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There has been a growing interest in constructing stationary measures with known multifractal
properties. In an earlier paper, the authors introduced the multifractal products of stochastic processes
(MPSP) and provided basic properties concerning convergence, nondegeneracy, and scaling of
moments. This paper considers a subclass of MPSP which is determined by jump processes with
i.i.d. exponentially distributed interjump times. Particularly, the information dimension and a
multifractal spectrum of the MPSP are computed. As a side result it is shown that the random
partitions imprinted naturally by a family of Poisson point processes are sufficient to determine
the spectrum in this case.

1. Introduction

The measures resulting from the limits of random multiplicative martingales have attracted
much attention in the mathematical community since the the work by Kahane on positive
martingales [1–3]; these martingales are of the form

∫
Qn(t)dσ(t), where Qn(t) forms a

positive martingale for each t. Related early ideas go back to de Wijs [4, 5], Kolmogorov
[6], Novikov and Stewart [7], Yaglom [8], and Mandelbrot [9–12], and emerged mostly in
the context of turbulence. Recently, Barral and Mandelbrot have published a series of papers
[13, 14] completing Kahane’s general theory of T -martingales.

Research on multiplicative cascades has been very active. Especially, Mandelbrot’s
martingale [9, 10], a simple tree-based construction with independent random multipliers,
has been considered in a large number of publications; first by Kahane and Peyrière [15],
and the story still continues (see e.g. [16–23]). Extensions such as relaxing the independence



2 Journal of Probability and Statistics

assumption of the multipliers or randomizing the number of offsprings have also been
studied. To give a short list without intention of being complete, we refer to Molchan [19]
and Waymire and Williams [24, 25] regarding dependent multipliers, and to Peyrière [26],
Arbeiter [27], and Burd and Waymire [28] regarding random numbers of offsprings.

Classes of Kahane’s martingales that move away from a tree-based structure include
Gaussian chaos by Kahane [1], Lévy chaos by Fan [29], random Gibbs measures by Fan
and Shieh [30], random coverings by Kahane and Fan [2, 3, 31, 32], multifractal product
of cylindrical pulses by Barral and Mandelbrot [13, 14, 33], an infinitely divisible cascades by
Bacry and Muzy [34, 35], Chainais et al. [36, 37] and Riedi and Gershman [38], as well as
products of stochastic processes by the present authors [39] and subsequently by Anh et al.
[40, 41] and Matsui and Shieh [42].

Processes defined through iterative multiplication such as the above exhibit rich
scaling properties and ubiquitous, fine details. Multifractal analysis, in a nutshell, strives at
capturing the essence of such complex scaling behaviour through geometric and probabilistic
descriptors. The multifractal spectrum of a given realization, on one hand, is given as the
Hausdorff dimension of all points where the local Hölder regularity has a given degree; it is
local and random in nature. The multifractal envelope, on the other hand, is defined in terms
of the scaling of moments and constitutes, thus, a global and deterministic descriptor. It is
well known that the envelope provides an almost sure upper bound to the spectrum, a fact
that can easily be established through arguments akin to large deviation principles. The goal
of multifractal analysis lies in establishing almost sure equality of spectrum and envelope.

Motivated by natural, desirable properties of a process such as stationarity, this paper
studies the multifractal spectrum of an infinite product of stationary jump processes, defined
as the limit of a particular choice of martingales of Kahane:

A(t) = lim
n→∞

∫ t

0

n∏

i=1

Λ(i)(s)ds, (1.1)

where the Λ(i) are independent rescaled versions of a mean one, stochastic mother process
Λ. We refer to Anh et al. [40, 41] for a collection of such products of stochastic processes
for which the multifractal envelope is explicitly computed. Recently, the L2 convergence of
A(t) with a long range-dependent Λ is shown by Matsui and Shieh [42]. In this paper, we

study the case Λ(i)(·) dist= Λ(bi·), where Λ is a stationary jump process with i.i.d. exponential
interjump times.

Overview and contributions: Section 2 reviews the multifractal analysis in the context
of restricted coverings, recalls the less known semispectra needed in our approach, and
establishes the corresponding multifractal formalism. The main purpose of this section is to
provide solid grounds for the reader less familiar with the field of fractals and to clearly state
results that are not found in common books. Section 3 develops the multifractal properties of
the infinite product of jump processes and constitutes the heart of the paper. To compute the
multifractal spectrumwe establish themultifractal formalism, for the infinite product of jump
processes. To our best of knowledge, these are the first processes that may exhibit temporal
dependence over arbitrarily large lags and for which the formalism has been established.
Notably, the absence of an a priori bound on the length of the temporal dependence precludes
the use of common methods as found, for example, in [14]. To overcome this hurdle, we
take advantage of a more general version of the multifractal formalism than is usually
applied.More precisely, we base themultifractal computations on partitions created naturally
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by the Poisson processes underlying the processes at hand. While Poisson partitions can
in general not be used to compute the ordinary Hausdorff dimension of sets, they will
suffice here. Moreover, the Poisson partition yields the same multifractal envelope as the one
obtained with the usual dyadic partitions in earlier work [39].

2. Multifractal Spectra and Formalism

The multifractal spectrum of a process is defined pathwise. Therefore, we start in sections
2.1–2.3 by providing the relevant notions for a given (deterministic) increasing function, or its
related measure. We also develop tools which allow for computing the multifractal spectrum
of a measure in ways which are adapted to the inherent structure of the processes we will
study in this paper. In 2.4 we proceed to random measures, providing almost sure upper
bounds on the pathwise multifractal spectrum. It will be the task of the remainder of the
paper to establish conditions under which these upper bounds are actually tight.

In this paper, we consider scaling exponents andmultifractal spectrawhich are defined
via nonhomogenous partitions. The results have analogous counter-parts in the standard
setting but it should be noted that these are not fully equivalent notions.

2.1. Hausdorff Dimension

Let us start by recalling notions related to Hausdorff dimension. Consider a set F ⊂ R
d and a

class C of subsets of R
d. Then, the s-dimensional Hausdorff measure with respect to (w.r.t.) C is

given by

hC
s (F)

.= lim
δ→ 0

inf

{
∑

i

|Ui|s : 0 < |Ui| ≤ δ, Ui ∈ C ∀i; F ⊆
⋃

i

Ui

}

, (2.1)

where the diameter of set U is denoted by |U| = sup{|x − y| : x, y ∈ U}. Then

dimC(F) .= sup
s
{s ≥ 0 : hs(F) = ∞} = inf

s
{s ≥ 0 : hs(F) = 0} (2.2)

is called the Hausdorff dimension of set F w.r.t. C. By definition, when choosing the powerset
2R

d
, that is, the class of all subsets of R

d as the class C in (2.1), then these notions reduce to
the usual s-dimensional Hausdorff measure hs and dimension dim:

hs(F) = h2R
d

s (F), dim(F) = dim2R
d

(F). (2.3)

Clearly, dim(F) ≤ dimC(F). TheHausdorff dimensionw.r.t.C is σ-stable, that is, dimC(∪jFj) =
supj dim

C(Fj) for any countable family of sets Fj . This can be established as in the classical
case. See Rogers [43] for more properties of Hausdorff measures.

