
Supplementary information

Our focus in this section will be in R and compared to SAS. Some comments
on Bayesian methods will be given at later part of this section.

R implementation

The kinship package was used for kinship calculation, linear mixed model
as with mixed Cox models. The package was originally implemented in S-
PLUS and ported to R as described in [61]. Some recent initatives have been
made to improve the facilities for handling sparse matrices, various tools
for family data including pedigree drawing as with kinship calculation, and
mixed effects Cox model, so the original kinship package was partitioned
into three separate packages called bdsmatrix, kinship2 and coxme. The
pedigreemm package [21] is appropriate for modeling polygenes within the
GLMM framework.

Kinship calculation

A function makefamid from kinship will generate a “pedigree” type, which
can be used by function makekinship to obtain kinship matrices from different
families,

library(kinship)

pid <- with(fam, makefamid(ID, FA, MO))

kmat <- with(fam, makekinship(pid, ID, FA, MO))

Note that with GWAS this only needs to be done once and does not have
a big overhead. Interestingly, the models for a collection of monozygotic
(MZ) and dizygotic (DZ) twins can be treated as a special case. A model
using an exchangeable correlation, say, will not be so desirable compared to
those using the kinship information11. Consider a study of nMZ MZ and
nDZ DZ twins, we can order that data such that MZ twins precede their DZ
counterpart, then function bdsmatrix is called to generate the kinship matrix
to be used by glm for a sporadic model or lmekin for a linear mixed model.

11For twin data, to account for the relationship between twin pairs one can pragmatically
specify the correlation structure. In one study of physical activity, we order twin pairs by
zygosity such that MZ precede DZ twins in the data, we can then subject the data for
analysis with following code.
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idn <- 1:(2*(nMZ+nDZ))

kmat <- bdsmatrix(rep(2,nMZ+nDZ),c(rep(0.5,3*nMZ),

rep(c(0.5,0.25,0.5),nDZ)),

dimnames=list(idn,idn))

glmfit <- glm(paee ~ walkability + age + weight + sex)

summary(glmfit)

kfit <- lmekin(paee ~ walkability + age + weight + sex,

random = ~1|id, varlist=list(kmat))

kfit

There are a number of other packages available, e.g., gap and identity.

Linear mixed model

library(kinship)

kkin <- lmekin(Q1 ~ SEX + AGE + SMOKE,

data=pg, random = ~1|ID, varlist=list(kmat))

kibd <- lmekin(Q1 ~ SEX + AGE + SMOKE,

data=pg, random = ~1|ID,

varlist=list(kmat,ibdmat))

Generalized linear mixed model

library(pedigreemm)

bt <- pedigreemm(AFFECTED ~ SEX + AGE + SMOKE + (1|ID),

data=pg, family="binomial"(link="logit"),

pedigree=list(ID=ped))

Multivariate model

The package multic [46] has facility for multivariate analysis, however, it was
bound to particular environments. In principle, this is a computing problem
that can be fixed.

Marginal models

A notable implementation is R gee package.
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library(gee)

m1 <- gee(Q1 ~ SEX + AGE + SMOKE, id=pid,

data=pg, corstr="exchangeable")

summary(m1)

To ensure maximum compatibility with the GLMM fit, the scale param-
eter is chosen to be fixed at the default value of 1. The structure “ex-
changeable” assumes equal correlations between relatives in a pedigree but
in principle this could be modified to use kinship matrix as in SAS below.

Mixed Cox models

This is a Cox model with correlated frailty.

library(kinship)

kcox <- coxme(Surv(age, AFFECTED) ~ SEX + SMOKE,

data=pg, random = ~1|ID, varlist=list(kmat))

More information is available from the package vignette.

kinship2 and coxme

As of 14 March 2012, the current version of kinship at CRAN will be archived.
This has been due to a recent development which involves splitting the pack-
age into three separate ones, namesly bdsmatrix, kinship2, and coxme. One
only expects a slight change from a user’s perspective, e.g., the way to specify
random effects associated with coxme. Although this also involves lmekin,
here only examples with respect to Cox model are given. For the Framing-
ham data contained in nf, the diabetes status and age onset were available
and the modeling syntax is as follows,

library(kinship2)

attach(nf)

f <- makefamid(shareid, fshare, mshare)

k <- makekinship(f, shareid, fshare, mshare)

detach(nf)

library(coxme)

print("Cox model with random intercept")

f1 <- coxme(Surv(agediab, diabetes) ~ sex + (1|pedno), nf)
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f1

print("Cox model with random intercept and additive variance")

k2 <- 2*as.matrix(k)

f2 <- coxme(Surv(agediab, diabetes) ~ sex + (1|shareid), nf,

varlist=coxmeMlist(k2, rescale=FALSE))

f2

The standard Cox model provides a baseline to compare. Note that kinship2
depends on Matrix so k2 is created for coxme.

