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Correspondence should be addressed to Christophe Chesneau; christophe.chesneau@gmail.com

Received 10 April 2013; Accepted 22 October 2013; Published 19 January 2014

Academic Editor: Zhidong Bai

Copyright © 2014 Christophe Chesneau. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We consider the estimation of an unknown function𝑓 for weakly dependent data (𝛼-mixing) in a general setting. Our contribution
is theoretical: we prove that a hard thresholding wavelet estimator attains a sharp rate of convergence under the mean integrated
squared error (MISE) over Besov balls without imposing too restrictive assumptions on the model. Applications are given for two
types of inverse problems: the deconvolution density estimation and the density estimation in a GARCH-typemodel, both improve
existing results in this dependent context. Another application concerns the regression model with random design.

1. Introduction

A general nonparametric problem is adopted: we aim to
estimate an unknown function 𝑓 via 𝑛 random variables
𝑉

1
, . . . , 𝑉

𝑛
from a strictly stationary stochastic process (𝑉

𝑡
)
𝑡∈Z.

We suppose that (𝑉
𝑡
)
𝑡∈Z has a weak dependence structure;

the 𝛼-mixing case is considered. This kind of dependence
naturally appears in numerous models as Markov chains,
GARCH-type models, and discretely observed diffusions
(see, e.g., [1–3]). The problems where 𝑓 is the density of 𝑉

1

or a regression function have received a lot of attention. A
partial list of related works includes Robinson [4], Roussas
[5, 6], Truong and Stone [7], Tran [8], Masry [9, 10], Masry
and Fan [11], Bosq [12], and Liebscher [13].

For an efficient estimation of 𝑓, many methods can
be considered. The most popular of them are based on
kernels, splines and wavelets. In this note we deal with
wavelet methods that have been introduced in i.i.d.setting
by Donoho and Johnstone [14, 15] and Donoho et al. [16,
17]. These methods enjoy remarkable local adaptivity against
discontinuities and spatially varying degree of oscillations.
Complete reviews and discussions on wavelets in statistics
can be found in, for example, Antoniadis [18] and Härdle
et al. [19]. In the context of 𝛼-mixing dependence, various

wavelet methods have been elaborated for a wide variety of
nonparametric problems. Recent developments can be found
in, for example, Leblanc [20], Tribouley and Viennet [21],
Masry [22], Patil and Truong [23], Doosti et al. [24], Doosti
and Niroumand [25], Doosti et al. [26], Cai and Liang [27],
Niu and Liang [28], Benatia and Yahia [29], Chesneau [30–
32], Chaubey and Shirazi [33], and Abbaszadeh and Emadi
[34].

In the general dependent setting described above, we
provide a theoretical contribution to the performance of
a wavelet estimator based on a hard thresholding. This
nonlinear wavelet procedure has the features to be fully
adaptive and efficient over a large class of functions 𝑓 (see,
e.g., [14–17, 35]). Following the spirit of Kerkyacharian and
Picard [36], we determine necessary assumptions on (𝑉

𝑡
)
𝑡∈Z

and the wavelet basis to ensure that the considered estimator
attains a fast rate of convergence under the MISE over Besov
balls. The obtained rate of convergence often corresponds to
the near optimal one in the minimax sense for the standard
i.i.d. case. The originality of our result is to be general and
sharp; it can be applied for nonparametricmodels of different
natures and improves some existing results. This fact is
illustrated by the consideration of the density deconvolution
estimation problem and the density estimation problem in a
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GARCH-type model, improving ([30], Proposition 5.1) and
([31], Theorem 2), respectively. A last part is devoted to the
regression model with random design. The obtained result
completes the one of Patil and Truong [23].

The organization of this note is as follows. In the next
section we describe the considered wavelet setting. The
hard thresholding estimator and its rate of convergence
under the MISE over Besov balls are presented in Section 3.
Applications of our general result are given in Section 4. The
proofs are carried out in Section 5.

2. Wavelets and Besov Balls

In this section we introduce some notations corresponding to
wavelets and Besov balls.

2.1. Wavelet Basis. We consider the wavelet basis on [0, 1]
constructs from the Daubechies wavelets db2N with 𝑁 ≥ 1
(see, e.g., [37]). A brief description of this basis is given below.
Let 𝜙 and 𝜓 be the initial wavelet functions of the family
db2N. These functions have the particularity to be compactly
supported and to belong to the class C𝑎 for 𝑁 > 5𝑎. For any
𝑗 ≥ 0, we set Λ

𝑗
= {0, . . . , 2𝑗 − 1} and, for 𝑘 ∈ Λ

𝑗
,

𝜙
𝑗,𝑘

(𝑥) = 2𝑗/2𝜙 (2𝑗𝑥 − 𝑘) , 𝜓
𝑗,𝑘

(𝑥) = 2𝑗/2𝜓 (2𝑗𝑥 − 𝑘) .

(1)

With appropriated treatments at the boundaries, there
exists an integer 𝜏 such that, for any integer ℓ ≥ 𝜏, B =
{𝜙

ℓ,𝑘
, 𝑘 ∈ Λ

ℓ
; 𝜓

𝑗,𝑘
; 𝑗 ∈ N − {0, . . . , ℓ − 1}, 𝑘 ∈ Λ

𝑗
} is an

orthonormal basis of L2([0, 1]), where

L
2
([0, 1])

= {𝑓 : [0, 1] 󳨀→ R;
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩2 = (∫
1

0

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥)

1/2

< ∞} .

(2)

For any integer ℓ ≥ 𝜏 and 𝑓 ∈ L2([0, 1]), we have the
following wavelet expansion:

𝑓 (𝑥) = ∑
𝑘∈Λ ℓ

𝑐
ℓ,𝑘

𝜙
ℓ,𝑘

(𝑥) +
∞

∑
𝑗=ℓ

∑
𝑘∈Λ 𝑗

𝑑
𝑗,𝑘

𝜓
𝑗,𝑘

(𝑥) ,

𝑥 ∈ [0, 1] ,

(3)

where 𝑐
𝑗,𝑘

and 𝑑
𝑗,𝑘

denote the wavelet coefficients of𝑓 defined
by

𝑐
𝑗,𝑘

= ∫
1

0

𝑓 (𝑥) 𝜙
𝑗,𝑘

(𝑥) 𝑑𝑥, 𝑑
𝑗,𝑘

= ∫
1

0

𝑓 (𝑥) 𝜓
𝑗,𝑘

(𝑥) 𝑑𝑥.

(4)

Technical details can be found in, for example, Cohen et al.
[38] and Mallat [39].

In the main result of this paper, we will investigate the
MISE rate of the proposed estimator by assuming that the
unknown function of interest 𝑓 belongs to a wide class of
functions: the Besov class. Its definition in terms of wavelet
coefficients is presented in the following.

2.2. Besov Balls. We say that 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀)with 𝑠 > 0, 𝑝, 𝑟 ≥ 1

and 𝑀 > 0 if and only if there exists a constant 𝐶 > 0 such
that the wavelet coefficients of 𝑓 given by (4) satisfy

2𝜏(1/2−1/𝑝)( ∑
𝑘∈Λ 𝜏

󵄨󵄨󵄨󵄨𝑐𝜏,𝑘
󵄨󵄨󵄨󵄨
𝑝

)

1/𝑝

+ (
∞

∑
𝑗=𝜏

(2𝑗(𝑠+1/2−1/𝑝)( ∑
𝑘∈Λ 𝑗

󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
𝑝

)

1/𝑝

)

𝑟

)

1/𝑟

≤ 𝐶,

(5)

with the usualmodifications if𝑝 = ∞ or 𝑟 = ∞. Note that, for
particular choices of 𝑠, 𝑝, and 𝑟,𝐵𝑠

𝑝,𝑟
(𝑀) contains the classical

Hölder and Sobolev balls (see, e.g., [40] and [19]).

Remark 1. We have chosen a wavelet basis on [0, 1] to fix the
notations; wavelet basis on another interval can be considered
in the rest of the study without affecting the results.