Numerous classes of sets C are known to result in the usual Hausdorff dimension (see
e.g., [44–46]). For our purposes, it will be sufficient to consider certain nested classes C and
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to establish a simple sufficient condition to warrant that dim(F) = dimC(F). The simplest
example of such a family is the b-ary cubes of the form

[
k1b

−n, (k1 + 1)b−n
) × · · · × [kdb−n, (kd + 1)b−n

)
(2.4)

where b > 1. To generalize this fact, recall that a collection is called nested if for all pairs of its
sets A,B, we have A ∩ B = ∅A ⊆ B, or B ⊆ A. Also, we use the term cube for any product of
intervals of equal lengths.

Lemma 2.1. Let F ⊂ R
d and C be a nested collection of arbitrary cubes. Assume that for all x ∈ F

there exists a sequence {Cn(x)}N
∈ C such that x ∈ Cn(x)/= {x} for all n,

lim
n→∞

|Cn(x)| = 0, lim sup
n→∞

log|Cn(x)|
log|Cn−1(x)| ≤ 1. (2.5)

Then dim (F) = dimC(F).

The use of nested covers with a condition akin to (2.5) is quite standard. In [45],
for example, a Frostman-type result based on nested cubes is derived. In [46], the equality
dim (F) = dimC(F) is established under assumptions which are somewhat more restrictive
than (2.5) and prevent the use of Poisson covers (compare lemma 3.6). As we do not need
this result directly we leave the proof to the interested reader who will have no problems
rewriting the arguments of [45] for a proof of the result given here. In doing so, exploit that
the covers are nested to avoid the need of a lower bound on |Cn(x)| as used in [45]. A proof
is contained in the technical report [47].

A standard method to get a lower bound for the Hausdorff dimension of a set is based
on a scaling law, which appears as mass distribution principle in [44]. For our purposes, we
need the following stronger lemma which follows from [45]. Note that condition (ii) can be
replaced by the less restrictive (2.5), following the classical argument of the Frostman lemma
applied to the covers C, combined with lemma 2.1.

Lemma 2.2 (see [45, Lemma 4.3.2.b]). Let ν be a Borel measure on R
d, F a Borel subset, and

C = {Cn
k : k = 1, . . . ,Nn, n ∈ N} a nested collection of cubes. Assume ν(F) > 0,

(i) {Cn
k}Nn

k=1 cover F for all n,

(ii) there exists b > 1 such that (1/n) log |Cn
k
| → − log b as Cn

k
→ {x} for all x ∈ F,

(iii) log ν(Cn
k
)/ log |Cn

k
| → s as Cn

k
→ {x} for all x ∈ F.

Then, dim(F) = dimC(F) ≥ s.

2.2. Multifractal Spectrum

Let ν be a Borel measure in R
d. Its Hölder exponent at x, or equivalently local dimension at

x, is given by

dimlocν(x) = lim
r→ 0

log ν(B(x, r))
log r

(2.6)
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if this limit exists. In multifractal analysis, we are usually interested in the properties like
fractal dimension of the set {x : dimlocν(x) = α}.

A more approachable framework to study scaling properties is to consider a sequence
of finer and finer partitions Cn .= {Cn

k : k = 1, . . . ,Nn} of a set containing the support of
measure. The standard example in R is to partition the unit interval by the dyadic intervals
[(k − 1)2−n, k2−n), k = 1, . . . , 2n.

Definition 2.3. Let F be a Borel subset of R
d and Cn = {Cn

k : k = 1, . . . ,Nn} a partition of F for
each n = 1, 2, . . . . We call the Cn nested partitions, if any Cn

k ∈ Cn (n ≥ 2), k = 1, . . . ,Nn, is a
subset of some Cn−1

k′ ∈ Cn−1, k′ ∈ {1, . . . ,Nn−1}.

Let

αC
n(x)

.=
log ν(Cn(x))
log|Cn(x)| , (2.7)

where C = {Cn : n = 1, . . .} is a collection of nested partitions Cn of supp, ν and Cn(x) is the
unique Cn

k ∈ Cn containing x. Then the local scaling exponent (w.r.t. C) of ν at x is given by

αC(x) .= lim
n→∞

αC
n(x) (2.8)

if this limit exists. One should think of αC(x) as giving approximately the degree of Hölder
regularity of ν at x, that is, an approximation to dimlocν(x). It is tempting to conjecture that
these two notions are equal, except in a set of dimension zero, provided that the partitions
satisfy the conditions of Lemma 2.2. While this conjecture is known to hold for certain
(random) measures ν such as the binomial cascade, a general proof seems hard to come by.

We consider the sets

EC
α
.=
{
x : lim

n
αC
n(x) = α

}
, V C

α
.=
{
x : lim inf

n
αC
n(x) ≤ α

}
(2.9)

characterizing the local scaling behaviour. The classical literature on multifractals studies
typically the sets EC

α , calling dim EC
α the multifractal spectrum of the measure ν. The sets V C

α

are somewhat easier to study, yet provide spectral information in the sense of multifractal
analysis, as we will point out in this section. Also the sets {x : lim infnαC

n(x) = α} would be
of interest since they form a partition of space. However, their dimension would lie between
dim(EC

α ) and dim(V C
α ). Trivially, E

C
α ⊆ V C

α and dim(EC
α ) ≤ dim(V C

α ).

2.3. Pathwise Partition Function and Coarse Grain Spectra

In order to make the presentation simpler, we consider only the 1-dimensional case assuming
that supp ν ⊆ [0, 1], but all the definitions are easily extended to compactly supported
measures on R

d.
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Consider nested partitions Jn = {Jnk : k = 1, . . . ,Nn} of the unit interval. Analogous
to the previous section, denote C = {Jn : n = 1, . . .} the nested collection of sets which is
determined by the Jn. The partition sum of the measure ν is defined by

SC
n

(
q, γ

) .= Sn

(
q, γ

)
=

Nn∑

k=1

ν
(
Jnk
)q∣∣Jnk

∣
∣−γ , (2.10)

where we adapt the convention 0q .= 0 for all q ∈ R. The only purpose of this convention is to
provide a convenient way to ensure that the sets Jn

k
with ν(Jn

k
) = 0 do not contribute to any

of the Sn(q). Define then the partition function as

τC
(
q
) .= τ

(
q
)
= sup

{

γ :
∑

n

SC
n

(
q, γ

)
< ∞

}

. (2.11)

We drop the index C whenever the choice of the partitions is clear from the context.
The above functionals can be used to characterize multifractal properties through the

Legendre transform

τ∗(α) .= inf
q

(
αq − τ

(
q
))
. (2.12)

Then τ∗(α) denotes a pathwise large deviations spectrum. In the special case where the
partitions of C consist of the b-ary intervals, the above definition of τC reduces to the standard
one (for an overview see [48]).