Suppose we intend to read output k.dat from PLINK, we can use the
following code,

k <- read.table("k.dat",header=TRUE)

library(bdsmatrix)

attach(k)

ID <- unique(c(IID1,IID2))

t1 <- cbind(IID1,IID2,PI_HAT)

t2 <- cbind(IID1=ID,IID2=ID,PI_HAT=0.5)

trio <- rbind(t1,t2)

k2 <- bdsmatrix.ibd(trio)

detach(k)

save(k,k2,file="k.RData")

Note that we add the diagonal elements in the kinship matrix, which can be
loaded with load(“k.RData”).

regress and MASS

After submission of the paper, we learned about the work in a similar but
alternative context [62]. It turned out that the associated package regress
yielded comparable results to lmekin from kinship (data not shown).

We have also become aware of the possibility to use glmmPQL available
from MASS [63] and it appears straightforward to use the corSymm function
in nlme to construct a correlation for data on twins and affected sib pairs
as input for the correlation option, but for data containing general pedigrees
this is more involved and we had limited experience of success.
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SAS implementation

SAS has used G and R to indicate the variance-covariance matrices associ-
ated with random and fixed effects. The procedures of interest in SAS are
MIXED, GLIMMIX, NLMIXED. GLIMMIX is an extension to both PROC
GENMOD and PROC MIXED.

When individuals in a pedigree is ordered appropriately, the specification
should be as follows,

proc inbreed data=families covar outcov=kmat;

var id fa mo;

run;

The following block is for the polygenic model.

title kinship only;

proc mixed data=pheno covtest asycov noclprint;

class id;

model q1=sex age smoke SNP / noint solution covb;

random id / type=lin(1) ldata=kmat solution;

run;

proc glimmix data=pheno asycov method=mmpl;

class id;

model affected(event=’1’)=sex age smoke SNP

/ dist=binary link=logit solution covb;

random id / type=lin(1) ldata=kmat solution;

random _residual_;

run;

By default, PROC MIXED employs REML method. For PROC GLIM-
MIX, maximum or restricted maximum likelihood approach was applied to
a pseudo-likelihood (PL) in the sense that a linearization is applied, leading
to abbreviations such as M PL and R PL, where can be subject-specific
(S) expansion where linearization is carried out about the current estimate
or β and U , or a marginal (M) expansion where the linearization is about
a current estimate of β and E(U) = 0. If method=QUAD is specified, an
adaptive Gauss-Hermite quadrature is used.

The following block is for both oligogenic and polygenic effects
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title kinship and ibd;

proc mixed data=pheno covtest asycov noprofile;

class id;

model q1=sex age smoke / noint solution covb;

random id / type=lin(2) ldata=kibd solution;

run;

proc glimmix data=pheno asycov method=mmpl;

class id;

model affected(event=’1’)=sex age smoke

/ dist=binary link=logit solution covb;

random id / type=lin(2) ldata=kibd solution;

random _residual_;

run;

Therefore the method of estimation here is maximum marginal pseudo-likelihood.
As can be seen, the second part has extended those available from R and the
statement “random residual ” also allows for overdispersion.

For Cox model, one can take advantage of the PHREG procedure with
RANDOM statement to specify a shared frailty model which can be com-
pared with a model using ID statement to identify clusters.

Finally, one can specify the relationship as R part of the variance-covariance
matrix as follows,

proc mixed data=pheno sandwich;

class id;

model q1=sex age smoke / noint;

repeated / type=lin(1) ldata=kmat sub=pid;

run;

Where the PROC statement specifies the data set to be analyzed using a
sandwich estimator, MODEL the statistical model, REPEATED the R ma-
trix incorporating kinship information.
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Multivariate implementations

Simulation and estimation for a tri-variate normal data

We simulated 500 samples under a tri-variate normal N(µ,Σ) with

µ =

 1
2
3

 and Σ =

 10 1 2
1 20 3
2 3 50


The simulation and estimation are furnished as follows,

library(regress)

library("MASS")

set.seed(12345)

n <- 500

m <- c(1,2,3)

