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We consider a nonparametric CUSUM test for change in the mean of multivariate time series with
time varying covariance. We prove that under the null, the test statistic has a Kolmogorov limiting
distribution. The asymptotic consistency of the test against a large class of alternatives which
contains abrupt, smooth and continuous changes is established. We also perform a simulation
study to analyze the size distortion and the power of the proposed test.

1. Introduction

In the statistical literature there is a vast amount of works on testing for change in the mean of
univariate time series. Sen and Srivastava [1, 2], Hawkins [3], Worsley [4], and James et al. [5]
considered tests for mean shifts of normal i.i.d. sequences. Extension to dependent univariate
time series has been studied by many authors, see Tang and MacNeill [6], Antoch et al. [7],
Shao and Zhang [8], and the references therein. Since the paper of Srivastava and Worsley
[9] there are a few works on testing for change in the mean of multivariate time series. In
their paper they considered the likelihood ratio tests for change in the multivariate i.i.d.
normal mean. Tests for change in mean with dependent but stationary error terms have been
considered by Horváth et al. [10]. In a more general context of regression, Qu and Perron [11]
considered a model where changes in the covariance matrix of the errors occur at the same
time as changes in the regression coefficients, and hence the covariance matrix of the errors
is a step-function of time. To our knowledge there are no results testing for change in the
mean of multivariate models when the covariance matrix of the errors is time varying with
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unknown form. The main objective of this paper is to handle this problem. More precisely we
consider the d-dimensional model

Yt = μt + Γtεt, t = 1, . . . , n, (1.1)

where (εt) is an i.i.d. sequence of random vectors (not necessary normal) with zero mean
and covariance Id, the identity matrix. The sequence of matrices (Γt) is deterministic with
unknown form. The null and the alternative hypotheses are as follows:

H0 : μt = μ ∀t ≥ 1

against

H1 : There exist t /= s such that μt /=μs.

(1.2)

In practice, some particular models of (1.1) have been considered in many areas. For instance,
in the univariate case (d = 1), Starica and Granger [12] show that an appropriate model for
the logarithm of the absolute returns of the S&P500 index is given by (1.1) where μt and Σt

are step functions, that is,

μt = μ(j) if t = nj−1 + 1, . . . , nj , nj =
[
λjn
]
, 0 < λ1 < · · · < λm1 < 1,

∑
t
= σ(j) if t = tj−1 + 1, . . . , tj , tj =

[
τjn
]
, 0 < τ1 < · · · < τm2 < 1,

(1.3)

for some integers m1 and m2. They also show that model (1.1) and (1.3) gives forecasts
superior to those based on a stationary GARCH(1,1) model. In the multivariate case (d > 1),
Horváth et al. [10] considered the model (1.1) where μt is subject to change and Σt = Σ is
constant; they applied such model to temperature data to provide evidence for the global
warming theory. For financial data, it is well known that assets’ returns have a time varying
covariance. Therefore, for example, in portfolio management, our test can be used to indicate
if the mean of one or more assets returns are subject to change. If so, then taking into account
such a change is very useful in computing the portfolio risk measures such as the value at
Risk (VaR) or the expected shortfall (ES) (see Artzner et al. [13] and Holton [14] for more
details).

2. The Test Statistic and the Assumptions

In order to construct the test statistic let

Bn(τ) = Γ̂−1
1√
n

[nτ]∑

t=1

(
Yt − Y

)
∀τ ∈ [0, 1], (2.1)

where Γ̂ is a square root of Σ̂, that is, Σ̂ = Γ̂Γ̂′,

∑̂
=

1
n

n∑

t=1

(
Yt − Y

)(
Yt − Y

)′
, Y =

1
n

n∑

t=1

Yt (2.2)
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are the empirical covariance and mean of the sample (Y1, . . . , Yn)′, respectively, [x] is the
integer part of x, and X′ is the transpose of X.

The CUSUM test statistic we will consider is given by

Bn = sup
τ∈[0,1]

‖Bn(τ)‖∞, (2.3)

where

‖X‖∞ = max
1≤i≤d

∣∣∣X(i)
∣∣∣ if X =

(
X(1), . . . , X(d)

)′
. (2.4)

Assumption 1. The sequence of matrices (Γt) is bounded and satisfies

1
n

n∑

t=1

ΓtΓ′t −→ Σ > 0 as n −→ ∞. (2.5)

Assumption 2. There exists δ > 0 such that E(‖ε1‖2+δ) < ∞, where ‖X‖ denotes the Euclidian
norm of X.