3. Statistical Framework, Estimator and Result

3.1. Statistical Framework. As mentioned in Section 1, a
nonparametric estimation setting as general as possible is
adopted: we aim to estimate an unknown function 𝑓 ∈

L2([0, 1]) via 𝑛 random variables (or vectors) 𝑉
1
, . . . , 𝑉

𝑛
from

a strictly stationary stochastic process (𝑉
𝑡
)
𝑡∈Z defined on a

probability space (Ω,A,P). We suppose that (𝑉
𝑡
)
𝑡∈Z has a

𝛼-mixing dependence structure with exponential decay rate;
that is, there exist two constants 𝛾 > 0 and 𝜃 > 0 such that

sup
𝑚≥1

(𝑒𝜃𝑚𝛼
𝑚
) ≤ 𝛾, (6)

where 𝛼
𝑚

= sup
(𝐴,𝐵)∈F𝑉

−∞,0
×F𝑉
𝑚,∞

|P(𝐴 ∩ 𝐵) − P(𝐴)P(𝐵)|,
F𝑉

−∞,0
is the 𝜎-algebra generated by the random variables (or

vectors) . . . , 𝑉
−1

, 𝑉
0
and F𝑉

𝑚,∞
is the 𝜎-algebra generated by

the random variables (or vectors) 𝑉
𝑚
, 𝑉

𝑚+1
, . . ..

The 𝛼-mixing dependence is reasonably weak; it is sat-
isfied by a wide variety of models including Markov chains,
GARCH-type models, and discretely observed diffusions
(see, for instance, [1–3, 41]).

The considered estimator for 𝑓 is presented below.

3.2. Estimator. We define the hard thresholding wavelet
estimator 𝑓 by

𝑓 (𝑥) = ∑
𝑘∈Λ 𝑗0

𝑐
𝑗0 ,𝑘

𝜙
𝑗0 ,𝑘

(𝑥) +

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

𝑑
𝑗,𝑘
1
{|𝑑𝑗,𝑘|≥𝜅𝜆𝑗}

𝜓
𝑗,𝑘

(𝑥) ,

(7)

where

𝑐
𝑗,𝑘

=
1

𝑛

𝑛

∑
𝑖=1

𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑖
) , 𝑑

𝑗,𝑘
=

1

𝑛

𝑛

∑
𝑖=1

𝑞 (𝜓
𝑗,𝑘

, 𝑉
𝑖
) , (8)
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1 is the indicator function, 𝜅 > 0 is a large enough constant,
𝑗
0
is the integer satisfying

2𝑗0 = [𝜏 ln 𝑛] , (9)

where [𝑎] denotes the integer part of 𝑎 and 𝑗
1
is the integer

satisfying

2𝑗1 = [(
𝑛

(ln 𝑛)3
)

1/(2𝜌+1)

] , (10)

𝜆
𝑗
= 2𝜌𝑗√ ln 𝑛

𝑛
. (11)

Here it is supposed that there exists a function 𝑞 : L2([0, 1])×
𝑉

1
(Ω) → C such that

(H1) for 𝛾 ∈ {𝜙, 𝜓}, any integer 𝑗 ≥ 𝑗
0
and 𝑘 ∈ Λ

𝑗
,

E (𝑞 (𝛾
𝑗,𝑘

, 𝑉
1
)) = ∫

1

0

𝑓 (𝑥) 𝛾
𝑗,𝑘

(𝑥) 𝑑𝑥, (12)

where E denotes the expectation,
(H2) there exist two constants, 𝐶 > 0 and 𝜌 ≥ 0,

satisfying, for 𝛾 ∈ {𝜙, 𝜓}, for any integer 𝑗 ≥ 𝑗
0

and 𝑘 ∈ Λ
𝑗
, (i) sup

𝑥∈𝑉1(Ω)
|𝑞(𝛾

𝑗,𝑘
, 𝑥)| ≤ 𝐶2𝜌𝑗2𝑗/2, (ii)

E(|𝑞(𝛾
𝑗,𝑘

, 𝑉
1
)|2) ≤ 𝐶22𝜌𝑗, (iii) for any 𝑚 ∈ {1, . . . , 𝑛 −

1} ≥ 1,
󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝛾

𝑗,𝑘
, 𝑉

𝑚+1
) , 𝑞 (𝛾

𝑗,𝑘
, 𝑉

1
))

󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶22𝜌𝑗2−𝑗, (13)

whereC
𝑜V denotes the covariance; that is,C𝑜V(𝑋, 𝑌) =

E(𝑋𝑌)−E(𝑋)E(𝑌), 𝑌 denotes the complex conjugate
of 𝑌.

For well-known nonparametric models in the i.i.d. set-
ting, hard thresholding wavelet estimators and important
results can be found in, for example, Donoho and Johnstone
[14, 15], Donoho et al. [16, 17], Delyon and Juditsky [35],
Kerkyacharian and Picard [36], and Fan and Koo [42]. In the
𝛼-mixing context, 𝑓 defined by (7) is a general and improved
version of the estimator considered in Chesneau [30, 31]. The
main differences are the presence of the tuning parameter 𝜌
and the global definition of the function 𝑞 offering numerous
possibilities of applications. Three of them are explored in
Section 4.

Comments on the Assumptions. The assumption (H1) ensures
that (8) are unbiased estimators for 𝑐

𝑗,𝑘
and 𝑑

𝑗,𝑘
given by

(4), whereas (H2) is related to their good performance. See
Proposition 10.These assumptions are not too restrictive. For
instance, if we consider the standard density estimation prob-
lem where (𝑉

𝑡
)
𝑡∈Z are i.i.d. random variables with bounded

density 𝑓, the function 𝑞(𝛾, 𝑥) = 𝛾(𝑥) satisfies (H1) and (H2)
with 𝜌 = 0 (note that, thanks to the independence of (𝑉

𝑡
)
𝑡∈Z,

the covariance term in (H2)-(iii) is zero).The technical details
are given in Donoho et al. [17].

Lemma 2 describes a simple situation in which assump-
tion (H2)-(iii) is satisfied.

Lemma 2. We make the following assumptions.

(F1) Let𝑢 be the density of 𝑉
1
and let𝑢

(𝑉1 ,𝑉𝑚+1)
be the density

of (𝑉
1
, 𝑉

𝑚+1
) for any 𝑚 ∈ Z. We suppose that there

exists a constant 𝐶 > 0 such that

sup
𝑚∈{1,...,𝑛−1}Z

sup
(𝑥,𝑦)∈𝑉1(Ω)×𝑉𝑚+1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑢(𝑉1 ,𝑉𝑚+1)
(𝑥, 𝑦)

−𝑢 (𝑥) 𝑢 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐶.

(14)

(F2) There exist two constants, 𝐶 > 0 and 𝜌 ≥ 0, satisfying,
for 𝛾 ∈ {𝜙, 𝜓}, for any integer 𝑗 ≥ 𝑗

0
and 𝑘 ∈ Λ

𝑗
,

∫
𝑉1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑞 (𝛾
𝑗,𝑘

, 𝑥)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶2𝜌𝑗2−𝑗/2. (15)

Then, under (F1) and (F2), (H2)-(iii) is satisfied.

3.3. Result. Theorem 3 determines the rate of convergence
attained by 𝑓 under the MISE over Besov balls.

Theorem 3. We consider the general statistical setting
described in Section 3.1. Let 𝑓 be (7) under (H1) and (H2).
Suppose that 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) with 𝑟 ≥ 1, {𝑝 ≥ 2 and 𝑠 ∈ (0,𝑁)},

or {𝑝 ∈ [1, 2) and 𝑠 ∈ ((2𝜌 + 1)/𝑝,𝑁)}. Then there exists a
constant 𝐶 > 0 such that

E (
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (16)

The rate of convergence “((ln 𝑛)/𝑛)2𝑠/(2𝑠+2𝜌+1)” is often
the near optimal one in the minimax sense for numerous
statistical problems in a i.i.d. setting (see, e.g., [19, 43]).
Moreover, note that Theorem 3 is flexible; the assumptions
on (𝑉

𝑡
)
𝑡∈Z, related to the definition of 𝑞 in (H1) and (H2),

are mild. In the next section, this flexibility is illustrated for
three sophisticated nonparametric estimation problems: the
density deconvolution estimation problem, the density esti-
mation problem in a GARCH-typemodel, and the regression
function estimation in the regression model with random
design.

