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Comorbidities that involve infectious and noninfectious diseases, such asmalaria and cancer, have been described. Cancer andmalaria
induce changes in the nociceptive and inflammatory responses through similar pathophysiological mechanisms. However, it is unclear
whether malaria and antimalarial treatment can change the inflammatory and nociceptive responses induced by solid cancer.
Therefore, the present study experimentally evaluated the effect of infection by Plasmodium berghei strain ANKA and chloroquine
treatment on the nociceptive and inflammatory responses induced by the solid Ehrlich tumor in male BALB/c mice. On the 1st

experimental day, mice were infected with Plasmodium berghei and injected with tumor cells in the left hind paw. From the 7th to
the 9th experimental day, mice were treated daily with chloroquine. The parasitemia was evaluated on the 7th and 10th days after
infection. On the 11th experimental day, mice were evaluated on the von Frey filament test, the hot plate test, and the paw volume
test. At the end of the experimental tests on the 11th day, the peripheral blood of all mice was collected for dosing of IL-1β and
TNF-α. The blood parasitemia significantly increased from the 7th to the 10th day. The chloroquine treatment significantly
decreased the parasitemia on the 10th day. The presence of the tumor did not significantly change the parasitemia on the 7th and
10th days in mice treated and nontreated with chloroquine. On the 11th day, the mechanical and thermal nociceptive responses
significantly increased in mice with tumors. The treatment with antimalarial significantly reduced the mechanical nociceptive
response induced by tumors. The hyperalgesia induced by tumors did not change with malaria. The mechanical and thermal
hyperalgesia induced by the tumor was significantly reduced in mice treated and healed from malaria. On the 11th day, the volume
of the paw injected by the tumor was significantly increased. The mice treated with chloroquine, infected with malaria, or healed of
malaria showed reduced paw edema induced by the tumor. Mice with tumors did not show a change in IL-β and TNF-α serum
levels. Mice with tumors showed a significant increase in serum levels of IL-1β but not TNF-α when treated with chloroquine,
infected with malaria, or healed of malaria. In conclusion, the results show that malaria infection and chloroquine treatment can
influence, in synergic form, the nociceptive and inflammatory responses induced by the solid tumor. Moreover, the mechanical
antinociception, the thermal hyperalgesia, and the antiedema effect observed in mice treated with chloroquine and healed from
malaria can be related to the increase in the serum level of IL-1β.
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1. Introduction

Cancer is a chronic degenerative disease characterized by
abnormal cellular proliferation and growth, responsible for
increasing mortality worldwide [1]. Breast cancer is fre-
quently manifested among women, especially in underdevel-
oped countries, which is a significant cause of death [1, 2].
Malaria is an infectious disease caused by a single-celled pro-
tozoan of the genus Plasmodium transmitted to humans
through the bite of an infected female Anopheles mosquito
[3–5]. The accumulated evidence shows that malaria and
cancer could influence each other biologically given their
evolutionary history and epidemiology [6]. In addition to
the inflammatory response, malaria and cancer share clinical
manifestations, such as pain. However, the interrelation
between malaria and solid cancer, such as breast cancer, on
the development of pain is not yet fully understood.

Pain and inflammation were the most devastating man-
ifestations associated with cancer progress, negatively
impacting the quality of life and causing disability in these
patients [7, 8]. Cancer pain is a symptom often informed
by patients since its diagnosis [9], and its intensity increases
proportionally with the survival time of these patients [10,
11]. The incidence of cancer pain increases from diagnosis
to the advanced stage [2], where patients with advanced can-
cer experience more intense pain than those in the initial
stage of the disease [12]. Pain and inflammation induced
by solid cancer can be evaluated using an undifferentiated
carcinoma, such as the Ehrlich tumor, grafted to the paw
or calf of mice [13, 14].

