most rodents
breed throughout the year, this can only be true in scenarios
where resources are abundant. However, peaks of breeding
are usually during the rainy season [78, 79]; this then implies
that all newborns reach adulthood during the dry season,
hence bursts in rodent and shrew abundance and conse-
quently their ectoparasites because of the high encounter
rates. Habitat variability also affected parasite prevalence
and infestation, with the highest prevalence recorded in the
adjacent habitats compared to forest edge and primary forest
interior. Adjacent habitats represented areas comprised of
fallows, gardens, and plantations; these are known to harbor
low diversity compared to forested habitats but high densi-
ties of rodents and shrews and associated ectoparasites [51,
79, 80]. The high species diversity in forested ecosystems
also creates a dilution effect, hence reducing infestation
and prevalence. Only homesteads had a high ectoparasite
infestation compared to adjacent habitats, which could be
attributed to communal congregations of commensal
rodents and occurrence in high abundances [81].

5. Conclusion

Rodents and shrews captured in and around MCFR are a
host to a wide range of ectoparasites which vector various
pathogens, some of which are potential causative agents of
zoonoses. The study has highlighted the importance of P.
jacksoni and H. stella as important hosts for assorted ecto-
parasites especially Laelaps nuttalli, one of the known vec-
tors of Rickettsia spp. We can also conclude that most
abundant rodent species in different habitats exhibit poly-
parasitism perpetuating the occurrence of most ectopara-
sites. As observed in other studies, Rattus rattus is the
major host of the plague flea X. cheopis with other perido-
mestic rodents and shrews like Arvicanthis niloticus and
Crocidura olivieri coming into play. This emphasizes the
need of managing populations of commensal and perido-
mestic rodents to reduce risks of epizootic outbreaks. With
continued habitat degradation, peridomestic rodents and
shrews will become more abundant, leading to host switch-
ing by the less host-specific mites from forest rodent hosts
to peridomestic rodents creating a public health risk. We
can also conclude that S. congicus is an important reservoir
of fleas especially Dinopsyllus lypusus.

Even though host age, seasonality, and nature of habitat
have been highlighted as good predictors of ectoparasite
prevalence and infestation, intraspecies ecology, behavior,
and microhabitat characteristics need to be investigated for
better and accurate insights in rodent ectoparasite preva-
lence and associated zoonotic risks. In addition to the above
recommendation, the biology and behavior of different par-
asite types in different habitats need to be investigated as dif-
ferent microhabitat characteristics might stimulate evolution
of certain behavioral strategies even in similar parasites but
occupying different habitats.
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