4. Applications

4.1. Density Deconvolution. Let (𝑉
𝑡
)
𝑡∈Z be a strictly stationary

stochastic process such that

𝑉
𝑡
= 𝑋

𝑡
+ 𝜖

𝑡
, 𝑡 ∈ Z, (17)

where (𝑋
𝑡
)
𝑡∈Z is a strictly stationary stochastic process with

unknown density𝑓 and (𝜖
𝑡
)
𝑡∈Z is a strictly stationary stochas-

tic process with known density 𝑔. It is supposed that 𝜖
𝑡
and

𝑋
𝑡
are independent for any 𝑡 ∈ Z and (𝑉

𝑡
)
𝑡∈Z is a 𝛼-mixing

process with exponential decay rate (see Section 3.1 for a
precise definition). Our aim is to estimate 𝑓 via 𝑉

1
, . . . , 𝑉

𝑛

from (𝑉
𝑡
)
𝑡∈Z. Some related works are Masry [44], Kulik [45],

Comte et al. [46], and Van Zanten and Zareba [47].
We formulate the following assumptions.
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(G1) The support of 𝑓 is [0, 1].
(G2) There exists a constant 𝐶 > 0 such that

sup
𝑥∈R

𝑓 (𝑥) ≤ 𝐶 < ∞. (18)

(G3) Let 𝑢 be the density of𝑉
1
.We suppose that there exists

a constant 𝐶 > 0 such that

sup
𝑥∈R

𝑢 (𝑥) ≤ 𝐶. (19)

(G4) For any 𝑚 ∈ Z, let 𝑢
(𝑉1 ,𝑉𝑚+1)

be the density of
(𝑉

1
, 𝑉

𝑚+1
). We suppose that there exists a constant

𝐶 > 0 such that

sup
𝑚∈Z

sup
(𝑥,𝑦)∈R2

𝑢
(𝑉1 ,𝑉𝑚+1)

(𝑥, 𝑦) ≤ 𝐶. (20)

(G5) For any integrable function 𝛾, we define its Fourier
transform by

F (𝛾) (𝑥) = ∫
∞

−∞

𝛾 (𝑦) 𝑒−𝑖𝑥𝑦𝑑𝑦, 𝑥 ∈ R. (21)

We suppose that there exist three known constants𝐶 > 0,
𝑐 > 0, and 𝛿 > 1 such that, for any 𝑥 ∈ R,

(i) the Fourier transform of 𝑔 satisfies

󵄨󵄨󵄨󵄨F (𝑔) (𝑥)
󵄨󵄨󵄨󵄨 ≥

𝑐

(1 + 𝑥2)
𝛿/2

, (22)

(ii) for any ℓ ∈ {0, 1, 2}, the ℓth derivative of the Fourier
transform of 𝑔 satisfies

󵄨󵄨󵄨󵄨󵄨󵄨
(F (𝑔) (𝑥))

(ℓ)
󵄨󵄨󵄨󵄨󵄨󵄨
≤

𝐶

(1 + |𝑥|)𝛿+ℓ
. (23)

We are now in the position to present the result.

Theorem 4. We consider the model (17). Suppose that (G1)–
(G5) are satisfied. Let 𝑓 be defined as in (7) with

𝑞 (𝛾, 𝑥) =
1

2𝜋
∫

∞

−∞

F (𝛾) (𝑦)

F (𝑔) (𝑦)
𝑒−𝑖𝑦𝑥𝑑𝑦, (24)

whereF(𝛾)(𝑦) denotes the complex conjugate ofF(𝛾)(𝑦) and
𝜌 = 𝛿 (appearing in(G5)).

Suppose that 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) with 𝑟 ≥ 1, {𝑝 ≥ 2, and 𝑠 ∈

(0,𝑁)} or {𝑝 ∈ [1, 2) and 𝑠 ∈ ((2𝛿 + 1)/𝑝,𝑁)}. Then there
exists a constant 𝐶 > 0 such that

E (
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝛿+1)

. (25)

Theorem 4 improves ([30], Proposition 5.1) in terms of
rate of convergence; we gain a logarithmic term.

Moreover, it is established that, in the i.i.d. setting,
“((ln 𝑛)/𝑛)2𝑠/(2𝑠+2𝛿+1)” is

(i) exactly the rate of convergence attained by the hard
thresholding wavelet estimator,

(ii) the near optimal rate of convergence in the minimax
sense.

The details can be found in Fan and Koo [42]. Thus,
Theorem 4 can be viewed as an extension of this existing
result to the weak dependent case.

4.2. GARCH-TypeModel. We consider the strictly stationary
stochastic process (𝑉

𝑡
)
𝑡∈Z where, for any 𝑡 ∈ Z,

𝑉
𝑡
= 𝜎2

𝑡
𝑍

𝑡
, (26)

(𝜎2

𝑡
)
𝑡∈Z is a strictly stationary stochastic process with

unknown density 𝑓, and (𝑍
𝑡
)
𝑡∈Z is a strictly stationary

stochastic process with known density 𝑔. It is supposed that
𝜎2

𝑡
and 𝑍

𝑡
are independent for any 𝑡 ∈ Z and (𝑉

𝑡
)
𝑡∈Z is a 𝛼-

mixing process with exponential decay rate (see Section 3.1
for a precise definition). Our aim is to estimate 𝑓 via
𝑉

1
, . . . , 𝑉

𝑛
from (𝑉

𝑡
)
𝑡∈Z. Some related works are Comte et al.

[46] and Chesneau [31].
We formulate the following assumptions.
(J1) There exists a positive integer 𝛿 such that

𝑔 (𝑥) =
1

(𝛿 − 1)!
(− ln𝑥)

𝛿−1, 𝑥 ∈ [0, 1] . (27)

Let us remark that 𝑔 is the density of ∏𝛿

𝑖=1
𝑈

𝑖
, where

𝑈
1
, . . . , 𝑈

𝛿
are 𝛿 i.i.d. random variables having the

common distributionU([0, 1]).
(J2) The support of 𝑓 is [0, 1] and 𝑓 ∈ L2([0, 1]).
(J3) Let 𝑢 be the density of𝑉

1
.We suppose that there exists

a constant 𝐶 > 0 such that
sup
𝑥∈R

𝑢 (𝑥) ≤ 𝐶. (28)

(J4) For any 𝑚 ∈ Z, let 𝑢
(𝑉1 ,𝑉𝑚+1)

be the density of
(𝑉

1
, 𝑉

𝑚+1
). We suppose that there exists a constant

𝐶 > 0 such that
sup
𝑚∈Z

sup
(𝑥,𝑦)∈R2

𝑢
(𝑉1 ,𝑉𝑚+1)

(𝑥, 𝑦) ≤ 𝐶. (29)

We are now in the position to present the result.

Theorem 5. We consider model (26). Suppose that (J1)–(J4)
are satisfied. Let 𝑓 be defined as in (7) with

𝑞 (𝛾, 𝑥) = 𝑇
𝛿
(𝛾) (𝑥) , (30)

where, for any positive integer ℓ, 𝑇(𝛾)(𝑥) = (𝑥𝛾(𝑥))󸀠 and
𝑇

ℓ
(𝛾)(𝑥) = 𝑇(𝑇

ℓ−1
(𝛾))(𝑥) and 𝜌 = 𝛿 (appearing in (J1)).