Pain is a common symptom of malaria. Studies show
that headache, myalgia, abdominal pain, and joint pain are
algic symptoms during malaria infection [15, 16]. The path-
ophysiological mechanism of pain and other symptoms can
involve the release of inflammatory cytokines, especially
TNF-α, IL-1, IL-6, IFN-γ, IL-8, IL-10, and IL-13 [17–21],
during the inflammatory response induced by malaria.
IFN-γ, IL-2, IL-5, IL-6, and IL-12 were increased in mild
malaria, whereas TGF-β, TNF, IL-10, and IL-1β were partic-
ularly elevated in cerebral malaria [22]. Evidence also shows
that malaria can also induce hypoalgesia, as observed in
some experimental models of pain [23]. Mice infected with
Plasmodium berghei presented a minor nociceptive response
to noxious chemical, mechanical, and thermal stimuli, and
these effects were directly associated with increased parasite-
mia [23]. In developing countries, malaria can coexist with
cancer, but the consequences of the interaction between
these diseases are not fully understood [6].

Evidence suggests that malaria and tumors share patho-
physiological events, such as stimulation of innate and adap-
tive immune responses, especially the inflammatory
response [24, 25], generating competition and mutual influ-
ence between both diseases [26]. Data show that the inci-
dence of malaria is inversely proportional to the incidence
and mortality of several types of cancer [27]. Mice infected
with Plasmodium berghei and transplanted with leukemic
cells survived more time compared to mice inoculated with
only leukemic cells [26]. Furthermore, mice with malaria
and tumors presented a minor mass of lymphomatous tis-

sues compared to animals that received only the tumor, indi-
cating the inhibitory effect of malaria on Lewis tumor
growth [26].

Chickens infected with avian malaria did not show sig-
nificant growth of chicken tumor I [28]. Plasmodium infec-
tion suppresses the growth of tumor and metastasis
through activation of the innate and adaptive immune sys-
tems [24]. Malaria infection increases the level of TNF-α
and interferon-gamma (INF-γ), the activation of natural
killer cells, the proliferation of tumor-specific T cells, and
the activity of CD8+ T cells in mice with Lewis lung cancer
[24]. Plasmodium infection inhibits the growth of 4 T1
tumor cells and increases the survival of tumor-bearing mice
[29]. This inhibitory effect on tumor growth is associated
with the induction of antitumor immune responses that
are mediated by CD8+ T cells. Evidence indicates that
malaria has antitumor activity.

On the other hand, evidence also suggests that malaria
can favor the development of several types of cancer [27,
30–32]. Cases of Burkitt lymphoma, an aggressive non-
Hodgkin lymphoma, have a high prevalence in areas with
stable malaria transmission [33]. The cohort study indicates
an association between confirmed malaria cases in individ-
uals of endemic origin and cases of lymphoid neoplasm
[34]. The capacity of malaria to promote the development
and evolution of cancer can be associated with chronic
inflammation, modulation of the immune system in the
host, change in glucose metabolism, destabilization of sup-
pressor tumor proteins, stimulation of angiogenesis, activa-
tion of invasion and metastasis [35].

Thus, the present study experimentally evaluated the
effect of infection induced by Plasmodium berghei ANKA
on the nociceptive and inflammatory responses evoked by
the presence of a solid Ehrlich tumor in mice.

2. Material and Methods

2.1. Animal. The study was conducted using male BALB/c
mice (20–25 g) from the central animal house at Fiocruz
Rondônia. Each mouse was randomly assigned to an exper-
imental group composed of 6-7 mice per group. Each group
was housed in a single cage with free access to food and
water and maintained at a controlled temperature (23 ± 1
°C) in a 12 h light/dark cycle. The experiments were
approved by the Commission of Ethics in Animal Research
of the Fiocruz Rondônia (protocol number 2016/07 and
2017/02).

2.2. Malaria Infection. The model of noncomplicated
malaria was established with a chloroquine-sensitive Plas-
modium berghei ANKA strain provided by the Bioassay Plat-
form for Malaria and Leishmaniasis (Fiocruz RO, Brazil).
BALB/c mice were administered intraperitoneally with
0.2ml of a solution containing 107 red cells parasitized by
the Plasmodium berghei ANKA strain. BALB/c mice were
chosen because they were resistant to developing compli-
cated malaria [36, 37]. In the control group, the animals
were treated with RPMI-1640 medium following the same
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protocol for malaria infection. The development of infection
was determined by the analysis of blood parasitemia.

