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Proportional hazard regression models are widely used in survival analysis to understand and exploit the relationship between
survival time and covariates. For left censored survival times, reversed hazard rate functions are more appropriate. In this paper,
we develop a parametric proportional hazard rates model using an inverted Weibull distribution. The estimation and construction
of confidence intervals for the parameters are discussed. We assess the performance of the proposed procedure based on a large
number of Monte Carlo simulations. We illustrate the proposed method using a real case example.

1. Introduction

In survival studies, covariates or explanatory variables are
usually employed to represent heterogeneity in a population.
The main objective in such situations is to understand
and exploit the relationship between lifetime and covari-
ates. Regres sion models are useful in such contexts to assess
the effect of covariates on lifetime. These models can be for-
mulated in many ways and several types are in common use.
Parametric regression models for lifetime involve speci-
fication for the distribution of a lifetime 𝑇 given a vector of
covariates 𝑋. The most commonly used parametric model
is the Weibull regression model, which satisfies the propor-
tional relationship between hazard rate functions of the
lifetimes of two subjects.Themaximum likelihood technique
is usually employed to find estimates of the parameters of the
model. For more properties and applications of parametric
regression models, one should refer to Lawless [1].

In survival studies, there are many occasions where
lifetime data are left censored. For example, baboons in the
Amboseli Reserve, Kenya, sleep in the trees and descend for
ageing at certain times of the day. Observers often arrive later
in the day after this descent has occurred and on such days
they can only ascertain that the descent took place before a
particular time, so that the descent times are left censored
(see [2]). On such occasions, a reversed hazard rate is more

appropriate than a hazard rate to analyze lifetime data due to
the fact that estimators of hazard rates are unstable when data
are left censored. The reversed hazard rate of 𝑇 is defined as

𝜆 (𝑡) = lim
Δ𝑡→0

𝑃 (𝑡 − Δ𝑡 ≤ 𝑇 | 𝑇 ≤ 𝑡)

Δ𝑡
. (1)

Introduced by Barlow et al. [3], the function 𝜆(𝑡) has
been used in various contexts such as the estimation of
distribution function under left censoring [1], defining a new
stochastic order [4], characterization of lifetime distributions
[5–7], studying ageing behavior [8, 9], evolving new repair
and maintenance strategies [10, 11], the mixed proportional
hazards model [12], and stress hybrid hazards model [13].

Recently, Sengupta and Nanda [14] introduced the pro-
portional reversed hazards model in a semiparametric setup.
In the present work, we introduce a fully parametric regres-
sion model that satisfies the proportional reversed hazards
property. The inverted Weibull distribution is employed as
a lifetime model, which can be extended to any parametric
model. A large number of simulation studies indicate that the
proposed approach is performing well.

The rest of the paper is organized as follows. In Section 2,
we introduce a parametric regressionmodel using an inverted
Weibull distribution. The proposed model has the property
that the reversed hazard rate for the lifetime of pair of sub-
jects is proportional. The estimation of the parameters of
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the model is discussed in Section 3. Simulation studies are
conducted in Section 4 to assess the finite sample behavior of
the estimators.The proposedmodel is applied to real life data
in Section 5 to illustrate its utility. Finally Section 6 provides
the major conclusions of the study.

2. Statistical Model

Let 𝑇 be a nonnegative random variable representing the
lifetime of a subject with the distribution function 𝐹(𝑡).
Assume that the probability density function of𝑇,𝑓(𝑡), exists.
The reversed hazard rate of 𝑇 given in (1) can be written as

𝜆 (𝑡) =
𝑓 (𝑡)

𝐹 (𝑡)
. (2)

Let 𝑋 be 𝑝 × 1 vector of auxiliary information which may
be time dependent. The proportional reversed hazard (PRH)
model is defined by

𝜆 (𝑡 | 𝑋) = 𝜆0 (𝑡) 𝑔 (𝛽;𝑋) , (3)

where 𝜆
0
(𝑡) is the baseline reversed hazard rate, 𝑔(⋅) is a

nonnegative function of 𝑋 and 𝛽, 𝑝 × 1 vector of regression
parameters, and 𝜆(𝑡 | 𝑥) is the reversed hazard rate of𝑇 given
the covariate𝑋.The PRHmodel can be expressed in terms of
the distribution function as

𝐹 (𝑡 | 𝑋) = (𝐹0 (𝑡))
𝑔(𝛽;𝑋)

, (4)

where 𝐹(𝑡 | 𝑋) is the distribution function of 𝑇 given 𝑋
and 𝐹

0
(𝑡) is the baseline distribution function in the absence

of covariates. It should be noted that, for two subjects, the
ratio of reversed hazard rates is independent of the time 𝑡.
Semiparametric analysis of themodel (2) is recently discussed
in Sengupta andNanda [14]. Our objective here is to carry out
the parametric analysis of an inverted Weibull distribution
under left censoring. When the lifetime random variable
follows the inverted Weibull distribution, the baseline distri-
bution function is given by

𝐹
0 (𝑡) = 𝑒

−𝛾/𝑡
𝛼

, 𝑡 > 0; 𝛼, 𝛾 > 0. (5)

The baseline reversed hazard rate of 𝑇 is then obtained as

𝜆
0 (𝑡) =

𝛾𝛼

𝑡𝛼+1
. (6)