Suppose that 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) with 𝑟 ≥ 1, {𝑝 ≥ 2 and 𝑠 ∈

(0,𝑁)}, or {𝑝 ∈ [1, 2) and 𝑠 ∈ ((2𝛿 + 1)/𝑝,𝑁)}. Then there
exists a constant 𝐶 > 0 such that

E (
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝛿+1)

. (31)

Theorem 5 significantly improves ([31], Theorem 2) in
terms of rate of convergence; we gain an exponent 1/2.
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4.3. Nonparametric Regression Model. We consider the
strictly stationary stochastic process (𝑉

𝑡
)
𝑡∈Z where, for any

𝑡 ∈ Z, 𝑉
𝑡
= (𝑌

𝑡
, 𝑋

𝑡
),

𝑌
𝑡
= 𝑓 (𝑋

𝑡
) + 𝜉

𝑡
, (32)

(𝑋
𝑡
)
𝑡∈Z is a strictly stationary stochastic process with

unknown density 𝑔, (𝜉
𝑡
)
𝑡∈Z is a strictly stationary centered

stochastic process, and𝑓 is the unknown regression function.
It is supposed that 𝑋

𝑡
and 𝜉

𝑡
are independent for any 𝑡 ∈ Z

and (𝑉
𝑡
)
𝑡∈Z is a 𝛼-mixing process with exponential decay

rate (see Section 3.1 for a precise definition). Our aim is to
estimate 𝑓 via 𝑉

1
, . . . , 𝑉

𝑛
from (𝑉

𝑡
)
𝑡∈Z. Applications of this

problem can be found in Härdle [48]. Wavelet methods can
be found in Patil and Truong [23], Doosti et al. [24], Doosti
et al. [26], and Doosti and Niroumand [25].

We formulate the following assumptions.

(K1) The support of 𝑓 and 𝑔 is [0, 1] and 𝑓 and 𝑔 ∈

L2([0, 1]).
(K2) 𝜉

1
(Ω) is bounded.

(K3) There exists a constant 𝐶 > 0 such that

sup
𝑥∈[0,1]

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶. (33)

(K4) There exist two constants 𝑐
∗
> 0 and 𝐶 > 0 such that

𝑐
∗
≤ inf

𝑥∈[0,1]

𝑔 (𝑥) , sup
𝑥∈[0,1]

𝑔 (𝑥) ≤ 𝐶. (34)

(K5) Let 𝑢 be the density of𝑉
1
.We suppose that there exists

a constant 𝐶 > 0 such that

sup
𝑥∈R×[0,1]

𝑢 (𝑥) ≤ 𝐶. (35)

(K6) For any 𝑚 ∈ Z, let 𝑢
(𝑉1 ,𝑉𝑚+1)

be the density of
(𝑉

1
, 𝑉

𝑚+1
). We suppose that there exists a constant

𝐶 > 0 such that

sup
𝑚∈Z

sup
(𝑥,𝑦)∈(R×[0,1])×(R×[0,1])

𝑢
(𝑉1 ,𝑉𝑚+1)

(𝑥, 𝑦) ≤ 𝐶. (36)

We are now in the position to present the result.

Theorem 6. We consider the model (32). Suppose that (K1)–
(K6) are satisfied. Let 𝑓 be the truncated ratio estimator.
Consider

𝑓 (𝑥) =
V̂ (𝑥)
𝑔 (𝑥)

1
{|𝑔(𝑥)|≥𝑐∗/2}

, (37)

where

(i) V̂ is defined as in (7) with

𝑞 (𝛾, (𝑥, 𝑥
∗
)) = 𝑥𝛾 (𝑥

∗
) (38)

and 𝜌 = 0,

(ii) 𝑔 is defined as in (7) with 𝑋
𝑡
instead of 𝑉

𝑡
,

𝑞 (𝛾, 𝑥) = 𝛾 (𝑥) (39)

and 𝜌 = 0,
(iii) 𝑐

∗
is the constant defined in (K4).

Suppose that 𝑓𝑔 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) and 𝑔 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) with 𝑟 ≥ 1,

{𝑝 ≥ 2 and 𝑠 ∈ (0,𝑁)} or {𝑝 ∈ [1, 2), and 𝑠 ∈ (1/𝑝,𝑁)}. Then
there exists a constant 𝐶 > 0 such that

E (
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+1)

. (40)

The estimator (37) is derived by combining the procedure
of Patil and Truong [23] with the truncated approach of
Vasiliev [49].

Theorem 6 completes Patil and Truong [23] in terms of
rates of convergence under the MISE over Besov balls.

Remark 7. The assumption(K2) can be relaxed with another
strategy to the one developed in Theorem 6. Some technical
elements are given in Chesneau [32].

Conclusion. Considering the weak dependent case on the
observations, we prove a general result on the rate of conver-
gence attains by a hard wavelet thresholding estimator under
the MISE over Besov balls. This result is flexible; it can be
applied for a wide class of statistical models. Moreover, the
obtained rate of convergence is sharp; it can correspond to the
near optimal one in the minimax sense for the standard i.i.d.
case. Some recent results on sophisticated statistical problems
are improved. Thanks to its flexibility, the perspectives of
applications of our theoretical result in other contexts are
numerous.

5. Proofs

In this section, 𝐶 denotes any constant that does not depend
on 𝑗, 𝑘, and 𝑛. Its value may change from one term to another
and may depend on 𝜙 or 𝜓.

5.1. Key Lemmas. Let us present two lemmas which will be
used in the proofs.

Lemma 8 shows a sharp covariance inequality under the
𝛼-mixing condition.

Lemma 8 (see [50]). Let (𝑊
𝑡
)
𝑡∈Z be a strictly stationary 𝛼-

mixing process withmixing coefficient 𝛼
𝑚
,𝑚 ≥ 0, and let ℎ and

𝑘 be two measurable functions. Let 𝑝 > 0 and 𝑞 > 0 satisfying
1/𝑝 + 1/𝑞 < 1 such that E(|ℎ(𝑊

1
)|𝑝) and E(|𝑘(𝑊

1
)|𝑞) exist.

Then there exists a constant 𝐶 > 0 such that
󵄨󵄨󵄨󵄨C𝑜V (ℎ (𝑊

1
) , 𝑘 (𝑊

𝑚+1
))
󵄨󵄨󵄨󵄨

≤ 𝐶𝛼1−1/𝑝−1/𝑞

𝑚
(E (

󵄨󵄨󵄨󵄨ℎ (𝑊
1
)
󵄨󵄨󵄨󵄨
𝑝

))
1/𝑝

(E(
󵄨󵄨󵄨󵄨𝑘 (𝑊

1
)
󵄨󵄨󵄨󵄨
𝑞

))
1/𝑞

.
(41)

Lemma 9 below presents a concentration inequality for
𝛼-mixing processes.
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Lemma9 (see [13]). Let (𝑊
𝑡
)
𝑡∈Z be a strictly stationary process

with the 𝑚th strongly mixing coefficient 𝛼
𝑚
, 𝑚 ≥ 0, let 𝑛 be a

positive integer, let ℎ : R → C be a measurable function, and,
for any 𝑡 ∈ Z, 𝑈

𝑡
= ℎ(𝑊

𝑡
). We assume that E(𝑈

1
) = 0 and

there exists a constant 𝑀 > 0 satisfying |𝑈
1
| ≤ 𝑀. Then, for

any 𝑚 ∈ {1, . . . , [𝑛/2]} and 𝜆 > 0, we have

P(
1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑖=1

𝑈
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥ 𝜆)

≤ 4 exp(−
𝜆2𝑛

16 (𝐷
𝑚
/𝑚 + 𝜆𝑀𝑚/3)

) + 32
𝑀

𝜆
𝑛𝛼

𝑚
,

(42)

where

𝐷
𝑚

= max
𝑙∈{1,...,2𝑚}

V (
𝑙

∑
𝑖=1

𝑈
𝑖
) . (43)

5.2. Intermediary Results

Proof of Lemma 2. Using a standard expression of the covari-
ance, and (F1) as well as(F2), we obtain

󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝛾
𝑗,𝑘

, 𝑉
𝑚+1

) , 𝑞 (𝛾
𝑗,𝑘

, 𝑉
1
))

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑉1(Ω)

∫
𝑉1(Ω)

𝑞 (𝛾
𝑗,𝑘

, 𝑥) 𝑞 (𝛾
𝑗,𝑘

, 𝑦)

× (𝑢
(𝑉1 ,𝑉𝑚+1)

(𝑥, 𝑦) − 𝑢 (𝑥) 𝑢 (𝑦)) 𝑑𝑥𝑑𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝑉1(Ω)

∫
𝑉1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑞 (𝛾
𝑗,𝑘

, 𝑥)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑞 (𝛾

𝑗,𝑘
, 𝑦)

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨𝑢(𝑉1 ,𝑉𝑚+1)

(𝑥, 𝑦) − 𝑢 (𝑥) 𝑢 (𝑦)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

≤ 𝐶(∫
𝑉1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑞 (𝛾
𝑗,𝑘

, 𝑥)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥)

2

≤ 𝐶22𝜌𝑗2−𝑗.