S <- matrix(c(10,1,2, 1,20,3, 2,3,50),3,3)

Y <- mvrnorm(n,m,S)

y <- as.vector(t(Y))

c <- kronecker(rep(1,n),diag(1,3))

V1 <- matrix(c(1,0,0, 0,0,0, 0,0,0),3,3,byrow=TRUE)

V2 <- matrix(c(0,1,0, 1,0,0, 0,0,0),3,3,byrow=TRUE)

V3 <- matrix(c(0,0,0, 0,1,0, 0,0,0),3,3,byrow=TRUE)

V4 <- matrix(c(0,0,1, 0,0,0, 1,0,0),3,3,byrow=TRUE)

V5 <- matrix(c(0,0,0, 0,0,1, 0,1,0),3,3,byrow=TRUE)

V6 <- matrix(c(0,0,0, 0,0,0, 0,0,1),3,3,byrow=TRUE)

id <- as.vector(t(cbind(1:n,1:n,1:n)))

s1 <- kronecker(diag(1,n),V1)

s2 <- kronecker(diag(1,n),V2)

s3 <- kronecker(diag(1,n),V3)

s4 <- kronecker(diag(1,n),V4)

s5 <- kronecker(diag(1,n),V5)

s6 <- kronecker(diag(1,n),V6)

results <- regress(y~c-1,~s1+s2+s3+s4+s5+s6,pos=c(1,0,1,0,0,1),

identity=FALSE,start=c(10,1,20,1,1,30))

apply(Y,2,mean)

cov(Y)

which produces results as follows,
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Likelihood kernel: K = c1+c2+c3

Maximized log likelihood with kernel K is -3041.732

Linear Coefficients:

Estimate Std. Error

c1 0.891 0.144

c2 2.026 0.201

c3 3.592 0.313

Variance Coefficients:

Estimate Std. Error

s1 10.313 0.653

s2 1.313 0.649

s3 20.241 1.281

s4 3.476 1.017

s5 2.881 1.414

s6 48.863 3.093

> apply(Y,2,mean)

[1] 0.8908874 2.0262134 3.5922123

> cov(Y)

[,1] [,2] [,3]

[1,] 10.312879 1.313217 3.475876

[2,] 1.313217 20.240644 2.881214

[3,] 3.475876 2.881214 48.863036

Through package regress we obtained

X̂ =

 0.89
2.03
3.59

 and S =

 10.31 1.31 3.48
1.31 20.24 2.88
3.48 2.88 48.86


agreeing with the simulated data. We now turn to the GAW17 data using a
multivariate model for Q1, Q2, Q4, with a bit of simplication over covariance
specification,

library(foreign)

pheno <- read.dta("pheno2.dta")
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kid <- read.csv("kmat.csv")

k <- as.matrix(kid[,-1])

library(regress)

library("MASS")

n <- 697

v1 <- v2 <- v3 <- v4 <- v5 <- v6 <- matrix(0,3,3)

v1[1,1] <- 1

v2[1,2] <- v2[2,1] <- 1

v3[2,2] <- 1

v4[1,3] <- v4[3,1] <- 1

v5[2,3] <- v5[3,2] <- 1

v6[3,3] <- 1

s1 <- kronecker(v1,k)

s2 <- kronecker(v2,k)

s3 <- kronecker(v3,k)

s4 <- kronecker(v4,k)

s5 <- kronecker(v5,k)

s6 <- kronecker(v6,k)

c <- kronecker(rep(1,n),diag(1,3))

id <- as.vector(t(cbind(1:n,1:n,1:n)))

results <- regress(q~-1+c+sex+age+smoke,~s1+s2+s3+s4+s5+s6,

identity=FALSE,pos=c(1,0,1,0,0,1),

start=c(5.546, 2.999, 3.940, -1.260, -0.780, 0.680),

data=pheno)

results

The results are given as follows,

Likelihood kernel: K = c1+c2+c3+sex+age+smoke

Maximized log likelihood with kernel K is -1393.867

Linear Coefficients:

Estimate Std. Error

c1 0.565 0.108

c2 0.531 0.109

c3 0.526 0.109
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sex -0.005 0.043

age -0.013 0.001

smoke -0.019 0.051

Variance Coefficients:

Estimate Std. Error

s1 4.219 0.227

s2 -0.103 0.166

s3 4.542 0.244

s4 0.601 0.178

s5 -0.108 0.183

s6 5.115 0.275

SAS implementation

We first revisit the simulated data generated above. Assuming the Y and
indicator c are stored in dataset mv while the coefficient matrices are stored
in mv ldata, then the appropriate syntax in SAS is as follows,

proc mixed data=mv covtest asycov noclprint;

class id c;

model q=c / noint solution;

random c*id / type=lin(6) ldata=mv_ldata;

run;

Although SAS complains about Convergence criteria met but final hessian
is not positive definite, it turns out that the estimats are fairely close.