To provide upper bounds on the multifractal spectra, it is useful to introduce the so-
called “coarse grain” spectra. To this end, the following collections of intervals are of interest:

N+
n(α)

.=

{

k : Jnk ∩ [0, 1]/= ∅, log ν
(
Jnk
)

log
∣∣Jn

k

∣∣ < α

}

. (2.13)

The reference to large deviations relies on the fact thatN+
n may be represented as a rare event

or a “large deviation from the mean” if one considers log ν(Jnk )/ log |Jnk | to be the random
variable, where k is random but ν and Jn are fixed and n → ∞. In the proper setting, the
following spectrum f+

C becomes a large deviation rate function:

f+
C(α)

.= f+(α) .= inf

⎧
⎨

⎩
δ > 0 :

∑

n≥m

∑

k∈N+
n (α)

∣∣Jnk
∣∣δ −→ 0 asm −→ ∞

⎫
⎬

⎭
. (2.14)

In the following, we collect some properties needed to order the different spectra.
Note that these results specifically hold for spectra and partition functions defined via non-
homogeneous partitions. The proofs are quite straightforward but they are shown for the
sake of completeness.
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Lemma 2.4. For Borel measure ν, the following holds. If maxk|Jnk | → 0 as n → ∞ then

dimC
(
V C
α

)
≤ f+

C(α+)
.= lim

ε↓0
f+
C(α + ε). (2.15)

Proof. Fix α and take any γ such that γ > f+(α+). Then there exists ε > 0 such that f+(α+ε) < γ .
Let m be an arbitrary positive integer. Then, for any t ∈ V C

α there exists n > m such that
αn(t) < α + ε and, thus, there is k ∈ N+

n(α + ε) such that Jn(t) = Jn
k
. Since t ∈ Jn(t), we get

V C
α ⊆

⋃

n≥m

⋃

k∈N+
n (α+ε)

Jnk . (2.16)

This means that for every mwe have constructed a cover of V C
α with Jnk such that

max
n≥m,k∈N+

n (α+ε)

∣∣Jnk
∣∣ → 0,

∑

n≥m

∑

k∈N+
n (α+ε)

∣∣Jnk
∣∣γ −→ 0 asm −→ ∞. (2.17)

We conclude that hC
γ (V

C
α ) = 0 and dimC(V C

α ) ≤ γ .

Lemma 2.5. Let ν be a Borel measure and let the Jn be nested partitions. Then, for all real α, f+(α) ≤
qα − τ(q) for q ≥ 0, and τ(q) ≤ (f+)∗(q) for q > 0.

Proof. Let α, q, and γ be arbitrary real numbers for the moment. By definition, ν(Jn
k
) > |Jn

k
|α

for all k inN+
n(α). For nonnegative q we may, thus, estimate

Sn

(
q, γ

) ≥
∑

N+
n (α)

ν
(
Jnk
)q∣∣Jnk

∣∣−γ ≥
∑

N+
n (α)

∣∣Jnk
∣∣qα−γ . (2.18)

Fix a real α and q ≥ 0. Consider γ < τ(q). By definition of τ , we find

∑

n≥m

∑

N+
n (α)

∣∣Jnk
∣∣qα−γ −→ 0 as m −→ ∞. (2.19)

Consequently, qα − γ ≥ f+(α). Since γ can be chosen arbitrarily close to τ(q), this actually
implies that qα − τ(q) ≥ f+(α) for all non-negative q, as claimed.

The convexity of τ(q) can be established for q > 0 under mild conditions.

Lemma 2.6. Let Jn form nested partitions such that
∑

n maxk|Jnk | < ∞. Let ν be a bounded Borel
measure. Then τ(q) = (f+)∗(q) and τ is convex for q > 0.

Proof. Replacing ν by cν for a sufficiently small c, we may assume that αn(t) ≥ 0. Fix q > 0.
Let γ < infα(qα − f+(α)), let ε > 0 be such that γ < qα − f+(α) − εq for every α, and let Uj
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denote the interval [(j − 1)ε, jε]. Let M be sufficiently large such that qM − γ > 2. Let p be
large enough so that pε ≥ M. Then

Sn

(
q, γ

) ≤
⎛

⎝
p∑

j=1

∑

k:log ν(Jnk )/ log|Jnk |∈ Uj

+
∑

k: log ν(Jnk )/ log|Jnk |>M

⎞

⎠ν
(
Jnk
)q∣∣Jnk

∣
∣−γ

≤
p∑

j=1

∑

k∈N+
n (jε)

∣
∣Jnk

∣
∣q((j−1)ε)∣∣Jnk

∣
∣−γ +

∑

k: Jn
k
∩[0,1]/= ∅

∣
∣Jnk

∣
∣qM

∣
∣Jnk

∣
∣−γ .

(2.20)

By choice of M, and since the Jnk are disjoint subsets of [−1, 2] for n large enough,

∑

Jn
k
∩[0,1]/= ∅

|Jnk |qM|Jnk |−γ ≤
∑

Jn
k
∩[0,1]/= ∅

∣
∣Jnk

∣
∣2 ≤ max

k

∣
∣Jnk

∣
∣

∑

Jn
k
∩[0,1]/= ∅

∣
∣Jnk

∣
∣ ≤ 3max

k

∣
∣Jnk

∣
∣. (2.21)

By choice of γ , it follows that τ(q) ≥ γ , thus τ(q) ≥ (f+)∗(q). The equality follows from
Lemma 2.5 and a Legendre transformation is always convex.

2.4. Deterministic Envelope for Random Measures

Let us now consider a randommeasure μ defined on [0, 1] and a random nested collection C.
The asymptotics of ensemble moments are given by

TC
(
q
) .= T

(
q
)
= sup

{

γ :
∞∑

n=1

E
[
SC
n

(
q, γ

)]
< ∞

}

. (2.22)

Then T ∗(α) denotes the deterministic large deviation spectrum. The following lemma shows
that if T is convex and τ is convex a.s., then T ∗ is an upper bound to τ∗. Recall that τ∗

provides a pathwise upper bound to f (see Lemma 2.5)which in turn bounds themultifractal
spectrum from above.

To check if T(q) is convex, one can usually calculate the function explicitly, whereas
establishing the convexity of τ(q) is more subtle. In the previous section, we stated Lemma 2.6
which provides a way to guarantee a.s. convexity.

Lemma 2.7. If T is convex and τ is convex a.s. in an interval I, then a.s. τ(q) ≥ T(q) for all q ∈ I.

Proof. Fix q ∈ I such that T(q) < ∞ and take any γ < T(q). Since Sn(q, γ) is positive,

∑

n≥m
E
[
Sn

(
q, γ

)]
= E

[
∑

n≥m
Sn

(
q, γ

)
]

< ∞, (2.23)

and thus
∑

n≥m Sn(q, γ) < ∞ a.s., that is, τ(q) > γ a.s. Next, choose γm ↗ T(q). In conclusion,
τ(q) ≥ T(q) a.s., for any countable set of q ∈ I. Since τ and T are a.s. convex, the statement
holds a.s. for all q ∈ I.
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Combining lemmas 2.4, 2.5, and 2.7, we can now order the multifractal spectra.

Theorem 2.8. If T(q) is convex and τ(q) is convex a.s. for q > 0, and limn→∞maxk|Jnk | = 0 a.s.,
then the multifractal spectra are ordered as follows: with probability one, for all α,

dimC
(
EC
α

)
≤ dimC

(
V C
α

)
≤ f+

C(α+) ≤ inf
q>0

(
qα − τC

(
q
)) ≤ inf

q>0

(
qα − TC

(
q
))
. (2.24)

The basic arguments that lead to Theorem 2.8 are sometimes addressed as “steepest
ascent” methods or as large deviation arguments. They are quite standard in multifractal
analysis [12, 14–17, 19–22, 24, 30, 34, 47–50] to obtain an upper bound on the multifractal
spectrum dim(Eα) in a setting of interest. Notably, (2.24) is quite generally applicable since a
mild condition on the covers asserts that τ is convex without the need of strong assumptions
on the measure. Note also that some of the inequalities of (2.24) may be strict [51, 52].