(44)

This ends the proof of Lemma 2.

Proposition 10 proves probability and moments inequal-
ities satisfied by the estimators (8).

Proposition 10. Let 𝛼̂
𝑗,𝑘

and 𝛽
𝑗,𝑘

be defined as in (8) under
(H1) and (H2), let 𝑗

0
be (9) and let 𝑗

1
be (10).

(a) There exists a constant 𝐶 > 0 such that, for any 𝑗 ∈
{𝑗

0
, . . . , 𝑗

1
} and 𝑘 ∈ Λ

𝑗
,

E (
󵄨󵄨󵄨󵄨󵄨𝑐𝑗,𝑘 − 𝑐

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

) ≤ 𝐶22𝜌𝑗 1

𝑛
, (45)

E (
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

− 𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

) ≤ 𝐶22𝜌𝑗 1

𝑛
. (46)

(b) There exists a constant 𝐶 > 0 such that, for any 𝑗 ∈
{𝑗

0
, . . . , 𝑗

1
} and 𝑘 ∈ Λ

𝑗
,

E (
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

− 𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
4

) ≤ 𝐶24𝜌𝑗. (47)

(c) Let 𝜆
𝑗
be defined as in (11). There exists a constant 𝐶 >

0 such that, for any 𝜅 large enough, 𝑗 ∈ {𝑗
0
, . . . , 𝑗

1
} and

𝑘 ∈ Λ
𝑗
, we have

P(
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

− 𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨 ≥
𝜅𝜆

𝑗

2
) ≤ 𝐶

1

𝑛4
. (48)

Proof of Proposition 10. (a) Using (H1) and the stationarity of
(𝑉

𝑡
)
𝑡∈Z, we obtain

E (
󵄨󵄨󵄨󵄨󵄨𝑐𝑗,𝑘 − 𝑐

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

) = V (𝑐
𝑗,𝑘

)

=
1

𝑛2

𝑛

∑
𝑖=1

V (𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑖
)) +

2

𝑛2

×
𝑛

∑
V=2

V−1

∑
ℓ=1

Re (C
𝑜V (𝑞 (𝜙

𝑗,𝑘
, 𝑉V) , 𝑞 (𝜙

𝑗,𝑘
, 𝑉

ℓ
)))

=
1

𝑛2

𝑛

∑
𝑖=1

V (𝑞 (𝜙
𝑗,k, 𝑉𝑖

)) +
2

𝑛2

×
𝑛−1

∑
𝑚=1

(𝑛 − 𝑚)Re (C
𝑜V (𝑞 (𝜙

𝑗,𝑘
, 𝑉

𝑚+1
) , 𝑞 (𝜙

𝑗,𝑘
, 𝑉

1
)))

≤
1

𝑛
(E (

󵄨󵄨󵄨󵄨󵄨𝑞 (𝜙
𝑗,𝑘

, 𝑉
1
)
󵄨󵄨󵄨󵄨󵄨
2

)

+2
𝑛−1

∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑚+1

) , 𝑞 (𝜙
𝑗,𝑘

, 𝑉
1
))

󵄨󵄨󵄨󵄨󵄨) .

(49)

By (H2)-(ii) we get

E (
󵄨󵄨󵄨󵄨󵄨𝑞(𝜙𝑗,𝑘

, 𝑉
1
)
󵄨󵄨󵄨󵄨󵄨
2

) ≤ 𝐶22𝜌𝑗. (50)

For the covariance term, note that

𝑛−1

∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑚+1

) , 𝑞 (𝜙
𝑗,𝑘

, 𝑉
1
))

󵄨󵄨󵄨󵄨󵄨 = 𝐴 + 𝐵, (51)

where

𝐴 =
[ln 𝑛/𝜃]−1

∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑚+1

) , 𝑞 (𝜙
𝑗,𝑘

, 𝑉
1
))

󵄨󵄨󵄨󵄨󵄨 ,

𝐵 =
𝑛−1

∑
𝑚=[(ln 𝑛)/𝜃]

󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑚+1

) , 𝑞 (𝜙
𝑗,𝑘

, 𝑉
1
))

󵄨󵄨󵄨󵄨󵄨 .

(52)

It follows from (H2)-(iii) and 2−𝑗 ≤ 2−𝑗0 < 2(ln 𝑛)−1 that

𝐴 ≤ 𝐶22𝜌𝑗2−𝑗 [
ln 𝑛

𝜃
] ≤ 𝐶22𝜌𝑗. (53)
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The Davydov inequality described in Lemma 8 with 𝑝 = 𝑞 =

4, (H2)-(i)-(ii), and 2𝑗 ≤ 2𝑗1 ≤ 𝑛 give

𝐵 ≤ 𝐶√E (
󵄨󵄨󵄨󵄨󵄨𝑞(𝜙𝑗,𝑘

, 𝑉
1
)
󵄨󵄨󵄨󵄨󵄨
4

)
𝑛−1

∑
𝑚=[(ln 𝑛)/𝜃]

√𝛼
𝑚

≤ 𝐶2𝜌𝑗2𝑗/2√E (
󵄨󵄨󵄨󵄨󵄨𝑞(𝜙𝑗,𝑘

, 𝑉
1
)
󵄨󵄨󵄨󵄨󵄨
2

)
∞

∑
𝑚=[(ln 𝑛)/𝜃]

𝑒−𝜃𝑚/2

= 𝐶22𝜌𝑗√𝑛𝑒−(ln 𝑛)/2 ≤ 𝐶22𝜌𝑗.

(54)

Thus
𝑛−1

∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨C𝑜V (𝑞 (𝜙
𝑗,𝑘

, 𝑉
𝑚+1

) , 𝑞 (𝜙
𝑗,𝑘

, 𝑉
1
))

󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶22𝜌𝑗. (55)

Putting (49), (50), and (55) together, the first point in (a)
is proved. The proof of the second point is identical with 𝜓
instead of 𝜙.

(b) Thanks to (H2)-(i), we have |𝑑
𝑗,𝑘

| ≤

sup
𝑥∈𝑉1(Ω)

|𝑞(𝜓
𝑗,𝑘

, 𝑥)| ≤ 𝐶2𝜌𝑗2𝑗/2. It follows from the
triangular inequality and |𝑑

𝑗,𝑘
| ≤ ‖𝑓‖

2
≤ 𝐶 that

󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘
− 𝑑

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝜌𝑗2𝑗/2. (56)

This inequality and the second result of (a) yield

E (
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

− 𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
4

) ≤ 𝐶22𝜌𝑗2𝑗
E (

󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘
− 𝑑

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

) ≤ 𝐶24𝜌𝑗2𝑗 1

𝑛
.