2.3. Parasitemia. The blood parasitemia of the Plasmodium
berghei ANKA strain was determined by counting parasit-
ized red cells in blood smears stained with a Panoptical Fast
Stain Kit (Giemsa-based stain), according to de Oca et al.
[38]. Blood smears were prepared with 1-2 drops (~50μl)
of whole blood obtained by tail incision with scissors. After
complete drying, the blood smears were examined under a
light microscope using a 100x oil immersion objective. The
parasitized red cells were obtained by counting about 1000
red cells, which were presented by the percentage of parasit-
ized red cells. Negative parasitemia was defined when the
parasites did not observe each of the 100 visualized fields.

Parasitemia was determined on the third and tenth days
after infection. The colored micrographs were obtained from
a representative parasitemia slide of each experimental
group using a light microscope (NIKON Ni-E) coupled with
a CMOS image sensor. The micrographs received linear
adjustments in brightness and contrast in the whole image
using Photoshop (version 23.5.0).

2.4. Antimalarial Treatment. Antimalarial treatment was
made with chloroquine. Chloroquine and its dose regimen
were based on the World Health Organization (WHO) rec-
ommendation to treat noncomplicated malaria infection
nonresistant to chloroquine [39] and the official guidelines
of the Brazilian Ministry of Health to treat noncomplicated
malaria [40]. Chloroquine was diluted in phosphate-
buffered saline (PBS, pH 7.4) and administered orally for
three consecutive days [41], from the seventh day to the
ninth day after infection. The doses of chloroquine were
8.6mg/kg (on the first day of treatment) and 6.45mg/kg
(on the second or third days), according to the protocol rec-
ommended for adult humans with 70 kg body mass. Mice in
the control group were treated with phosphate-buffered
saline (PBS).

2.5. Preparation and Inoculation of Ehrlich Tumor Cells.
Swiss Webster female mice (25-30 g) were initially used as
Ehrlich tumor cells. Cryopreserved Ehrlich tumor cells were
thawed and inoculated intraperitoneally in Swiss Webster
mice before being used in experimental animals, according
to Calixto-Campos et al. [13]. After ten days, Ehrlich tumor
cell ascitic fluid was collected by peritoneal cavity puncture.
The ascitic fluid was washed in PBS (pH 7.4), centrifuged
(200 g/f for 10min), and again washed three times with
PBS. The viability of tumor cells was determined by the
0.5% trypan blue exclusion assay in a Neubauer chamber.

After determining its concentration, the solution con-
taining Ehrlich tumor cells was resuspended at a final con-
centration of 1 × 106 in 25μl of PBS. Finally, the mouse
was subcutaneously injected into the right hind paw with
25μl of suspension containing 1 × 106 Ehrlich tumor. The
control group was formed for mice injected with 25μl of
PBS.

2.6. Evaluation of Paw Edema Induced by Ehrlich Tumor.
The volume of the paw was measured using a paw plethysm-

ometer, as described by Morris [42]. The hind paw was
immersed in the container for evaluation, and the volume
of liquid dislocated (in milliliters) was recorded. Data are
represented with the delta percentage (Δ%) of variation in
paw volume between the hind paws. The Δ% was calculated
using the formula Δ% = CP/TP − 1 ∗ 100, in which CP
and TP represent, respectively, the volume of the right hind
paw (control paw not inoculated with tumor cells; CP) and
the left hind paw (paw inoculated with tumor cells; TP).

2.7. Assessment of Mechanical Nociceptive Response. The
mechanical nociceptive response was evaluated by measur-
ing the frequency of withdrawal of the paw in ten applica-
tions of the von Frey filament, according to Nascimento Jr
et al. [43]. Initially, the mice were placed in individual acrylic
boxes with a metal mesh floor, where they remained for
habituation. A mirror was placed above the animals to visu-
alize the plantar region of their hind paws. The von Frey fil-
ament of 4 g/f (39mN/f) was applied to the central region of
the right hind paw of the plantar surface with the necessary
pressure to cause the filament to bend. After applying the
von Frey filament, withdrawal from the hind paw, lick or
shake was considered a positive nociceptive response.

2.8. Assessment of Thermal Nociceptive Response. The hot
plate test was used with the experimental model of the ther-
mal nociceptive response (thermal hyperalgesia), as previ-
ously described by Eddy and Leimbach [44]. This test
evaluates the time (threshold in seconds) for experimental
animals to exhibit the behavior of licking or shaking the
paws in response to exposure of the paws to a plate (Hot
Plate HP-2002, Insight Equipamentos, Ribeirão Preto, SP,
Brazil) automatically heated at 55°C. The cut-off time was
set at 20 seconds to avoid tissue damage. Three consecutive
measurements were obtained with intervals of five minutes
between them using the average times for statistical
evaluation.