Arbitrary partitions in a deterministic setting have been studied by Brown et al. [53].
Using their results, the pathwise inequalities of Theorem 2.8, that is, the parts not including
TC, could have been established under slightly different technical assumptions. However,
our setting leads to the assumptions that are more easily verified for processes studied in this
paper.

In certain settings, different partition functions might become useful, yet still provide
upper bounds akin to the above [20, 53–56]. A very typical setting is to form the partitions
C via dyadic cubes. The formalism (2.24) is most useful only for the increasing part of the
spectrum as the right-hand side is convex and increasing. Using similar arguments one can
easily obtain an upper bound which uses the negative range of q values and is decreasing
and convex, as is done, for example, in [47].

3. Multifractal Jump Processes

3.1. Definition and Basic Properties

We start from T -martingales defined by independent multiplication as in [2]. Consider a
family of independent positive processes Λ(i) which are independent rescaled copies of a
stationary mother process Λ defined on R

+. In this paper, we restrict to the class of jump
processes satisfying the following assumptions:

(A1) Λ is stationary with Λ > 0 and E[Λ] = 1; there exists b > 1 such that Λ(i)(·/bi) are
i.i.d. processes, distributed as Λ;

(A2) Λ is a weakly mixing Markov process which is defined by Λ(t) .= Mk for Tk ≤ t <
Tk+1, where T0 = 0 and {Tk+1 − Tk}k are i.i.d. exponential random variables of mean
1/λ, and where theMk form a stationary positive time series independent of {Tk}k
satisfying E[Mk] = 1 for all k.

Recall that a real-valued stationary process is weakly mixing if for all B1, B2 ∈ B (the
σ-algebra generated by the process) limT →∞T−1 ∫T

0 |P(B1 ∩ StB2) − P(B1)P(B2)| dt = 0 where
St is the shift operator. Examples of interest include the cases where the sequence {Mk}k
forms an i.i.d. sequence of random variables (Λ is a renewal reward process) or a finite
state irreducible Markov chain. The requirement that the multiplier processes are strictly
independent of the partitioning is added for convenience here and more general cases can
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be studied. For example, if Λ is a finite state Markov process, then analogous results can be
derived.

Next define the finite product processes

Λn(t)
.=

n−1∏

i=0

Λ(i)(t). (3.1)

For t ∈ [0, 1], the cumulative processes

An(t)
.=
∫ t

0
Λn(s)ds =

∫ t

0

n−1∏

i=0

Λ(i)(s)ds, n = 1, 2, . . . (3.2)

can be associated with positive measures defined on the Borel sets B of [0, 1]:

μn(B)
.=
∫

B

Λn(s)ds, n = 1, 2, . . . , B ∈ B. (3.3)

We note that the restriction to the unit interval is purely for convenience, and extensions to
compact intervals and to the real line are straightforward.

In the context of the martingales of Kahane [2] and in multifractal analysis, we are
interested in the limit measure μ

.= limnμn and its associated cumulative process A. The
existence of the limiting objects (possibly degenerate) is established in [2].

Definition 3.1. Assume (A1) and (A2). Then, the multifractal jump process (MJP) is the limit

A(t) .= μ([0, t]) .= lim
n→∞

μn([0, t]) = lim
n→∞

An(t) a.s. (3.4)

An MJP is called degenerate if A(1) = 0 almost surely, and nondegenerate otherwise.

It can be shown that A is non-degenerate if and only if E[A(1)] = 1 (see [39]). The
convergence of An(1) in Lp for some p > 1 naturally implies nondegeneracy since then
E[A(1)] = limnE[An(1)] = 1. To provide criteria for convergence in Lp is thus of central
importance. As pointed out in [2], criteria for convergence in L2 are particularly manageable
and useful. In the following theorem, which is a straightforward adaption of [39, Corollary
3], the L2 conditions are stated for MJPs.

Theorem 3.2 (see [39, Corollary 3]). Assume (A1), (A2), and E[M2] < ∞. If there are positive γ1,
γ2 and C with

σ2e−γ1|x| ≤ Cov(Λ(0),Λ(x)) =
∞∑

j=0

(λx)j

j!
Cov

(
M0,Mj

)
e−λx ≤ C|x|−γ2 , (3.5)

then An(t) converges in L2 if and only if b > 1 + σ2 where σ2 = Var(M).
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Condition (3.5) allows a very large family of time series Mk. For example, a sufficient
condition for convergence is

Cov
(
M0,Mj

) ≤ C

j + 1
, j = 0, 1, 2, . . . , (3.6)

for some constant C > 0.
The majority of the following results are stated assuming a converging MJP in some

Lp, p > 0. The conditions for p = 2 are, of course, sufficient for p ∈ (0, 2]. In principle, setting
explicit conditions for p > 2 would be possible. However, even for the simplest possible case
when the Mj are i.i.d. and the L3 convergence is considered, long and tedious calculations
are needed. Thus the general convergence considerations are out of the scope of this paper.

The assumption of weak mixing in (A2) is needed to show that the limit measure μ is
ergodic with respect to the time shift operator. Ergodicity of μ, together with the positivity of
the multipliers Mk, guarantees that the random variable μ([0, t]) does not have an atom at
zero. This result, in turn, will be used in the multifractal decomposition.

Proposition 3.3. The associated measure μ on R
+ of an MJP is ergodic.

Proof. Consider the spaces Ωi = (Xi,Bi, Pi), i = 0, 1, . . . , and Ω = Π∞
i=0Ωi = (X,B, P), where

Xi is the set of piece-wise continuous functions, Bi its Borel-algebra, and Pi is the law of Λ(i).
The shift operator is weakly mixing in Ωi and thus it is also weakly mixing in Ω0 × · · · ×
Ωn−1 for any fixed n. Since the B0 × · · · × Bn−1 × Π∞

i=nΩi form a semialgebra generating B, it
follows that the shift operator is also weakly mixing in the infinite product space Ω (see e.g.,
[57, Theorem 1.7]). Weak mixing implies ergodicity which is then trivially inherited to the
subsystem determining the random measure μ.

The following measures are instrumental in our analysis:

μ(n)(B) .=
∫

B

n−1∏

i=0

1
Λ(i)(τ)

dμ(τ), (3.7)

that is, the measure where n first terms of the product are neglected. Thus

μ(n)(B) dist= b−nμ(bnB). (3.8)

Proposition 3.4. Assume that A is a non-degenerate MJP. Then, with probability one, μ([0, t]) > 0
for all t ∈ (0, 1].

Proof. First consider an arbitrary t > 0 and make a change of variable to get

μ([0, t]) =
∫ t

0
Λn(s)dμ(n)(s) dist= b−n

∫ tbn

0
Λn

(
sb−n

)
dμ̃(s), (3.9)
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where μ and μ̃ are identically distributed and μ̃ independent of Λn. Then by the positivity of
Λn and ergodicity of μ, we have

P
(
μ([0, t]) = 0

)
= P

(

b−n
∫ tbn

0
Λn

(
sb−n

)
dμ̃(s) = 0

)

= P
(
b−nμ

([
0, tbn

])
= 0

)

≤ P
(
b−nμ

([
0, tbn

]) ≤ t

2

)
−→ 0 asn −→ ∞.