(57)

Using 2𝑗 ≤ 2𝑗1 ≤ 𝑛, the proof of (b) is completed.
(c) We will use the Liebscher inequality described in

Lemma 9. Let us set

𝑈
𝑖
= 𝑞 (𝜓

𝑗,𝑘
, 𝑉

𝑖
) − E (𝑞 (𝜓

𝑗,𝑘
, 𝑉

1
)) . (58)

We have E(𝑈
1
) = 0 and, by(H2)-(i) and 2𝑗 ≤ 2𝑗1 ≤

𝑛/(ln 𝑛)3,

󵄨󵄨󵄨󵄨𝑈𝑖

󵄨󵄨󵄨󵄨 ≤ 2 sup
𝑥∈𝑉1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑞 (𝜓
𝑗,𝑘

, 𝑥)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝜌𝑗2𝑗/2 ≤ 𝐶2𝜌𝑗

√
𝑛

(ln 𝑛)3
,

(59)

(so 𝑀 = 𝐶2𝜌𝑗√𝑛/(ln 𝑛)3).
Proceeding as for the proofs of the bounds in (a), for any

integer 𝑙 ≤ 𝐶 ln 𝑛, since 2−𝑗 ≤ 2−𝑗0 ≤ 2(ln 𝑛)−1, we show that

V (
𝑙

∑
𝑖=1

𝑈
𝑖
)

= V (
𝑙

∑
𝑖=1

𝑞 (𝜓
𝑗,𝑘

, 𝑉
𝑖
)) ≤ 𝐶22𝜌𝑗 (𝑙 + 𝑙22−𝑗) ≤ 𝐶22𝜌𝑗𝑙.

(60)

Therefore

𝐷
𝑚

= max
𝑙∈{1,...,2𝑚}

V (
𝑙

∑
𝑖=1

𝑈
𝑖
) ≤ 𝐶22𝜌𝑗𝑚. (61)

Owing to Lemma 9 applied with 𝑈
1
, . . . , 𝑈

𝑛
, 𝜆 = 𝜅𝜆

𝑗
/2,

𝑚 = [√𝜅 ln 𝑛], 𝑀 = 𝐶2𝜌𝑗√𝑛/(ln 𝑛)3, and the bound (61), we
obtain

P(
󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

− 𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨 ≥
𝜅𝜆

𝑗

2
)

≤ 𝐶(exp(−𝐶
𝜅2𝜆2

𝑗
𝑛

𝐷
𝑚
/𝑚 + 𝜅𝜆

𝑗
𝑚𝑀

) +
𝑀

𝜆
𝑗

𝑛𝑒−𝜃𝑚)

≤ 𝐶( exp (−𝐶((𝜅222𝜌𝑗 ln 𝑛)

× (22𝜌𝑗 + 𝜅2𝜌𝑗√ (ln 𝑛)

𝑛

× [√𝜅 ln 𝑛] 2𝜌𝑗

√
𝑛

(ln 𝑛)3
)

−1

))

+ √𝑛/(ln 𝑛)3

(ln 𝑛) /𝑛
𝑛𝑒−𝜃[√𝜅 ln 𝑛])

≤ 𝐶(𝑛−𝐶𝜅
2
/(1+𝜅

3/2
) + 𝑛2−𝜃√𝜅) .

(62)

Taking 𝜅 large enough, the last term is bounded by𝐶/𝑛4.This
completes the proof of(c).

This completes the proof of Proposition 10.

Proof of Theorem 3. Theorem 3 can be proved by combining
arguments of ([36], Theorem 5.1) and ([51], Theorem 4.2). It
is close to ([30], Proof of Theorem 2) by taking 𝜃 → ∞. The
interested reader can find the details below.

We consider the following wavelet decomposition for 𝑓:

𝑓 (𝑥) = ∑
𝑘∈Λ 𝑗0

𝑐
𝑗0 ,𝑘

𝜙
𝑗0 ,𝑘

(𝑥) +
∞

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

𝑑
𝑗,𝑘

𝜓
𝑗,𝑘

(𝑥) , (63)

where 𝑐
𝑗0 ,𝑘

= ∫
1

0
𝑓(𝑥)𝜙

𝑗0 ,𝑘
(𝑥)𝑑𝑥 and 𝑑

𝑗,𝑘
= ∫

1

0
𝑓(𝑥)𝜓

𝑗,𝑘
(𝑥)𝑑𝑥.

Using the orthonormality of the wavelet basis B, the
MISE of 𝑓 can be expressed as

E (
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2
) = 𝑃 + 𝑄 + 𝑅, (64)

where

𝑃 = ∑
𝑘∈Λ 𝑗0

E (
󵄨󵄨󵄨󵄨󵄨𝑐𝑗0 ,𝑘 − 𝑐

𝑗0 ,𝑘

󵄨󵄨󵄨󵄨󵄨
2

) ,

𝑄 =

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E(
󵄨󵄨󵄨󵄨󵄨󵄨
𝑑

𝑗,𝑘
1
{|𝑑𝑗,𝑘|≥𝜅𝜆𝑗}

− 𝑑
𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

2

) ,

𝑅 =
∞

∑
𝑗=𝑗1+1

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘
.

(65)
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Let us now investigate sharp upper bounds for 𝑃, 𝑅 and
𝑄 successively.

Upper Bound for 𝑃. The point (a) of Proposition 10 and
2𝑠/(2𝑠 + 2𝜌 + 1) < 1 yield

𝑃 ≤ 𝐶
2𝑗0

𝑛
≤ 𝐶

ln 𝑛

𝑛
≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (66)

Upper Bound for 𝑅.
(i) For 𝑟 ≥ 1 and𝑝 ≥ 2, we have𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) ⊆ 𝐵𝑠

2,∞
(𝑀).

Using 2𝑠/(2𝑠 + 2𝜌 + 1) < 2𝑠/(2𝜌 + 1), we obtain

𝑅 ≤ 𝐶
∞

∑
𝑗=𝑗1+1

2−2𝑗𝑠 ≤ 𝐶(
(ln 𝑛)3

𝑛
)

2𝑠/(2𝜌+1)

≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(67)

(ii) For 𝑟 ≥ 1 and 𝑝 ∈ [1, 2), we have 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) ⊆

𝐵
𝑠+1/2−1/𝑝

2,∞
(𝑀). The condition 𝑠 > (2𝜌 + 1)/𝑝 implies

that (𝑠 + 1/2 − 1/𝑝)/(2𝜌 + 1) > 𝑠/(2𝑠 + 2𝜌 + 1). Thus

𝑅 ≤ 𝐶
∞

∑
𝑗=𝑗1+1

2−2𝑗(𝑠+1/2−1/𝑝)

≤ 𝐶(
(ln 𝑛)3

𝑛
)

2(𝑠+1/2−1/𝑝)/(2𝜌+1)

≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(68)

Hence, for 𝑟 ≥ 1, {𝑝 ≥ 2 and 𝑠 > 0} or {𝑝 ∈ [1, 2), and
𝑠 > (2𝜌 + 1)/𝑝}, we have

𝑅 ≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (69)

Upper Bound for 𝑄. Adopting the notation𝐷
𝑗,𝑘

= 𝑑
𝑗,𝑘

− 𝑑
𝑗,𝑘
,

𝑄 can be written as

𝑄 =
4

∑
𝑖=1

𝑄
𝑖
, (70)

where

𝑄
1
=

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E (
󵄨󵄨󵄨󵄨󵄨𝐷𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

1
{|𝑑𝑗,𝑘|≥𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|<𝜅𝜆𝑗/2}

) ,

𝑄
2
=

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E (
󵄨󵄨󵄨󵄨󵄨𝐷𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

1
{|𝑑𝑗,𝑘|≥𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|≥𝜅𝜆𝑗/2}

) ,

𝑄
3
=

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E (𝑑2

𝑗,𝑘
1
{|𝑑𝑗,𝑘|<𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|≥2𝜅𝜆𝑗}

) ,

𝑄
4
=

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E (𝑑2

𝑗,𝑘
1
{|𝑑𝑗,𝑘|<𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|<2𝜅𝜆𝑗}

) .