2.9. IL-1β and TNF-α Dosage. After the conclusion of the
experimental tests, peripheral blood was collected from mice
through the retroorbital venous plexus, centrifuged, and
serum separated and stored in a freezer at -80°C. Cytokine
analysis (TNF-α and IL-1β) was performed using an
enzyme-linked immunosorbent assay (ELISA) according to
the manufacturer’s recommendations (Kit BD Mouse). The
colorimetric reaction was read in a microplate reader (ASYS
UVM 340) at 450nm.

2.10. Method of Euthanasia. At the end of peripheral blood
collection, mice were sacrificed with an anesthetic overdose
induced by an intraperitoneal injection of ketamine 180
mg/kg + xylazine 24mg/kg , followed by cervical
dislocation.

2.11. Experimental Design. On the first day of the experi-
ment, the mice were infected with Plasmodium berghei and
paw-injected with Ehrlich tumor cells. On the 7th experi-
mental day, the mice were treated daily with chloroquine
for three days. On the 11th experimental day, the mice were
evaluated on the von Frey filament test, the hot plate test,
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and the paw volume test. Parasitemia was evaluated on the
7th and 10th experimental days. In the final phase of the
experiments, peripheral blood was collected to determine
the serum level of cytokines. The experimental design of
the study is represented in Figure 1.

2.12. Statistical Analysis. Data were represented as mean ±
SEM (standard error of the mean) or median with a 95%
CI (confidence interval). The normal distribution was ana-
lyzed using the Shapiro-Wilk test. The influence of the dif-
ferent treatments on the biological responses to data with a
normal distribution was analyzed using univariate analysis
of variance (one-way analysis of variance) followed by
Tukey’s post hoc test. All statistical analyses were performed
using the GraphPad Prism 9 statistical software, and the sig-
nificance level was set at 0.05. The statistical analysis data are
presented in Table 1 (supplementary data).

3. Results

The present study evaluated the manifestation of the noci-
ceptive and inflammatory responses induced by solid Ehr-
lich tumor cells in the presence of infection with
Plasmodium berghei in mice treated and untreated with anti-
malarials. Initially, we confirmed the development of Plas-
modium berghei infection by identifying the forms of ring
trophozoite in the blood smear on the seventh and 10th days
after infection. Parasitemia on the 10th day after infection
was significantly higher than on the 7th day (Figures 2(a)
and 2(c)). The progression of Plasmodium berghei was not
altered by the presence of the Ehrlich tumor (Figures 2(c)
and 2(e)). Daily chloroquine treatment significantly reduced
parasitemia (Figures 2(b) and 2(d)). The suppressive effect of
chloroquine on parasitemia did not change in the presence
of the Ehrlich tumor (Figures 2(d) and 2(f)).

The progression of Plasmodium berghei infection and
the effectiveness of chloroquine treatment were additionally
presented in photomicrographs obtained from blood smears.
Photomicrography was representative of the data shown in
parasitemia (Figure 2) and reinforced the diversity of ring-
form trophozoites in red cells on the seventh and tenth days
after infection (Figure 3) in the different groups evaluated in
the study.

The experimental groups were evaluated in models of
mechanical and thermal pain and inflammation. The Ehrlich
tumor injected into the hind paw increased mechanical noci-
ceptive in response to the application of the von Frey fila-
ment compared to the control group (Figure 4). Mice
treated with chloroquine had a reduction in tumor-induced
mechanical nociception (Figure 4(a)). The mechanical noci-
ception induced by the tumor did not change in mice
infected with Plasmodium berghei (Figure 4(b)). Mice
treated with chloroquine and healed from malaria infection
had a significant reduction in mechanical nociception
induced by the solid Ehrlich tumor (Figure 4(c)). Therefore,
chloroquine treatment presents a mechanical antinocicep-
tive effect in mice with solid Ehrlich tumor. The mechanical
nociceptive response induced by the tumor did not change
in mice infected with Plasmodium berghei. However, the

mechanical nociceptive response induced by the tumor was
significantly attenuated in chloroquine-treated mice and
healed from malaria infection.