3. Limiting Distribution of Bn under the Null

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Then, under H0,

Bn
L−→ B∞ = sup

τ∈[0,1]
‖B(τ)‖∞, (3.1)

L→ denotes the convergence in distribution and B(τ) is a multivariate Brownian Bridge with inde-
pendent components.

Moreover, the cumulative distribution function of B∞ is given by

FB∞(z) =

(

1 + 2
∞∑

k=1

(−1)k exp
{
−2k2z2

})d

. (3.2)

To prove Theorem 3.1 we will establish first a functional central limit theorem for
random sequences with time varying covariance. Such a theorem is of independent interest.
Let D = D[0, 1] be the space of random functions that are right-continuous and have left
limits, endowed with the Skorohod topology. For a given d ∈ N, let Dd = Dd[0, 1] be the
product space. The weak convergence of a sequence of random elements Xn in Dd to a
random element X in Dd will be denoted by Xn ⇒ X.

For two random vectors X and Y, X
law= Y means that X has the same distribution as

Y .
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Consider an i.i.d. sequence (εt) of random vectors such that E(εt) = 0 and var(εt) = Id.
Let (Γt) satisfy (2.5) and set

Wn(τ) =
Γ−1√
n

[nτ]∑

t=1

Γtεt, τ ∈ [0, 1], (3.3)

where Γ is a square root of Σ, that is, Σ = ΓΓ′. Many functional central limit theorems were
established for covariance stationary random sequences, see Boutahar [15] and the references
therein. Note that the sequence (Γtεt)we consider here is not covariance stationary.

There are two sufficient conditions to prove that Wn ⇒ W (see Billingsley [16] and
Iglehart [17]), namely,

(i) the finite-dimensional distributions ofWn converge to the finite-dimensional distri-
butions of W ,

(ii) W (i)
n is tight for all 1 ≤ i ≤ d, ifWn = (W (1)

n , . . . ,W
(d)
n )

′
.

Theorem 3.2. Assume that (εt) is an i.i.d. sequence of random vectors such that E(εt) = 0, var(”t) =
Id and that Assumptions 1 and 2 hold. Then

Wn =⇒ W, (3.4)

whereW is a standard multivariate Brownian motion.

Proof. Write Ft = Γ−1Γt, Ft(i, j) the (i, j)-th entry of the matrix Ft, εt = (ε(1)t , . . . , ε
(d)
t )

′
. To prove

that the finite-dimensional distributions ofWn converge to those ofW it is sufficient to show
that for all integer r ≥ 1, for all 0 ≤ τ1 < · · · < τr ≤ 1, and for all αi ∈ R

d, 1 ≤ i ≤ r,

Zn =
r∑

i=1

α′
iWn(τi)

L−→ Z =
r∑

i=1

α′
iW(τi). (3.5)

Denote byΦZn(u) = E(exp(iuZn)) the characteristic function ofZn and byC a generic positive
constant, not necessarily the same at each occurrence. We have

ΦZn(u) = E

[

exp

(
iu√
n

r∑

k=1

α′
k

[nτk]∑

t=1

Ftεt

)]

= E

⎡

⎣exp

⎛

⎝ iu√
n

r∑

k=1

⎛

⎝
r∑

j=k

α′
j

⎞

⎠
[nτk]∑

t=[nτk−1]+1

Ftεt

⎞

⎠

⎤

⎦, τ0 = 0

=
r∏

k=1

Φk,n(u),

(3.6)
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where

Φk,n(u) = E

⎡

⎣exp

⎛

⎝ iu√
n

⎛

⎝
r∑

j=k

α′
j

⎞

⎠
[nτk]∑

t=[nτk−1]+1

Ftεt

⎞

⎠

⎤

⎦. (3.7)

Since (εt) is an i.i.d. sequence of random vectors we have

(
ε[nτk−1]+1, . . . , ε[nτk]