Covariance Parameter Estimates

Standard Z

Cov Parm Estimate Error Value Pr Z

LIN(1) 9.3328 0.6529 14.30 <.0001

LIN(2) 1.3133 0.6494 2.02 0.0432

LIN(3) 19.2612 1.2814 15.03 <.0001

LIN(4) 3.4760 1.0169 3.42 0.0006

LIN(5) 2.8813 1.4138 2.04 0.0415
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LIN(6) 47.8845 3.0936 15.48 <.0001

Residual 0.9797 0 . .

Asymptotic Covariance Matrix of Estimates

Cov Parm CovP1 CovP2 CovP3 CovP4 CovP5 CovP6

LIN(1) 0.4262 0.05428 0.006913 0.1437 0.01830 0.04843

LIN(2) 0.05428 0.4218 0.1065 0.06870 0.1486 0.04015

LIN(3) 0.006913 0.1065 1.6421 0.01517 0.2338 0.03328

LIN(4) 0.1437 0.06870 0.01517 1.0341 0.1487 0.6808

LIN(5) 0.01830 0.1486 0.2338 0.1487 1.9988 0.5643

LIN(6) 0.04843 0.04015 0.03328 0.6808 0.5643 9.5704

-2 Res Log Likelihood 8853.4

AIC (smaller is better) 8867.4

Solution for Fixed Effects

Standard

Effect c Estimate Error DF t Value Pr > |t|

c 1 0.8909 0.1436 1497 6.20 <.0001

c 2 2.0262 0.2012 1497 10.07 <.0001

c 3 3.5922 0.3126 1497 11.49 <.0001

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

c 3 1497 76.12 <.0001

We now return to the GAW17 data. With the same spcification of Q1,
Q2, and Q4 in a single outcome, along with a variable c corresponding to
particular traits, the GLMMIX counterpart is as follows,
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title kinship and multivariate;

proc mixed data=pheno2 covtest asycov noclprint;

class id c;

model q=c sex age smoke / noint solution covb;

random c*id / type=lin(6) ldata=ldata solution;

run;

Note that in addition to a comparable estimate to the R implementation, the
REPEATED /group=c statement also adds trait-specific residual variances.
Furthermore, ldata contains the coefficient matrix generated from kinship
matrix kmat via the following code,

proc iml;

use kmat;

read all var _num_ into kmat;

k=0;

do i=1 to 3;

do j=1 to i;

j3=j(3,3,0);

j3[i,j]=1;

j3[j,i]=1;

v=j3@kmat;

k=k+1;

vp=v||j(nrow(v),1,k);

if k=1 then vps=vp;

else vps=vps//vp;

end;

end;

create vps from vps;

append from vps;

close vps;

quit;

libname x ’.’;

data x.ldata;

set vps (rename=(col2092=parm));

by parm;

if first.parm then row=1;

else row+1;

run;
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By default variance components can have lower boundary constraint of 0, in
cases this is not so one can use the PARMS statement, e.g., for the multi-
variate example as

parms / lowerb=1e-4,.,1e-4,.,.,1e-4,1e-4,1e-4,1e-4;

which informs the procedure to use default values (.) as lower boundaries for
the the covariances while 0.0001 for the variances.

BUGS12

The BUGS (Bayesian inference Using Gibbs Sampling) project is concerned
with flexible software for the Bayesian analysis of complex statistical models
using Markov chain Monte Carlo (MCMC) methods. Initiatives have been
made to make it available to Windows and other platforms and link with the
R project.

Analysis of family data has been described but we could not access the
source code associated with [26]. According to [25], the models we have de-
scribed can be straightforwardly implemented in software such as WinBUGS
but the implementation still requires founders precede their offsprings though
it is not necessary to do so with R in general and SAS for the examples used
here. It remains to explore the possibility to combine ideas in those imple-
mentations. However, analysis via WINBUGS is expected to be slower.

12See http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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