In the presence of the Ehrlich tumor, the thermal noci-
ceptive threshold was significantly reduced compared to
the control group, indicative of thermal hyperalgesia
(Figures 5(a)–5(c)). Thermal hyperalgesia induced by Ehr-
lich tumor was not changed in chloroquine-treated mice
(Figure 5(a)). Plasmodium berghei infection did not change
the thermal nociception induced by the Ehrlich tumor
(Figure 5(b)). Mice treated with chloroquine and healed
from malaria infection had a significant reduction in thermic
nociception threshold induced by the solid Ehrlich tumor
(Figure 5(c)). Therefore, isolated chloroquine treatment or
malaria infection did not change the thermal hyperalgesia
induced by the tumor. However, tumor-induced thermal
hyperalgesia was significantly increased in chloroquine-
treated mice and healed from malaria infection.

We also showed that inoculation of the Ehrlich tumor
increased the volume of the paw compared to the noninocu-
lated paw (Figures 6(b)–6(d)), indicating the development of
paw edema. Ehrlich tumor-induced paw edema was signifi-
cantly inhibited in animals treated with chloroquine
(Figure 6(a)) or infected with Plasmodium berghei
(Figure 6(b)). Paw edema was also significantly inhibited in
chloroquine-treated mice and healed from malaria infection
(Figure 6(c)). These results indicate the antiedematogenic
effect of chloroquine and the infection of Plasmodium ber-
ghei in mice with solid Ehrlich tumor. Furthermore, the anti-
edematogenic effect was also observed in mice healed of
malaria infection after chloroquine treatment.

The serum level of the cytokines IL-1β and TNF-α was
determined in mice injected with the solid Ehrlich tumor.
The results show that the Ehrlich tumor did not induce an
increase in serum levels of IL-1β (Figure 7) and TNF-α
(Figure 8) compared to the control group. The serum level
of IL-1β (Figure 7(a)), but not TNF-α, increased in mice
with the solid Ehrlich tumor and treated with chloroquine.
Mice injected with the solid Ehrlich tumor and infected with
Plasmodium berghei presented an elevation of serum level of
IL-1β (Figure 7(b)), but not TNF-α (Figure 8(b)). Mice with
the solid Ehrlich tumor that was treated with chloroquine
and healed from malaria infection presented an elevation
of serum level of IL-1β (Figure 7(c)), but not TNF-α
(Figure 8(c)), compared to the control.

4. Discussion

In the present study, we create an experimental condition of
coexistence of these diseases to analyze the influence of
malaria infection on the development of mechanical and
thermal hyperalgesia and inflammation induced by Ehrlich
tumor cells subcutaneously inoculated in the hind paw of
the mouse. Furthermore, we evaluated the latte effect of
malaria treated and healed on hyperalgesia and inflamma-
tion induced by the Ehrlich tumor. We used the Ehrlich
solid tumor as an animal model of carcinoma and Plasmo-
dium berghei as a model of uncomplicated malaria, which
develops pathophysiological characteristics in humans.
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Studies show that malaria and cancer can mutually influ-
ence some of their pathophysiological manifestations [30].
Our results show for the first time that the nociceptive
response or the local inflammatory induced by the Ehrlich
solid tumor changes during malaria infection and persists
after treatment and heals the malaria infection. On the other
hand, we cannot see any change in the blood development of
malaria infection in the presence of an Ehrlich solid tumor,
as verified by blood parasitemia.

More complex changes were observed in mice treated
and healed of malaria. These mice had a significant attenua-
tion of mechanical nociception and paw edema induced by
the Ehrlich solid tumor. On the contrary, the thermal noci-
ception induced by the Ehrlich tumor increased in these
mice. Clinical evidence shows that patients who heal from
malaria (aparasitemic) after effective antimalarial treatment
can develop late neurological disorders that can occur any-
where from 0 to 60 days after parasitemia clearance [45].
Confusion, convulsion, ataxia, headache, abdominal pain,
weakness, somnolence, and cognitive deficit are some neuro-
logical abnormalities observed in these patients [45, 46].
This neurological manifestation is related to abnormalities
in the subcortical areas, brainstem, thalamus, and cerebel-
lum observed by magnetic resonance imaging [46].