) law=
(
ε1, . . . , ε[nτk]−[nτk−1]

)
. (3.8)

Hence

Φk,n(u) = E

⎡

⎣exp

⎛

⎝ iu√
n

⎛

⎝
r∑

j=k

α′
j

⎞

⎠
[nτk]−[nτk−1]∑

t=1

F[nτk−1]+tεt

⎞

⎠

⎤

⎦. (3.9)

Let I(A) = 1 if the argument A is true and 0 otherwise, kn = [nτk] − [nτk−1],

ξn,i =
1√
n

⎛

⎝
r∑

j=k

α′
j

⎞

⎠F[nτk−1]+iεi, Mn,kn =
kn∑

i=1

ξn,i, (3.10)

Fn,t = σ(ε1, . . . , εt, t ≤ kn) the filtration spanned by ε1, . . . , εt.
Then (Mn,i, Fn,i, 1 ≤ i ≤ kn, n ≥ 1) is a zero-mean square-integrable martingale array

with differences ξn,i. Observe that

kn∑

i=1

E
(
ξ2n,i | Fn,i−1

)
=

1
n

⎛

⎝
r∑

j=k

α′
j

⎞

⎠
kn∑

i=1

F[nτk−1]+iF
′
[nτk−1]+i

⎛

⎝
r∑

j=k

αj

⎞

⎠

−→ σ2
k = (τk − τk−1)

∥∥∥∥∥∥

r∑

j=k

αj

∥∥∥∥∥∥

2

as n −→ ∞.

(3.11)

Now using Assumption 1 we obtain that ‖Γt‖ < K uniformly on t for some positive constant
K, hence Assumption 2 implies that for all ε > 0,

kn∑

i=1

E
(
ξ2n,iI(|ξn,i| > ε) | Fn,i−1

)
≤ 1

εδ

kn∑

i=1

E
(
|ξn,i|2+δ | Fn,i−1

)

≤ Ckn
n1+δ/2

−→ 0 as n −→ ∞,

(3.12)
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where

C =
E
(
‖ε1‖2+δ

)

εδ

⎛

⎝K
∥∥∥Γ−1

∥∥∥

∥∥∥∥∥∥

r∑

j=k

αj

∥∥∥∥∥∥

⎞

⎠

2+δ

, (3.13)

consequently (see Hall and Heyde [18], Theorem 3.2)

Mn,kn
L−→ Zk, (3.14)

where Zk is a normal random variable with zero mean and variance σ2
k
. Therefore

Φk,n(u) = E
(
exp(iuMn,kn)

) −→ exp
(
−1
2
σ2
ku

2
)

as n −→ ∞, (3.15)

which together with (3.6) implies that

ΦZn(u) −→ exp

(

−1
2

r∑

k=1

σ2
ku

2

)

= ΦZ(u) as n −→ ∞, (3.16)

the last equality holds since, with τ0 = 0,

r∑

k=1

(τk − τk−1)

∥∥∥∥∥∥

r∑

j=k

αj

∥∥∥∥∥∥

2

=
∑

1≤i, j≤r
α′
iαj min

(
τi, τj

)
. (3.17)

For 1 ≤ i ≤ d, fixed, in order to obtain the tightness of W (i)
n it suffices to show the

following inequality (Billingsley [16], Theorem 15.6):

E
(∣∣∣W (i)

n (τ) −W
(i)
n (τ1)

∣∣∣
γ ∣∣∣W (i)

n (τ2) −W
(i)
n (τ)

∣∣∣
γ) ≤ (F(τ2) − F(τ1))α, (3.18)

for some γ > 0, α > 1, where F is a nondecreasing continuous function on [0, 1] and 0 < τ1 <
τ < τ2 < 1.

We have

E

(∣∣∣W (i)
n (τ) −W

(i)
n (τ1)

∣∣∣
2∣∣∣W (i)

n (τ2) −W
(i)
n (τ)

∣∣∣
2
)

= T1T2, (3.19)
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where

T1 =
1
n
E

⎛

⎜
⎝

∣∣∣∣∣∣

[nτ]∑

t=[nτ1]+1

d∑

j=1

Ft

(
i, j
)
ε
(j)
t

∣∣∣∣∣∣

2
⎞

⎟
⎠,

T2 =
1
n
E

⎛

⎜
⎝

∣∣∣∣∣∣

[nτ2]∑

t=[nτ]+1

d∑

j=1

Ft

(
i, j
)
ε
(j)
t

∣∣∣∣∣∣

2
⎞

⎟
⎠.