(71)

Upper Bound for 𝑄
1

+ 𝑄
3
. Owing to the inequalities

1
{|𝑑𝑗,𝑘|<𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|≥2𝜅𝜆𝑗}

≤ 1
{|𝐷̂𝑗,𝑘|>𝜅𝜆𝑗/2}

, 1
{|𝑑𝑗,𝑘|≥𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|<𝜅𝜆𝑗/2}

≤

1
{|𝐷̂𝑗,𝑘|>𝜅𝜆𝑗/2}

and 1
{|𝑑𝑗,𝑘|<𝜅𝜆𝑗 ,|𝑑𝑗,𝑘|≥2𝜅𝜆𝑗}

≤ 1
{|𝑑𝑗,𝑘|≤2|𝐷̂𝑗,𝑘|}

, the
Cauchy-Schwarz inequality, and the points(b) and (c) of
Proposition 10, we have

𝑄
1
+ 𝑄

3
≤ 𝐶

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E (
󵄨󵄨󵄨󵄨󵄨𝐷𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

1
{|𝐷̂𝑗,𝑘|>𝜅𝜆𝑗/2}

)

≤ 𝐶

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

(E (
󵄨󵄨󵄨󵄨󵄨𝐷𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
4

))
1/2

(P(
󵄨󵄨󵄨󵄨󵄨𝐷𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨 >
𝜅𝜆

𝑗

2
))

1/2

≤ 𝐶
1

𝑛2

𝑗1

∑
𝑗=𝑗0

2𝑗(1+2𝜌) ≤ 𝐶
1

𝑛
≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(72)

Upper Bound for 𝑄
2
. It follows from the point(a) of

Proposition 10 that

𝑄
2
≤

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

E (
󵄨󵄨󵄨󵄨󵄨𝐷𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
2

) 1
{|𝑑𝑗,𝑘|≥𝜅𝜆𝑗/2}

≤ 𝐶
1

𝑛

𝑗1

∑
𝑗=j
0

22𝜌𝑗 ∑
𝑘∈Λ 𝑗

1
{|𝑑𝑗,𝑘|>𝜅𝜆𝑗/2}

.

(73)

Let us now introduce the integer 𝑗
∗
defined by

2𝑗∗ = [(
𝑛

ln 𝑛
)

1/(2𝑠+2𝜌+1)

] . (74)

Note that 𝑗
∗
∈ {𝑗

0
, . . . , 𝑗

1
} for 𝑛 large enough.

Then 𝑄
2
can be bounded as

𝑄
2
≤ 𝑄

2,1
+ 𝑄

2,2
, (75)

where

𝑄
2,1

= 𝐶
1

𝑛

𝑗∗

∑
𝑗=𝑗0

22𝜌𝑗 ∑
𝑘∈Λ 𝑗

1
{|𝑑𝑗,𝑘|>𝜅𝜆𝑗/2}

,

𝑄
2,2

= 𝐶
1

𝑛

𝑗1

∑
𝑗=𝑗∗+1

22𝜌𝑗 ∑
𝑘∈Λ 𝑗

1
{|𝑑𝑗,𝑘|>𝜅𝜆𝑗/2}

.

(76)

On the one hand we have

𝑄
2,1

≤ 𝐶
ln 𝑛

𝑛

𝑗∗

∑
𝑗=𝑗0

2𝑗(1+2𝜌) ≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (77)

On the other hand, we have the following.
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(i) For 𝑟 ≥ 1 and 𝑝 ≥ 2, the Markov inequality and 𝑓 ∈
𝐵𝑠

𝑝,𝑟
(𝑀) ⊆ 𝐵𝑠

2,∞
(𝑀) yield

𝑄
2,2

≤ 𝐶
ln 𝑛

𝑛

𝑗1

∑
𝑗=𝑗∗+1

22𝜌𝑗 1

𝜆2

𝑗

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘
≤ 𝐶

∞

∑
𝑗=𝑗∗+1

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘

≤ 𝐶
∞

∑
𝑗=𝑗∗+1

2−2𝑗𝑠 ≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(78)

(ii) For 𝑟 ≥ 1, 𝑝 ∈ [1, 2) and 𝑠 > (2𝜌 + 1)/𝑝, the Markov
inequality, 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀), and (2𝑠 + 2𝜌 + 1)(2 − 𝑝)/2 +

(𝑠 + 1/2 − 1/𝑝 + 𝜌 − 2𝜌/𝑝)𝑝 = 2𝑠 imply that

𝑄
2,2

≤ 𝐶
ln 𝑛

𝑛

𝑗1

∑
𝑗=𝑗∗+1

22𝜌𝑗 1

𝜆
𝑝

𝑗

∑
𝑘∈Λ 𝑗

󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
𝑝

≤ 𝐶(
ln 𝑛

𝑛
)

(2−𝑝)/2 ∞

∑
𝑗=𝑗∗+1

2𝑗𝜌(2−𝑝)2−𝑗(𝑠+1/2−1/𝑝)𝑝

≤ 𝐶(
ln 𝑛

𝑛
)

(2−𝑝)/2

2−𝑗∗(𝑠+1/2−1/𝑝+𝜌−2𝜌/𝑝)𝑝

≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(79)

Therefore, for 𝑟 ≥ 1, {𝑝 ≥ 2 and 𝑠 > 0} or {𝑝 ∈ [1, 2), and
𝑠 > (2𝜌 + 1)/𝑝}, we have

𝑄
2
≤ C(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (80)

Upper Bound for 𝑄
4
. We have

𝑄
4
≤

𝑗1

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘
1
{|𝑑𝑗,𝑘|<2𝜅𝜆𝑗}

. (81)

Let 𝑗
∗
be the integer (74). Then 𝑄

4
can be bound as

𝑄
4
≤ 𝑄

4,1
+ 𝑄

4,2
, (82)

where

𝑄
4,1

=

𝑗∗

∑
𝑗=𝑗0

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘
1
{|𝑑𝑗,𝑘|<2𝜅𝜆𝑗}

,

𝑄
4,2

=

𝑗1

∑
𝑗=𝑗∗+1

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘
1
{|𝑑𝑗,𝑘|<2𝜅𝜆𝑗}

.

(83)

On the one hand, we have

𝑄
4,1

≤ 𝐶

𝑗∗

∑
𝑗=𝑗0

2𝑗𝜆2

𝑗
= 𝐶

ln 𝑛

𝑛

𝑗∗

∑
𝑗=𝑗0

2𝑗(1+2𝜌) ≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(84)

On the other hand, we have the following.

(i) For 𝑟 ≥ 1 and 𝑝 ≥ 2, since 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) ⊆ 𝐵𝑠

2,∞
(𝑀),

we have

𝑄
4,2

≤
∞

∑
𝑗=𝑗∗+1

∑
𝑘∈Λ 𝑗

𝑑2

𝑗,𝑘
≤ 𝐶

∞

∑
𝑗=𝑗∗+1

2−2𝑗𝑠 ≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(85)

(ii) For 𝑟 ≥ 1, 𝑝 ∈ [1, 2) and 𝑠 > (2𝜌 + 1)/𝑝, owing to the
Markov inequality, 𝑓 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) and (2𝑠 + 2𝜌 + 1)(2 −

𝑝)/2 + (𝑠 + 1/2 − 1/𝑝 + 𝜌 − 2𝜌/𝑝)𝑝 = 2𝑠, we get

𝑄
4,2

≤ 𝐶

𝑗1

∑
𝑗=𝑗∗+1

𝜆
2−𝑝

𝑗
∑

𝑘∈Λ 𝑗

󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
𝑝

= 𝐶(
ln 𝑛

𝑛
)

(2−𝑝)/2 𝑗1

∑
𝑗=𝑗∗+1

2𝑗𝜌(2−𝑝) ∑
𝑘∈Λ 𝑗

󵄨󵄨󵄨󵄨󵄨𝑑𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨
𝑝

≤ 𝐶(
ln 𝑛

𝑛
)

(2−𝑝)/2 ∞

∑
𝑗=𝑗∗+1

2𝑗𝜌(2−𝑝)2−𝑗(𝑠+1/2−1/𝑝)𝑝

≤ 𝐶(
ln 𝑛

𝑛
)

(2−𝑝)/2

2−𝑗∗(𝑠+1/2−1/𝑝+𝜌−2𝜌/𝑝)𝑝

≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

.