The use of antimalarials, such as mefloquine and chloro-
quine, for prophylaxis or the treatment of malaria is also
associated with the development of neurological disorders
[47, 48]. Treatment of malaria with chloroquine can produce
a neurotoxic effect and a risk of neurological disorders,
including seizures, psychotic episodes, involuntary move-
ments, and extrapyramidal symptoms [47]. Studies suggest
a synergistic interaction between antimalarial and malaria
infection in developing neurological abnormalities [45]. In
this sense, the neurologic abnormality resulting from chloro-
quine associated with malaria treatment could influence the
nociceptive response induced by the solid Ehrlich tumor.
Furthermore, these unprecedented results show that the
association of malaria with chloroquine influences the
tumor-induced nociceptive response based on the applied
modality of the nociceptive stimulus.

Malaria infection in mice not treated with chloroquine
inhibited paw edema without changes in the mechanical
and thermal nociception induced by the Ehrlich solid tumor.

The inhibitory effect of malaria on edema and Ehrlich tumor
growth may be related to its ability to activate the immune
response by inhibiting tumor angiogenesis and neutralizing
the immunosuppressive microenvironment [24, 49]. Malaria
is recognized by producing pain symptoms in humans [50,
51] or analgesia in the experimental model of inflammatory
pain in mice infected with Plasmodium berghei [23]. These
studies showing malaria-induced pain or analgesia were
evaluated without comorbidity with chronic diseases or after
clinical cure of malaria infection. In this sense, the inability
of malaria to change the nociceptive response can be associ-
ated with the inherent characteristic of chronic pain induced
by solid cancer.

Treatment with chloroquine in mice not infected with
Plasmodium berghei also changed the development of edema
and nociception induced by the Ehrlich tumor. The inhibitory
effect of chloroquine on developing Ehrlich tumor-induced
paw edema may be related to growth inhibition, inhibition
of autophagy, and induction of cancer cell apoptosis [52, 53].
Chloroquine significantly attenuated mechanical and thermal
nociception and edema induced by the Ehrlich tumor. Tsagar-
eli et al. [54] showed in mice the development of a mechanical
and thermal nociceptive response induced by intraplantar
injection of chloroquine, which is inhibited by the transient
receptor potential antagonist ankyrin 1 (TRPA1). Further-
more, chloroquine-induced nociception may be related to its
cytotoxic effects due to its lysosomotropic and lysosomal acid-
ification properties, leading to neurotoxicity [55–57]. The
antinociceptive effect of chloroquine in the presence of an Ehr-
lich tumor may be due to its antitumor properties, especially
by inhibiting tumor growth [52, 58]. Furthermore, these
results may arise from chloroquine’s selective interaction with
different populations of neurons involved in the nociceptive
response [54, 59, 60].

In our current investigation, we assessed the levels of IL-
1β and TNF-α, two key players in the pathophysiologic
aspects of cancer and malaria, particularly inflammation
and pain. Our findings revealed a significant elevation in
IL-1β, but not TNF-α, in mice with tumors and treated with
chloroquine, in mice infected with Plasmodium berghei, and
in mice with tumors and healed of malaria. Interestingly,
tumor or malaria infection did not significantly alter the
serum level of IL-1β and TNF-α.

Parasitemia

Daily chloroquine
(i.p. injection) Serum level

Experimental tests:
von Frey filament(i)

(ii)

(i)
(ii)

(iii)
Hot plate test
Paw volume

IL-1�
TNF-�

Parasitemia

Ehrlich tumor cell

Plasmodium berghei ANKA
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(i.p. injection)
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Figure 1: Experimental design of the study. First day: the intraperitoneal injection of red cells infected with Plasmodium berghei ANKA and
intraplantar injection of Ehrlich tumor. Seventh to ninth day: daily oral treatment with chloroquine. Seventh and tenth day: parasitemia
blood. Eleventh day: experimental tests and peripheral blood collection for dosing IL-1β and TNF-α.
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IL-1β and TNF-α are pyrogens cyclically released by
monocytes, macrophages, and neutrophils that participate
in universal mechanisms of systemic inflammation and
febrile response in infectious and noninfectious diseases,
such as malaria and cancer [20, 61, 62]. In malaria, macro-
phages release IL-1β and TNF-α after recognizing PAMPs
such as glycosylphosphatidylinositol and hemozoin [20].
Increased levels of IL-1β and TNF, beyond TGF-b and IL-
10, are associated with the major severity of malaria [22,
63, 64]. Some clinical manifestations of malaria, such as
fever, rigors, chills, fatigue, headache, thrombocytopenia,

hypotension, anorexia, vomiting, nausea, and diarrhea, can
be mimicked with an infusion of recombinant IL-1 and
TNF-α [19, 65].