(3.20)

Now observe that

T1 =
1
n

∑

t,s

cov

⎛

⎝
d∑

j=1

Ft

(
i, j
)
ε
(j)
t ,

d∑

j=1

Fs

(
i, j
)
ε
(j)
s

⎞

⎠

=
1
n

[nτ]∑

t=[nτ1]+1

d∑

j=1

(
Ft

(
i, j
))2

≤ C(τ − τ1) for some constant C > 0.

(3.21)

Likewise T2 ≤ C(τ2 − τ). Since (τ − τ1)(τ2 − τ) ≤ (τ2 − τ1)
2/2, the inequality (3.18) holds with

γ = α = 2, F(t) = Ct/
√
2.

In order to prove Theorem 3.1 we need also the following lemma.

Lemma 3.3. Assume that (Yt) is given by (1.1), where (εt) is an i.i.d sequence of random vectors
such that E(εt) = 0, var(”t) = Id and that (Γt) satisfies (2.5). Then under the null H0, the empirical
covariance of Yt satisfies

∑̂ a.s.−→
∑

, (3.22)

where a.s.→ denotes the almost sure convergence.

Proof. Let Wt = Γtεt, Ft = σ(ε1, . . . , εt) and for i, j fixed, 1 ≤ i ≤ d, 1 ≤ j ≤ d, et = W
(i)
t W

(j)
t −

E(W (i)
t W

(j)
t | Ft−1).

Then (et) is a martingale difference sequence with respect to Ft. Since et = W
(i)
t W

(j)
t −

∑d
k=1 Γt(i, k)Γt(j, k) and the matrix Γt is bounded, it follows that

E
(
|et|(2+δ)/2

)
≤ C + E

(∣∣∣W (i)
t W

(j)
t

∣∣∣
(2+δ)/2

)

≤ E

(∣∣∣W (i)
t

∣∣∣
2+δ
)1/2

E

(∣∣∣W
(j)
t

∣∣∣
2+δ
)1/2

≤ C,

(3.23)
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since by using Assumptions 1 and 2 we get

E

(∣∣∣W (i)
t

∣∣∣
2+δ
)

≤
(

d∑

k=1

E

(∣∣∣Γt(i, k)ε
(k)
t

∣∣∣
2+δ
)1/(2+δ)

)2+δ

≤ C.

(3.24)

Therefore, Theorem 5 of Chow [19] implies that

n∑

t=1

et = o(n) almost surely (3.25)

or

1
n

n∑

t=1

W
(i)
t W

(j)
t =

1
n

n∑

t=1

(
ΓtΓ′t
)(
i, j
)
+ o(1) almost surely, (3.26)

where (ΓtΓ′t)(i, j) denotes the (i, j)-th entry of the matrix ΓtΓ′t. Hence

1
n

n∑

t=1

WtW
′
t

a.s.−→
∑

. (3.27)

Lemma 2 of Lai and Wei [20], page 157, implies that with probability one

n∑

t=1

Γt(i, k)ε
(k)
t = o

(
n∑

t=1

(Γt(i, k))
2

)

+O(1)

= o(n) +O(1) ∀1 ≤ i ≤ d,

(3.28)

or

1
n

n∑

t=1

Γt(i, k)ε
(k)
t = o(1) +O

(
1
n

)
almost surely, (3.29)

which implies that

1
n

n∑

t=1

Wt =
d∑

k=1

(
1
n

n∑

t=1

Γt(1, k)ε
(k)
t , . . . ,

1
n

n∑

t=1

Γt(d, k)ε
(k)
t

)′
a.s.−→ 0. (3.30)
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Note that Yt = μ +Wt, hence combining (3.27) and (3.30)we obtain

∑̂
=

1
n

n∑

t=1

YtY
′
t − YY

′

= μ
1
n

n∑

t=1

Wt +
1
n

n∑

t=1

Wtμ
′ + μμ′ +

1
n

n∑

t=1

WtW
′
t − YY

′

a.s.−→
∑

.