(3.10)

Thus μ([0, t]) > 0 a.s. and μ being a positive measure, trivially μ([0, s]) > 0 for all s ≥ t a.s.
Now denote Ut = {ω : μ[0, t] = 0}. Then

P
(
μ([0, t]) = 0 ∀t ∈ (0, 1]

)
= P

( ∞⋃

n=1

U1/n

)

≤
∑

n

P(U1/n) = 0, (3.11)

which completes the proof.

3.2. Random Partition and Multifractal Envelope

In order to determine the prevalence of scaling exponent in an entire interval rather than
one single point, we use the formalism developed in Section 2. In analogy with related
multiplicative processes [15], we should expect moments of the multipliers to affect the
multifractal properties through the structure function

β
(
q
) .= q − 1 − logbE[Λ

q]. (3.12)

Indeed, as a direct consequence of [39, Propositions 7 and 5], the structure function gives the
deterministic envelope of the multifractal formalism based on the dyadic partitions D.

Corollary 3.5 (see [39]). If E[Λp] = E[Mp] < ∞ and An(t) converges in Lp for some p > 1, then,
for 0 < q ≤ p,

Ctβ(q)+1 ≤ E
[
A(t)q

] ≤ Ctβ(q)+1 ∀t ∈ [0, 1], (3.13)

TD
(
q
)
= β

(
q
)
= q − 1 − logbE[M

q]. (3.14)

Note that under the assumption (3.5) of Theorem 3.2, convergence of the MJP A(t) in
L2 is equivalent with β(2) > 0.

In order to analyze the MJP, it is natural to consider the nested sequence of partitions
Jn induced by Λn. By assumptions (A1) and (A2),

Λ(i)(t) = M
(i)
k , T

(i)
k−1 ≤ t < T

(i)
k , (3.15)
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where {T (i)
k
}∞
k=1 forms a Poisson point process of intensity λbi and {M(i)

k
}∞k=1 is a stationary

positive time series independent of {T (i)
k
}
k
. Consequently, the product process

Λn(t) =
n−1∏

i=0

Λ(i)(t) (3.16)

is constant on intervals Jn
k

.= [Tn
k−1, T

n
k
), where the Tn

k
are defined by a Poisson point process of

intensity λn = λ
∑n−1

i=0 bi = O(bn). From the construction of {Tn
k
}
k
, it follows that the partitions

Jn = {Jn
k
: k = 1, . . .} are nested. We denote the resulting collection of nested Poisson partitions

Jn by P.

Lemma 3.6. Consider a nested Poisson partition P. Let to be arbitrary. With probability one, as
n → ∞,

log|Jn(to)|
n

−→ − log b,
log maxk

∣∣Jn
k

∣∣

n
−→ − log b,

logmink

∣∣Jn
k

∣∣

n
−→ −2 log b. (3.17)

Proof. Without loss of generality, assume λn = λbn and t0 ∈ [0, 1).
(1◦): Clearly

P
(
No points in [t0 − x, t0 + x]

) ≤ P(|Jn(t0)| > x) ≤ 2 P
(
No points in[t0, t0 + x/2]

)
. (3.18)

Thus for n large enough,

P
(|Jn(t0)| > b−nenε

) ≤ 2e(−1/2)λnb
−nenε ≤ 2e(−1/2)nελ,

P
(|Jn(t0)| < b−nenε

) ≤ 1 − e−2λnb
−ne−nε ≤ 2λe−nε.

(3.19)

(2◦): Since the maximal interval is always longer than a fixed interval, for n large
enough,

P
(
max

k

∣∣Jnk
∣∣ < b−ne−nε

)
≤ P

(|Jn(t0)| < b−ne−nε
) ≤ 2λe−nε. (3.20)

On the other hand, if the maximal interval is longer than a given x, then at least one of the
subintervals [(i − 1)(x/2), i(x/2)], i = 1, . . . , �2/x�, has to be empty. Thus

P
(
max

k

∣∣Jnk
∣∣ > b−nenε

)
≤

�2bne−nε�∑

i=1

e(−1/2)λnb
−nenε ≤ 2e−n((λ/4)nε

2−log b). (3.21)
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(3◦): Let {Um
k }m+1

k=1 be a partition generated by a uniform random sample of size m on
interval [0, 1]. It is straightforward to show, for example, by induction, that

P
(
min
k

∣
∣Um

k

∣
∣ < x

)
=

⎧
⎪⎨

⎪⎩

1 − (1 − (m + 1)x)m, 0 < x <
1

1 +m
,

1, x ≥ 1
m + 1

.
(3.22)

Let Nn denote the number of points of a Poisson process with density λbn located in [0, 1].
Applying (3.22) gives

P
(
min
k

∣
∣Jnk

∣
∣ < b−2ne−nε

)
=

∞∑

m=0

P
(

min
k=1,...,Nn+1

∣
∣Jnk

∣
∣ < b−2ne−nε | Nn = m

)
P(Nn = m)

=
�b2nenε�−1∑

m=0

[
1 −

(
1 − (m + 1)b−2ne−nε

)m] (λbn)m

m!
e−λb

n

+
∞∑

m=�b2nenε�

(λbn)m

m!
e−λb

n

≤
∞∑

m=0

(
m2 +m

)
b−2ne−nε

(λbn)m

m!
e−λb

n

+
(λbn)�b

2nenε�

�b2nenε�!

≤ e−nε
(
2λb−n + λ2

)
+ e−nε,

(3.23)

where the last inequality holds when n is large enough. On the other hand, if the minimal
interval is larger than some given x, then there is at most one point in each subinterval [(i −
1)x, ix], i = 1, . . . , �1/x�. Thus

P
(
min
k

∣∣Ink
∣∣ > b−2nenε

)
≤
(
e−λb

−n(
1 + λb−nenε

))b2ne−nε−1

= exp
(
−λbn + λb−nenε +

(
b2ne−nε − 1

)
log

(
1 + λb−nenε

)) ≤ e−c1nε.

(3.24)

(4◦): Apply Borel-Cantelli to the above three cases to complete the proof.

This result sheds some light on the use of such Poisson partitions in the context
of computing the Hausdorff dimensions and multifractal spectra. They do not satisfy the
homogeneous scaling assumption of [46]; yet, being nested they allow still to treat sets for
which all points satisfy (2.5), as for such sets dim(·) = dimP(·). In addition, by lemma 2.6
and theorem 2.8, the multifractal envelope T ∗

P provides an upper bound on the multifractal
spectrum dimP(Eα), almost surely.

The connection to the measures μ(n) defined in (3.7) is especially practical when
considering sets Jn(t) because then

μ(Jn(t)) = μ(n)(Jn(t))
n−1∏

i=0

Λ(i)(t) dist= b−nμ̃(bnJn(t))
n−1∏

i=0

Λ(i)(t), (3.25)
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where μ̃ is distributed as μ and is independent of Jn and Λ(i), i = 0, . . . , n − 1. On the other
hand, by corollary 3.5 and(3.8)

C1b
−n(q−1−β(q))|I|1+β(q) ≤ E

[
μ(n)(I)q

]
≤ C2b

−n(q−1−β(q))|I|1+β(q) (3.26)

for a fixed interval I. We find that TP = TD under mild conditions.