The antimalarial chloroquine, a lysosomotropic drug,
exhibits a dual effect on the proinflammatory cytokine
release. In leukocytes, chloroquine demonstrates a dose-
dependent decrease in TNF-α and IL-1 secretion induced
by lipopolysaccharide [66]. In sterile conditions, chloroquine
inhibits autophagy, potentiates the action of IL-1β, and
reduces IL-1 receptor internalization and degradation in
macrophages [67]. This evidence suggests that the effect of
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with Ehrlich tumor in the hind paw. Blood parasitemia in the presence of Ehrlich tumor in mice (e) not treated with or (f) treated with
chloroquine. The columns represent the mean ± standard error of 6-7 mice. Cycles represent each mouse in the group. ∗Difference
statistically significant. ∗∗p ≥ 0 0018. ∗∗∗∗p < 0 0001. ns = difference statistically nonsignificant.
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chloroquine in increasing the serum level of IL-1β could be
associated with the inhibition of autophagy of cytokines for
inflammatory cell activation in response to the presence of
a tumor.

IL-1β and TNF-α exhibit a dual effect, demonstrating
protective effects during the innate immune response against
pathogens and tumors and presenting harmful effects during
cancer development. In several solid tumors, the production
of IL-1β is upregulated and is associated with cachexia, inva-
sion, angiogenesis, and metastasis [68–70]. In the tumor

microenvironment, IL-1 promotes an immunosuppressive
effect in antitumor cells such as activated macrophages
(M2), tumor-associated neutrophils, regulatory B cells, and
T helper 17 [71, 72]. Conversely, IL-1 is also associated with
protective acts against tumors, exhibiting antitumor activity
associated with the regression of several tumors.

The increased serum concentration of IL-1β was also
related to mechanical antinociception and thermal hyperal-
gesia. Intraperitoneal injection of IL-1β induces thermal hyper-
algesia, and this effect is inhibited by intracerebroventricular
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injection of nonsteroidal anti-inflammatory drugs [73, 74].
Moreover, evidence indicates that peripheral IL-1β can change
brain function related to nociceptive behaviors [75]. Thus,
intrathecal injection of IL-1β attenuates the carrageenan-
induced hyperalgesia [76] and enhances the nociceptive thresh-
old to mechanical stimuli [77].

Thus, our results show that the increase in serum con-
centration of IL-1β is related to the inhibition of tumor
growth/edema in the paws of mice. An increased serum con-
centration of IL-1β in the presence of chloroquine and
malaria could neutralize the immunosuppressive microenvi-
ronment of the solid Ehrlich tumor. Furthermore, the
increased serum concentration of IL-1β could also be a con-
tributing factor to the mechanical antinociception and ther-
mal hyperalgesia observed in mice with tumors and healed
of malaria. Moreover, its dual action in the brain and its

peripheral effect could potentially explain the opposite effect
of chloroquine in mechanical and thermal nociception.

5. Conclusion

Finally, the results show for the first time how the nocicep-
tive and inflammatory manifestations induced by the solid
Ehrlich tumor manifest themselves in animals infected with
Plasmodium berghei ANKA and treated with antimalarial
chloroquine. The most complex results were observed in mice
treated with chloroquine and healed of malaria. Although
there are differences in nociceptive and inflammatory mani-
festations in animal models of malaria compared to the classic
manifestations of malaria in humans, the study draws atten-
tion to the complexity of some clinical manifestations that
can develop in individuals with malaria treated with
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antimalarials and who have had cancer concurrently. In devel-
oping countries, malaria and antimalarial therapy can coexist
with cancer, bringing about beneficial clinical responses, while
they can worsen others in cancer patients. Therefore, human
observational studies are needed to assess how the interaction
of different types of malaria and antimalarial treatments can
influence the development of coexisting tumors.
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