(3.31)

Proof of Theorem 3.1. Under the nullH0 we have Yt = μ+Γtεt, thus recalling (3.3)we can write

Bn(τ) = Γ̂−1
1√
n

[nτ]∑

t=1

(
Yt − Y

)

= Γ̂−1Γ
1√
n
Γ−1

[nτ]∑

t=1

[(
Yt − μ

) −
(
Y − μ

)]

= Γ̂−1Γ
(
Wn(τ) − [nτ]

n
Wn(1)

)
.

(3.32)

Therefore the result (3.1) holds by applying Theorem 3.2, Lemma 3.3, and the continuous
mapping theorem.

4. Consistency of Bn

We assume that under the alternative H1 the means (μt) are bounded and satisfy the
following.

Assumption H1. There exists a function U from [0, 1] into R
d such that

∀τ ∈ [0, 1],
1
n

[nτ]∑

t=1

μt −→ U(τ) as n −→ ∞. (4.1)

Assumption H2. There exists τ∗ ∈ (0, 1) such that

U(τ∗) = U(τ∗) − τ∗U(1)/= 0. (4.2)

Assumption H3. There exists
∑

μ such that

1
n

n∑

t=1

(
μt − μ

)(
μt − μ

)′ −→
∑

μ
as n −→ ∞, (4.3)

where μ = (1/n)
∑n

t=1 μt.
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Theorem 4.1. Suppose that Assumptions 1 and 2 hold. If (Yt) is given by (1.1) and the means (μt)
satisfy the Assumptions H1, H2, and H3, then the test based on Bn is consistent against H1, that is,

Bn
P−→ +∞, (4.4)

where P→ denotes the convergence in probability.

Proof. We have

Bn(τ) = B0
n(τ) + B1

n(τ), (4.5)

where

B0
n(τ) =

Γ̂−1√
n

[nτ]∑

t=1

(
Wt −W

)
, Wt = Γtεt, W =

1
n

n∑

t=1

Wt,

B1
n(τ) =

Γ̂−1√
n

[nτ]∑

t=1

(
μt − μ

)
.

(4.6)

Straightforward computation leads to

∑̂ a.s.−→
∑

∗ =
∑

+
∑

μ
. (4.7)

Therefore

B0
n(τ)

L−→ Γ−1∗ ΓB(τ), (4.8)

where Γ∗ is a square root of Σ∗, that is, Σ∗ = Γ∗Γ′∗, and

B1
n(τ)√
n

a.s.−→ Γ−1∗ U(τ). (4.9)

Hence

||Bn(τ∗)||∞
P−→ +∞, (4.10)

which implies that

Bn
P−→ +∞. (4.11)
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4.1. Consistency of Bn against Abrupt Change

Without loss of generality we assume that under the alternative hypothesis H1 there is a
single break date, that is, (Yt) is given by (1.1) where

μt =

⎧
⎨

⎩

μ(1) if 1 ≤ t ≤ [nτ1]

μ(2) if [nτ1] + 1 ≤ t ≤ n
for some τ1 ∈ (0, 1) and μ(1) /=μ(2). (4.12)

Corollary 4.2. Suppose that Assumptions 1 and 2 hold. If (Yt) is given by (1.1) and the means (μt)
satisfy (4.12), then the test based on Bn is consistent against H1.

Proof. It is easy to show that (4.1)–(4.3) are satisfied with

U(τ) =

⎧
⎨

⎩

τ(1 − τ1)
(
μ(1) − μ(2)

)
if τ ≤ τ1

τ1(1 − τ1)
(
μ(1) − μ(2)

)
if τ > τ1,

∑
μ
= τ1
(
μ(1) − μ(2)

)(
μ(1) − μ(2)

)′
.

(4.13)

Note that (4.2) is satisfied for all 0 < τ∗ < τ1 since μ(1) /=μ(2).

Remark 4.3. The result of Corollary 4.2 remains valid if under the alternative hypothesis there
are multiple breaks in the mean.