Proposition 3.7. If E[Mp] < ∞ and An(t) converges in Lp for some p > 1, then

TP
(
q
)
= β

(
q
)
= q − 1 − logbE[M

q] for 0 < q ≤ p. (3.27)

Proof. Consider E[
∑Nn

k=1 |Jnk |1+ε] with ε > 0. Denote by {Uj

k
: k = 1, . . . , j + 1} the partition

resulting from j uniformly distributed points on [0, 1]. Then

E
[∣∣∣U

j

k

∣∣∣
α]

=
∫1

0
jsα(1 − s)j−1 ds =

j!Γ(1 + α)
Γ
(
j + 1 + α

) . (3.28)

Using the above result and conditioning with respect to the number of intervals gives

E

[
Nn∑

k=1

∣∣Jnk
∣∣1+ε

]

=
∞∑

j=0

E

[
j+1∑

k=1

∣∣∣U
j

k

∣∣∣
1+ε
]

P
(
Nn = j + 1

)
=

∞∑

j=0

(
j + 1

)
j!Γ(2 + ε)

Γ
(
j + 2 + ε

)
(λn)

je−λn

j!

≤ Γ(2 + ε)(λn)
−εe−λn

∞∑

j=0

(λn)
j+ε

Γ
(
j + 1 + ε

) = Γ(2 + ε)(λn)
−ε
(
1 − Γ(ε, λn)

Γ(ε)

)

≤ Cb−nε.

(3.29)

Now assume γ = β(q) − ε with ε > 0. Conditioning with respect to the partition Jn

helps us to split the addends into three factors, that is,

E

[
Nn∑

k=1

μ
(
Jnk
)q∣∣Jnk

∣∣−γ
]

= EE

[
Nn∑

k=1

Λn

(
Tn
k−1

)q∣∣Jnk
∣∣−γμ(n)(Jnk

)q | Jn
]

. (3.30)

Use the scaling law (3.26) together with the independence of μ(n) with respect to Jn and that

E
[
Λn

(
Tn
k

)q | Jn] = E
[
Λn

(
Tn
k

)q] = E[Mq]n = b−n(β(q)+1−q) (3.31)

in order to estimate

E

[
Nn∑

k=1

μ
(
Jnk
)q∣∣Jnk

∣∣−γ
]

≤ Cb−n(q−1−β(q)) E[Mq]n E

[
Nn∑

k=1

∣∣Jnk
∣∣1+β(q)−γ

]

= C E

[
Nn∑

k=1

∣∣Jnk
∣∣1+ε

]

≤ C̃b−nε.

(3.32)
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Next, assume that γ = β(q) + ε. Condition again with respect to the partition Jn and
apply the lower bound of (3.13) to get

E

[
Nn∑

k=1

μ
(
Jnk
)q∣∣Jnk

∣
∣−γ

]

≥ C E

[
Nn∑

k=1

∣
∣Jnk

∣
∣1−ε

]

≥ C E

[
Nn∑

k=1

∣
∣Jnk

∣
∣
]

= C. (3.33)

Thus, we have found that
∑

n≥m E[Sn(q, γ)] → 0 whenever γ < β(q) and∑
n≥m E[Sn(q, γ)] � 0 whenever γ > β(q).

3.3. Information Dimension

This section is devoted to analyzing EP
α1 , the set of points with scaling exponent

αP
1

.= α1
.= β′(1) = 1 − E

[
ΛlogbΛ

]
= 1 − E

[
M logbM

]
(3.34)

which is the most relevant of all EP
α .

The upper bound of the multifractal spectrum dimP(EP
α ) ≤ T ∗

P a.s. follows from lemma
2.6, lemma 3.6, and theorem 2.8. While TP = TD under mild conditions (see above), we need
to introduce the auxiliary set

KP
α =

{
x : lim

n
αP
n (x) = α, lim

n

logb|Jn(x)|
−n = 1

}
, (3.35)

a subset of EP
α for which dim(KP

α ) = dimP(KP
α ) due to Lemma 2.1 (or due to Lemma 2.2 as

we will see).
To perform a local analysis of path properties and establish facts which hold for almost

all paths at almost all locations t, it is convenient to introduce ameasureQwhich is referred to
as the “Peyrière measure” by Kahane. The approach is to apply the LLN toQwhich provides
a pathwise measure ν which allows us to bound dim KP

α , and thus dim EP
α , from below

almost surely using Lemma 2.2. The measure Q lives on the space Ω × [0, 1], defined as the
unique probability measure which satisfies

Q
(
ϕ
)
= E

[∫1

0
ϕ(t, ω)dμ(t)

]

(3.36)

for all positive measurable functions ϕ(t, ω).

Lemma 3.8. Assume that A(t) is a non-degenerate MJP. If (ω, T) is picked according to the Peyrière
measure Q, then

lim
n→∞

log|Jn(T)|
n

= − log b Q-a.s. (3.37)
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Moreover, if An(t) converges in Lq for some q > 1 and bq−1 > E[Λq], that is, β(q) > 0, then

logμ(n)(Jn(T))
n

−→ − log b Q-a.s. (3.38)

Proof. Recall first that E[μ(n)(Jn
k
) | Jn] = |Jn

k
| and that Λn(Tn

k
) is independent of Jn so that

E
[
Λn

(
Tn
k

) | Jn] = E[Λn] = 1. (3.39)

(1◦) Condition with respect to the partition Jn in order to get

PQ(|Jn(T)| < x) = E

[∫1

0
1{|Jn(t)| < x}dμ(t)

]

= EE

[
Nn∑

k=1

1
{∣∣Jnk

∣∣ < x
}
Λn

(
Tn
k−1

)
μ(n)(Jnk

) | Jn
]

= E

[
Nn∑

k=1

1
{∣∣Jnk

∣∣ < x
} ∣∣Jnk

∣∣
]

= E

[∫1

0
1{|Jn(t)| < x}dt

]

=
∫1

0
P(|Jn(t)| < x)dt ≤ C1xλn,

(3.40)

where C1 is independent of n. Here, the last inequality follows by estimating the probability
that a (truncated) exponential random variable is less than x, with x < 1/2.

The other direction is easy as well. First we condition as above, and represent the sum
as an integral:

PQ(|Jn(T)| > x) =
∫1

0
P(1{|Jn(t)| > x})dt ≤ C2e

−λnx, (3.41)

whereC2 is independent of n. Here, the last inequality follows from estimating the probability
that a sum of two exponential random variables exceeds x.

Since λn = O(bn), we have

∞∑

n=1

PQ

(|Jn(T)| < b−ne−nε
)
< ∞,

∞∑

n=1

PQ

(|Jn(T)| > b−nenε
)
< ∞. (3.42)
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(2◦) Let ε > 0. Write the Q-probability as a sum

PQ

(
μ(n)(Jn(T)) < b−ne−nε

)
= E

[
Nn∑

k=1

1
{
μ(n)(Jnk

)
< b−ne−nε

}
Λn

(
Tn
k

)
μ(n)(Jnk

)
]

. (3.43)

Scaling the μ(n)(Jn
k
) up by b−ne−nε and applying (3.39) lead to

PQ

(
μ(n)(Jn(T)) < b−ne−nε

)
≤ b−ne−nεEE

[
Nn∑

k=0

Λn

(
Tn
k

) | Jn
]

≤ b−ne−nεE[Nn]. (3.44)

This implies PQ(μ(n)(Jn(T))) ≤ Ce−nε, because E[Nn] = λn = O(bn).
On the other hand, by (3.26) and (3.29),

EQ

[
μ(n)(Jn(T))q−1

]
= EE

[
Nn∑

k=1

Λn

(
Tn
k−1

)
μ(n)(Jnk

)q | Jn
]

≤ C̃b−n(q−1−β(q))E

[
Nn∑

k=1

∣∣Jnk
∣∣1+β(q)

]

≤ Cb−n(q−1).