(86)

So, for 𝑟 ≥ 1, {𝑝 ≥ 2 and 𝑠 > 0} or {𝑝 ∈ [1, 2), and 𝑠 >
(2𝜌 + 1)/𝑝}, we have

𝑄
4
≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (87)

Putting (70), (72), (80), and (87) together, for 𝑟 ≥ 1, {𝑝 ≥ 2
and 𝑠 > 0} or {𝑝 ∈ [1, 2) and 𝑠 > (2𝜌 + 1)/𝑝}, we obtain

𝑄 ≤ 𝐶(
ln 𝑛

𝑛
)

2𝑠/(2𝑠+2𝜌+1)

. (88)

Combining (64), (66), (69), and (88), we complete the
proof of Theorem 3.

Proof of Theorem 4. The proof of Theorem 4 is a direct appli-
cation ofTheorem 3: under (G1)–(G5), the function 𝑞 defined
by (24) satisfies (H1) see ([42], equation (2)) and (H2): (i) see
([42], Lemma 6), (ii) see, ([42], equation (11)) and (iii) see
([30], Proof of Proposition 6.1), with 𝜌 = 𝛿.

Proof of Theorem 5. The proof ofTheorem 5 is a consequence
ofTheorem 3: under (J1)–(J4), the function 𝑞 defined by (30)
satisfies (H1) and (H2): (i)-(ii) see ([31], Proposition 1) and
(iii) see ([52], equation (26)), with 𝜌 = 𝛿.

Proof of Theorem 6. Set V(𝑥) = 𝑓(𝑥)𝑔(𝑥). Following the
methodology of [49], we have

𝑓 (𝑥) − 𝑓 (𝑥) = 𝑆 (𝑥) − 𝑇 (𝑥) , (89)
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where

𝑆 (𝑥)

=
1

𝑔 (𝑥)
(V̂ (𝑥) − V (𝑥)

+𝑓 (𝑥) (𝑔 (𝑥) − 𝑔 (𝑥))) 1
{|𝑔(𝑥)|≥𝑐∗/2}

𝑇 (𝑥) = 𝑓 (𝑥) 1
{|𝑔(𝑥)|<𝑐∗/2}

.

(90)

Using (K3) and the indicator function, we have

|𝑆 (𝑥)| ≤ 𝐶 (|V̂ (𝑥) − V (𝑥)| + 󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨) . (91)

It follows from {|𝑔(𝑥)| < 𝑐
∗
/2} ∩ {|𝑔(𝑥)| > 𝑐

∗
} ⊆ {|𝑔(𝑥) −

𝑔(𝑥)| > 𝑐
∗
/2}, (K3), (K4), and the Markov inequality that

|𝑇 (𝑥)| ≤ 𝐶1
{|𝑔(𝑥)−𝑔(𝑥)|>𝑐∗/2}

≤ 𝐶
󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨 . (92)

The triangular inequality yields

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 (|V̂ (𝑥) − V (𝑥)| + 󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑔 (𝑥)

󵄨󵄨󵄨󵄨) . (93)

The elementary inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) implies that

E (
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓

󵄩󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶 (E (‖V̂ − V‖2

2
) + E (

󵄩󵄩󵄩󵄩𝑔 − 𝑔
󵄩󵄩󵄩󵄩
2

2
)) . (94)

We now bound this two MISEs via Theorem 3.

Upper Bound for the MISE of V̂. Under (K1)–(K6), the
function 𝑞 defined by (38) satisfies the following.

(H1) With V instead of 𝑓: since 𝜉
1
and 𝑋

1
are independent

with E(𝜉
1
) = 0,

E (𝑞 (𝛾
𝑗,𝑘

, 𝑉
1
))

= E (𝑌
1
𝛾
𝑗,𝑘

(𝑋
1
)) = E (𝑓 (𝑋

1
) 𝛾

𝑗,𝑘
(𝑋

1
))

= ∫
1

0

𝑓 (𝑥) 𝛾
𝑗,𝑘

(𝑥) 𝑔 (𝑥) 𝑑𝑥 = ∫
1

0

V (𝑥) 𝛾
𝑗,𝑘

(𝑥) 𝑑𝑥,

(95)

(H2): (i)-(ii)-(iii) with 𝜌 = 0:

(i) since 𝑌
1
(Ω) is bounded thanks to (K2) and (K3), say

|𝑌
1
| ≤ 𝑀 with 𝑀 > 0, we have

sup
(𝑥,𝑥∗)∈𝑉1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑞 (𝛾
𝑗,𝑘

, (𝑥, 𝑥
∗
))

󵄨󵄨󵄨󵄨󵄨

= sup
(𝑥,𝑥∗)∈[−𝑀,𝑀]×[0,1]

󵄨󵄨󵄨󵄨󵄨𝑥𝛾𝑗,𝑘
(𝑥

∗
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑀 sup
𝑥∗∈[0,1]

󵄨󵄨󵄨󵄨󵄨𝛾𝑗,𝑘
(𝑥

∗
)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝑗/2

(96)

(ii) using the boundedness of 𝑌
1
(Ω), then (K4), we have

E (
󵄨󵄨󵄨󵄨󵄨𝑞(𝛾𝑗,𝑘

, 𝑉
1
)
󵄨󵄨󵄨󵄨󵄨
2

) = E (𝑌2

1
(𝛾

𝑗,𝑘
(𝑋

1
))

2

)

≤ 𝐶E ((𝛾
𝑗,𝑘

(𝑋
1
))

2

)

= 𝐶∫
1

0

(𝛾
𝑗,𝑘

(𝑥))
2

𝑔 (𝑥) 𝑑𝑥

≤ 𝐶∫
1

0

(𝛾
𝑗,𝑘

(𝑥))
2

𝑑𝑥 ≤ 𝐶

(97)

(iii) using the boundedness of 𝑌
1
(Ω) and making the

change of variables 𝑦 = 2𝑗𝑥 − 𝑘, we obtain

∫
𝑉1(Ω)

󵄨󵄨󵄨󵄨󵄨𝑞 (𝛾
𝑗,𝑘

, 𝑥)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

= (∫
𝑀

−𝑀

|𝑥| 𝑑𝑥)(∫
1

0

󵄨󵄨󵄨󵄨󵄨𝛾𝑗,𝑘
(𝑥

∗
)
󵄨󵄨󵄨󵄨󵄨 𝑑𝑥∗

)

= 𝑀2 ∫
1

0

󵄨󵄨󵄨󵄨󵄨𝛾𝑗,𝑘
(𝑥)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶2−𝑗/2.

(98)

We conclude by applying Lemma 2 with 𝜌 = 0; (K5) and (K6)
imply (F1), and the previous inequality implies (F2).

Therefore, assuming that V ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) with 𝑟 ≥ 1, {𝑝 ≥ 2

and 𝑠 ∈ (0,𝑁)} or {𝑝 ∈ [1, 2) and 𝑠 ∈ (1/𝑝,𝑁)}, Theorem 3
proves the existence of a constant 𝐶 > 0 satisfying

E (‖V̂ − V‖2
2
) ≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+1)

. (99)

Upper Bound for theMISE of 𝑔. Under (K1)–(K6), proceeding
as the previous point, we show that the function 𝑞 defined by
(39) satisfies (H1) with 𝑔 instead of 𝑓 and 𝑋

𝑡
instead of 𝑉

𝑡
,

and(H2): (i)-(ii)-(iii) with 𝜌 = 0.
Therefore, assuming that 𝑔 ∈ 𝐵𝑠

𝑝,𝑟
(𝑀) with 𝑟 ≥ 1, {𝑝 ≥ 2

and 𝑠 ∈ (0,𝑁)} or {𝑝 ∈ [1, 2), and 𝑠 ∈ (1/𝑝,𝑁)}, Theorem 3
proves the existance of a constant 𝐶 > 0 satisfying

E (
󵄩󵄩󵄩󵄩𝑔 − 𝑔

󵄩󵄩󵄩󵄩
2

2
) ≤ 𝐶(

ln 𝑛

𝑛
)

2𝑠/(2𝑠+1)

. (100)

Combining (94), (99), and (100), we end the proof of
Theorem 6.
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