4.2. Consistency of Bn against Smooth Change

In this subsection we assume that the break in the mean does not happen suddenly but
the transition from one value to another is continuous with slow variation. A well-known
dynamic is the smooth threshold model (see Teräsvirta [21]), in which the mean μt is time
varying as follows

μt = μ(1) +
(
μ(2) − μ(1)

)
F

(
t

n
, τ1, γ

)
, 1 ≤ t ≤ n, μ(1) /=μ(2), (4.14)

where F(x, τ1, γ) is a the smooth transition function assumed to be continuous from [0, 1] into
[0, 1], μ(1) and μ(2) are the values of the mean in the two extreme regimes, that is, when F → 0
and F → 1. The slope parameter γ indicates how rapid the transition between two extreme
regimes is. The parameter τ1 is the location parameter.

Two choices for the function F are frequently evoked, the logistic function given by

FL

(
x, τ1, γ

)
=
[
1 + exp

(−γ(x − τ1)
)]−1

, (4.15)

and the exponential one

Fe

(
x, τ1, γ

)
= 1 − exp

(
−γ(x − τ1)2

)
. (4.16)
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For example, for the logistic function with γ > 0, the extreme regimes are obtained as follows:

(i) if x → 0 and γ large then F → 0 and thus μt = μ(1),

(ii) if x → 1 and γ large then F → 1 and thus μt = μ(2).

This means that at the beginning of the sample μt is close to μ(1) and then moves towards μ(2)

and becomes close to it at the end of the sample.

Corollary 4.4. Suppose that Assumptions 1 and 2 hold. If (Yt) is given by (1.1) and the means (μt)
satisfy (4.14), then the test based on Bn is consistent against H1.

Proof. The assumptions (4.1) and (4.3) are satisfied with

U(τ) =
(
μ(2) − μ(1)

)
T(τ), (4.17)

where

T(τ) =
∫ τ

0
F
(
x, τ1, γ

)
dx − τ

∫1

0
F
(
x, τ1, γ

)
dx,

∑
μ
=
(
μ(2) − μ(1)

)(
μ(2) − μ(1)

)′
⎧
⎨

⎩

∫1

0
F2(x, τ1, γ

)
dx −

(∫1

0
F
(
x, τ1, γ

)
dx

)2
⎫
⎬

⎭
.

(4.18)

Since μ(2) −μ(1) /= 0, to prove (4.2), it suffices to show that there exists τ∗ such T(τ∗)/= 0.
Assume that T(τ) = 0 for all τ ∈ (0, 1) then

dT(τ)
dτ

= F
(
τ, τ1, γ

) −
∫1

0
F
(
x, τ1, γ

)
dx = 0 ∀τ ∈ (0, 1), (4.19)

which implies that F(τ, τ1, γ) =
∫1
0 F(x, τ1, γ)dx = C for all τ ∈ (0, 1) or

μt = μ(1) +
(
μ(2) − μ(1)

)
C = μ ∀t ≥ 1, (4.20)

and this contradicts the alternative hypothesis H1.

4.3. Consistency of Bn against Continuous Change

In this subsection we will examine the behaviour Bn under the alternative where the mean
(μt) varies at each time, and hence can take an infinite number of values. As an example we
consider a polynomial evolution for μt:

μt =
(
P1

(
t

n

)
, . . . , Pd

(
t

n

))′
, Pj(x) =

pj∑

k=0

αj,kx
k, 1 ≤ j ≤ d. (4.21)

Corollary 4.5. Suppose that Assumptions 1 and 2 hold. If (Yt) is given by (1.1) and the means (μt)
satisfy (4.21), then the test based on Bn is consistent against H1.
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Proof. The assumptions H1–H3 are satisfied with

U(τ) =

(
p1∑

k=0
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k + 1
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)
, . . . ,

pd∑
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1
l + k + 1
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(
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)
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(4.22)

Note that (4.2) is satisfied for all 0 < τ∗ < 1, provided that there exist i, 1 ≤ i ≤ d and
k, 1 ≤ k ≤ pi such that αi,k /= 0.

5. Finite Sample Performance

All models are driven from an i.i.d. sequences εt = (ε(1)t , . . . , ε
(d)
t )

′
, where each ε

(j)
t , 1 ≤ j ≤ d,

has a t(3) distribution, a Student distribution with 3 degrees of freedom, and ε
(i)
t and ε

(j)
t are

independent for all i /= j. Simulations were performed using the software R. We carry out an
experiment of 1000 samples for seven models and we use three different sample sizes, n = 30,
n = 100, and n = 500. The empirical sizes and powers are calculated at the nominal levels
α = 1%, 5%, and 10%, in both cases.