(3.45)

Then apply the Markov inequality to get

PQ

(
μ(n)(Jn(T)) ≥ b−nenε

)
≤ Ce−nε(q−1). (3.46)

(3◦) Applying Borel-Cantelli to (1◦) and (2◦) completes the proof.

To establish the Q-independence required for the LLN, we need the following result.

Lemma 3.9. Assume that A(t) is a non-degenerate MJP. Then

EQ

[
n−1∏

i=0

gi
(
Λ(i)(T)

)]

=
n−1∏

i=0

E
[
gi
(
Λ(i)(t)

)
Λ(i)(t)

]
(3.47)

for all n ∈ N and positive Borel functions gi defined on R
+.
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Proof. (Note: this is a replication of the proof appearing in [2]). Condition with respect to the
partition Jn and use E[μn(Jnk ) | Jn] = |Jn

k
|. In addition to this, utilize independence (w.r.t. Ω)

and stationarity:

EQ

[
n−1∏

i=0

gi
(
Λ(i)(T)

)]

= E

[∫1

0

n−1∏

i=0

gi
(
Λ(i)(t)

)
dμ(t)

]

= EE

[
Nn∑

k=0

n−1∏

i=0

gi
(
Λ(i)(Tn

k−1
))

Λ(i)(Tn
k−1

)
μ(n)(Ink

) | Jn
]

= E

[
Nn∑

k=0

n−1∏

i=0

gi
(
Λ(i)

)(
Tn
k−1

)
Λ(i)(Tn

k−1
)∣∣Jnk

∣
∣
]

= E

[∫1

0

n−1∏

i=0

gi
(
Λ(i)(t)

)
Λ(i)(t)dt

]

=
∫1

0

n−1∏

i=0

E
[
gi
(
Λ(i)(t)

)
Λ(i)(t)

]
dt =

n−1∏

i=0

E
[
gi
(
Λ(i)(t)

)
Λ(i)(t)

]
.

(3.48)

Corollary 3.10. Assume that A(t) is a non-degenerate MJP. Then the random variables Λ(i)(T),
i = 0, 1, . . . , n, are Q-independent.

Proof. Fix j and set gi(x) ≡ 1 when i /= j, leaving gj arbitrary. Lemma 3.9 gives

EQ

[
gj
(
Λ(j)(T)

)]
= E

[
gj
(
Λ(j)(t)

)
Λ(j)(t)

]
. (3.49)

Thus

EQ

[
n∏

i=0

gi
(
Λ(i)(T)

)]

=
n∏

i=0

EQ

[
gi
(
Λ(i)(T)

)]
(3.50)

for all n ∈ N and positive Borel functions gi defined on R
+.

Corollary 3.11. Assume thatA(t) is a non-degenerate MJP. Then EQ[logΛ(j)(T)] = E[Λ logΛ] for
all j ∈ N.

Proof. Set gi(x) = 1 if i /= j and gj(x) = logx and apply Lemma 3.9.

We now show that the pathwise ν to be used in Lemma 2.2 is the realization of μ itself.

Lemma 3.12. Assume that An(t) converges in Lq for some q > 1. If β(q) > 0, then the set KP
α1 has

full μ-measure Ω a.s., that is,

μ
(
KP

α1

)
= μ([0, 1]) Ω-a.s. (3.51)
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Proof. Notice first that

logμ(Jn(t))
log|Jn(t)| =

logΛ(0)(t) + · · · + logΛ(n−1)(t)
log|Jn(t)| +

logμ(n)(Jn(t))
log|Jn(t)|

=
(1/n)

∑n−1
i=0 logΛ(i)(t)

(1/n) log|Jn(t)| +
(1/n) logμ(n)(Jn(t))

(1/n) log|Jn(t)| .

(3.52)

Then by Corollary 3.10, 3.11, and LLN,

1
n

n−1∑

i=0

log Λ(i)(T) −→ EQ[Λ(T)] = E
[
Λ log Λ

]
= E

[
M log M

]
. (3.53)

On the other hand, by lemma 3.8,

lim
n→∞

1
n
log(|Jn(T)|) = − log b Q-a.s.

lim
n→∞

1
n
log

(
μ(n)(Jn(T))

)
= − log b Q-a.s.

(3.54)

Lemma 3.13. Assume that An(t) converges in Lq for some q > 1. If β(q) > 0, then, with probability
one, we have either μ([0, 1]) = 0 or dim (KP

α1) = dimP(KP
α1) ≥ α1.

Proof. Condition (i) of lemma 2.2 is obvious; conditions (ii) and (iii) are satisfied by definition
of Kα1 . Finally, either condition (o) or μ([0, 1]) = 0 holds due to lemma 3.12.

The main result concerning the information dimension is stated in the following
theorem.

Theorem 3.14. Assume that An(t) converges inLq for some q > 1. If β(q) > 0, then, with probability
one,

dimP
(
EP
α1

)
= dim

(
EC
α1

)
= α1 = 1 − E

[
M logbM

]
. (3.55)

For example, if A(t) is an MJP satisfying (3.5) and β(2) > 2, then dimP(Eα1) =
dim(Eα1) = α1.

Proof. First, note that β∗(α1) = α1 since α1 = β′(1); also β(q′) > 0 for 1 < q′ < q since β is convex;
also, μ ∈ Lq′ for 1 < q′ < q. Second, by Lemmas 3.6 and 2.6, τP(q) is convex for q > 0 a.s. and
theorem 2.8 applies.
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By Lemma 3.13 we have

α1 ≤ dimP
(
KP

α1

)
= dim

(
KP

α1

)
≤ dim

(
EP
α1

)
≤ dimP(Eα1) ≤ dimP

(
V P
α1

)

≤ inf
1<q′<q

(
q′α1 − TP

(
q′
))

= inf
1<q′<q

(
q′α1 − β

(
q′
))

= α1.
(3.56)

3.4. Multifractal Decomposition

Following the traditional approach in multifractal analysis, we generalize the above analysis
of the information dimension of MJP to a larger set of scaling exponents through a change of
the measure. Doing so, we are able to compute dim V P

α for a range of exponents α.
To this end, we fix q > 0 for the remainder of the section. Introduce the auxiliary

mother process

Λ(·) .= bβ(q)−q+1Λ(·)q = Λ(·)q
E[Λq]

, (3.57)

the structure function

β
(
p
) .= p − 1 − logbE

[
Λ

p]
= β

(
pq
) − pβ

(
q
)
, (3.58)

and the scaling exponent

αq
.= β′

(
q
)
. (3.59)

We denote the associated MJP by A, its measure by μ, and the corresponding Peyrière
measure by Q. Let us quickly summarize how our earlier results translate from A to A.
Clearly, E[Λ] = 1, and by definition of β

EQ

[
logbΛ

]
= E

[
ΛlogbΛ

]
=

1
E[Λq]

E
[
ΛqlogbΛ

]
= 1 − β′

(
q
)
= 1 − αq. (3.60)

From this we find

EQ

[
logbΛ

]
= E

[
ΛlogbΛ

]
=
(
β
(
q
) − q + 1

)
+ qE

[
Λ logbΛ

]
= 1 − (qαq − β

(
q
))
. (3.61)

It is quite typical in multifractal analysis that the Legendre transform should appear at this
point.