5.1. Study of the Size

In order to evaluate the size distortion of the test statistic Bn we consider two bivariate models
Yt = μt + Γtεt with the following.

Model 1 (constant covariance).

μt =

(
1

1

)

, Γt =

(
2 1

1 2

)

. (5.1)

Model 2 (time varying covariance).

μt =

(
1

1

)

, Γt =

(
2 sin(tω) −1

−1 2 cos(tω)

)

, ω =
π

4
. (5.2)

From Table 1, we observe that for small sample size (n = 30) the test statistic Bn has
a severe size distortion. But as the sample size n increases, the distortion decreases. The
empirical size becomes closer to (but always lower than) the nominal level. The distortion
in the nonstationary Model 2 (time varying covariance) is a somewhat greater than the one
in the stationary Model 1 (constant covariance). However the test seems to be conservative
in both cases.
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Table 1: Empirical sizes (%).

α n = 30 n = 100 n = 500
1% 0.2 0.3 0.4

Model 1 5% 2.1 2.9 4
10% 4.9 7.3 8.9
1% 0.0 0.2 0.3

Model 2 5% 1.1 2.7 3.0
10% 2.9 6.4 7.3

5.2. Study of the Power

In order to see the power of the test statistic Bn we consider five bivariate models Yt = μt+Γtεt
with the following.

5.2.1. Abrupt Change in the Mean

Model 3 (constant covariance).

μt =
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Model 4. In this model the mean and the covariance are subject to an abrupt change at the
same time:

μt =
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Model 5. The mean is subject to an abrupt change and the covariance is time varying (see
Figure 1):

μt =
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Figure 1: The three kinds of change in the mean.

5.2.2. Smooth Change in the Mean

Model 6. We consider a logistic smooth transition for the mean and a time varying covariance
(see Figure 1):

μt =
μ(1) +

(
μ(2) − μ(1)

)

(
1 + exp(−30(t/n − 1/2))

) , 1 ≤ t ≤ n,
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(
0

1

)

, μ(2) =

(
1

0

)

, Γt =

(
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−1 2 cos(tω)

)

, ω =
π

4
.

(5.6)

5.2.3. Continuous Change in the Mean

Model 7. In this model the mean is a polynomial of order two and the covariance matrix is
also time varying as in the preceding Models 5 and 6 (see Figure 1):
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⎛
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)
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4
. (5.7)

From Table 2, we observe that for small sample size (n = 30), the test statistic Bn has
a low power. However, for the five models, the power becomes good as the sample size n
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Table 2: Empirical powers (%).

α n = 30 n = 100 n = 500
1% 11.4 81.8 100

Model 3 5% 34.1 92.1 100
10% 46.9 95.1 100
1% 3.9 49.8 99.9

Model 4 5% 15.7 71.4 99.9
10% 29 80.4 100
1% 1.4 22.7 95.9

Model 5 5% 8.3 44.7 98.4
10% 15.9 56.5 99.3
1% 1.4 17.2 94

Model 6 5% 8.5 38.5 97.7
10% 16.3 51.9 98.7
1% 0.1 5.3 44.2

Model 7 5% 2.2 16.1 70.0
10% 5.9 25.5 79.4

increases. The powers in nonstationary models are always smaller than those of stationary
models. This is not surprising since, from Table 1, the test statistic Bn is more conservative
in nonstationary models. We observe also that the power is almost the same in abrupt and
logistic smooth changes (compare Models 5 and 6). However, for the polynomial change
(Model 7) the power is lower than those of Models 5 and 6. To explain this underperformance
we can see, in Figure 1, that in the polynomial change, the time intervals where the mean
stays near the extreme values 0 and 1 are very short compared to those in abrupt and
smooth changes. We have simulated other continuous changes, linear and cubic polynomial,
trigonometric, and many other functions. Like in Model 7, changes are hardly detected for
small values of n, and the test Bn has a good performance only in large samples.
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