By analogy with the previous section, we should expect that under appropriate
assumptions with probability one the information dimension of μ is qαq−β(q). We should also
expect to find that with probability one, the measure μ assumes the scaling exponent α(t) = αq

for μ-almost all t, which is not a simple translation from earlier sections. If established, all this
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would imply that the dimension of the set Eαq of points with Hölder exponent αq almost
surely has at least Hausdorff dimension qαq − β(q), since μ assigns full mass to it.

We are able to establish such a lower bound for the Hausdorff dimension of a natural
subset of V P

α , that is, the set

WP
α

.=
{
t : lim inf

n
αP
n (t) ≤ α, lim

n

log|Jn(t)|
n

= − log b

}
(3.62)

for α = αq. Combining this with an upper bound provided by inequality (2.24), we will arrive
at a formula for the dimension of V P

α .
As a first step towards this goal, we mention a sufficient condition for convergence

in Lp, 1 ≤ p ≤ 2, which follows directly from theorem 3.2, that is, An(t) converges in Lp

if b > 1 + Var(Λ). Being equivalent to β(2) > 0 or β(2q) > 2β(q), this condition holds by
convexity for all 0 < q′ < q if it holds for q. Next, replicating the results of the previous section
gives the following corollary.

Corollary 3.15. Assume that An(t) converges in Lp for some p > 1. If β(p) > 0 for some p > 0, then
Q-a.s.,

lim
n→∞

log b|Jn(T)|
n

= −1,

lim
n→∞

log bμ(J
n(T))

n
= −qαq + β

(
q
)
,

lim
n→∞

log μ(Jn(T))
log|Jn(t)| = 1 − E

[
Λ logbΛ

]
= qαq − β

(
q
)
.

(3.63)

To provide a counterpart to Lemma 3.12, we need the following result concerning the
local scaling of μ under the measure Q.

Lemma 3.16. Assume that A(t) is a non-degenerate MJP and that An(t) converges in Lp for some
p > 1. Then

lim inf
n→∞

logbμ
(n)(Jn(T))
−n ≤ 1 Q-a.s. (3.64)

Proof. (1◦): Let us start with a simple observation on nested Poisson point processes. Given a
sequence of independent Poisson point processes of densities b−kλ, their superposition forms
a sequence of Poisson point processes of densities (1 + · · · + b−n)λ. Denote In,[x,y] = {In,[x,y]

k
}

the partition of the interval [x, y] determined by a Poisson point process with density (1 +
· · · + b−n)λ. Adding extra points at the locations x = 1, 2, . . . makes the intervals even smaller.
Thus the partition ∪m

i=1I
∞,[i−1,i] is finer than In,[0.m] for all n = 0, 1, . . . and m. In other words,

for any m ∈ Z+,

I∞,[i−1,i](t) ⊆ In,[0,m](t) ∀n ∈ N, ∀i ∈ [1, m], ∀t ∈ (i, i − 1). (3.65)
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(2◦): By a change of variables, and using E[Λn(Tn
k ) | Jn] = 1 together with the inde-

pendence of Λn of Jn, μ(n), and μ(n), we get

PQ

(
μ(n)(Jn(T)) < b−n(1+ε)

)
= E

[∫1

0
1
{
μ(n)(Jn(t)) < b−n(1+ε)

}
dμ(t)

]

= E E

[
Nn∑

k=1

1
{
μ(n)(Jnk

)
< b−n(1+ε)

}
Λn

(
Tn
k

)
μ(n)(Jnk

) | Jn
]

= E

[

b−n
Nn∑

k=1

1
{
μ
(
bnJ̃nk

)
< b−nε

}
μ
(
bnJ̃nk

)]

,

(3.66)

where J̃n is distributed as Jn and independent of μ and μ.
For each fixed n, construct a nested sequence of partitions Ii,[0,b

n], i = 0, 1 . . . ,which are
independent of μ and μ and satisfy In,[0,b

n] = bnJ̃n. Then write (3.66) as an integral split into
parts of length 1 and apply (3.65) to get

PQ

(
μ(n)(Jn(T)) < b−n(1+ε)

)
= E

[

b−n
∫bn

0
1
{
μ
(
In,[0,b

n](t)
)
< b−nε

}
dμ(t)

]

≤ E

[

b−n
�bn�∑

i=1

∫ i

i−1
1
{
μ
(
I∞,[i−1,i](t)

)
< b−nε

}
dμ(t)

]

+ E
[
b−nμ([�bn�, �bn�])]

≤ PQ

(
μ
(
I∞,[0,1](T)

)
< b−nε

)
+ b−n.

(3.67)

(3◦): By proposition 3.4, μ(I) > 0 a.s. for any fixed interval I. Thus,

PQ

(
μ
(
I∞,[0,1](T)

)
= 0

)
= EE

[
N∑

k=1

1
{
μ
(
I
∞,[0,1]
k

)
= 0

}
μ
(
I
∞,[0,1]
k

)
| I∞,[0,1]

]

= 0 (3.68)

and Q-a.s. μ(I∞,[0,1](T)) > 0. Applying this to (3.67) gives

lim
n→∞

PQ

(
logbμ

(n)(Jn(T))
−n > 1 + ε

)

= 0. (3.69)

It is easy to see by contradiction that the previous equation implies

lim inf
n

logb
(
μ(n)(Jn(T))

)

−n ≤ 1 Q-a.s. (3.70)
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(4◦): By the LLN, by the analogs of Corollaries 3.10 and 3.11 for Q, and by (3.60), we
have Q-a.s.

1
n

n−1∑

i=0

logbΛ
(i)(T) −→ EQ[Λ(T)] = 1 − αq. (3.71)

By Corollary 3.15 we have (1/n)logb(|Jn(T)|) → −1 Q-a.s. Applying these results and (3.70)
to (3.52) completes the proof.

Combining the previous results, we find the dimension of the set V P
αq
.

Theorem 3.17. Assume that A(t) is a non-degenerate MJP and that An(t) converges in Lp for some
p > 1. If β(p) > 0, then, with probability one,

dimP
(
V P
αq

)
= dim

(
V P
αq

)
= qαq − β

(
q
)
. (3.72)

Proof. The proof follows the lines of lemmas 3.12 and 3.13 and theorem 3.14. To get the lower
bound, the set Kα1 is replaced by Wαq and Lemma 2.2 is applied to μ. The upper bound
follows directly from inequality (2.24). In summary,

dimP
(
V P
αq

)
= dim

(
V P
αq

)
= f+

P
(
α+
q

)
= T ∗

P
(
αq

)
= T ∗

D
(
αq

)
= β∗

(
αq

)
= qαq − β

(
q
)
. (3.73)

For example, if A(t) is an MJP satisfying (3.5) and β(4) > 2β(2) > 0, then (3.72) holds
for 0 < q ≤ 2.
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