Note that the baseline reversed hazard rate is decreasing as 𝑡
increases. In the presence of the covariate𝑋, we have

𝜆 (𝑡 | 𝑋) =
𝛾𝛼

𝑡𝛼+1
𝑔 (𝛽;𝑋) . (7)

We assume that 𝑔(𝛽;𝑋) = 𝑒𝛽


𝑋 so that

𝐹 (𝑡 | 𝑋) = 𝑒
(−𝛾/𝑡
𝛼

)𝑒
𝛽

𝑥

, (8)

with

𝑓 (𝑡 | 𝑋) =
𝛾𝛼𝑒
𝛽


𝑥

𝑡𝛼+1
𝑒
−(𝛾/𝑡
𝛼

)𝑒
𝛽

𝑥

. (9)

Suppose that the lifetime random variable 𝑇 is randomly left
censored by 𝑍. In practice, one could observe the vectors
(𝑌, 𝛿, 𝑋), where 𝑌 = max (𝑇, 𝑍) and 𝛿 = 𝐼(𝑇 = 𝑌) with 𝐼(⋅)
being the indicator function. Let (𝑦

𝑖
, 𝛿
𝑖
, 𝑥
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, be

i.i.d. copies of (𝑌, 𝛿, 𝑋). Then the likelihood function can be
written as

𝐿 (𝛽; 𝑦) =

𝑛

∏

𝑖=1

𝑓(𝑦
𝑖
| 𝑥
𝑖
)
𝛿
𝑖

𝐹(𝑦
𝑖
| 𝑥
𝑖
)
1−𝛿
𝑖

. (10)

Under the inverted Weibull distribution assumption, the
likelihood function given in (10) is obtained as

𝐿 (𝛽, 𝛼, 𝛾; 𝑦) ∝

𝑛

∏

𝑖=1

(
𝛾𝛼𝑒
𝛽


𝑥
𝑖

𝑦
𝛼+1

𝑖

𝑒
−(𝛾/𝑦

𝛼

𝑖
)𝑒
𝛽

𝑥
𝑖

)

𝛿
𝑖

(𝑒
(−𝛾/𝑦

𝛼

𝑖
)𝑒
𝛽

𝑥
𝑖

)

1−𝛿
𝑖

,

(11)

so that the log likelihood function is

𝑙 (𝛽, 𝛼, 𝛾; 𝑦) = log 𝑐 +
𝑛

∑

𝑖=1

𝛿
𝑖
𝛽

𝑥
𝑖

+

𝑛

∑

𝑖=1

𝛿
𝑖
(log 𝛾 + log𝛼) − (𝛼 + 1)

𝑛

∑

𝑖=1

𝛿
𝑖
log𝑦
𝑖

− 𝛾

𝑛

∑

𝑖=1

𝑒
𝛽
𝑥
𝑖

𝑦
𝛼

𝑖

,

(12)

where 𝑐 is a real constant independent of 𝛽, 𝛾, and 𝛼. We
maximize (12) to estimate the parameters 𝛽, 𝛼, and 𝛾 by
equating the partial derivatives with respect to each parame-
ter to zero as

𝜕𝑙

𝜕𝛽
=

𝑛

∑

𝑖=1

𝛿
𝑖
𝑥
𝑖
− 𝛾

𝑛

∑

𝑖=1

𝑒
𝛽


𝑥
𝑖𝑥
𝑖

𝑦
𝛼

𝑖

= 0,

𝜕𝑙

𝜕𝛼
=

𝑛

∑

𝑖=1

𝛿
𝑖

𝛼
−

𝑛

∑

𝑖=1

𝛿
𝑖
log𝑦
𝑖
+ 𝛾

𝑛

∑

𝑖=1

𝑒
𝛽
𝑥
𝑖 log𝑦

𝑖

𝑦
𝛼

𝑖

= 0,

𝜕𝑙

𝜕𝛾
=

𝑛

∑

𝑖=1

𝛿
𝑖

𝛾
−

𝑛

∑

𝑖=1

𝑒
𝛽


𝑥
𝑖

𝑦
𝛼

𝑖

= 0.

(13)

Since there is no closed form solution available for (13), we use
numerical methods to estimate the parameters.The observed
information matrix is given by

𝐼 (𝛽, 𝛼, 𝛾) =

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜕
2
𝑙

𝜕𝛽𝜕𝛽

−𝜕
2
𝑙

𝜕𝛽𝜕𝛼

−𝜕
2
𝑙

𝜕𝛽𝜕𝛾

−𝜕
2
𝑙

𝜕𝛼𝜕𝛽

−𝜕
2
𝑙

𝜕𝛼2

−𝜕
2
𝑙

𝜕𝛼𝜕𝛾

−𝜕
2
𝑙

𝜕𝛾𝜕𝛽

−𝜕
2
𝑙

𝜕𝛾𝜕𝛼

−𝜕
2
𝑙

𝜕𝛾2

]
]
]
]
]
]
]
]
]
]
]
]

]

. (14)

Note that the matrix (14) is of order (𝑝 + 2) × (𝑝 + 2). Under
the standard regularity conditions, the vector of estimates
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(𝛽, �̂�, 𝛾) is asymptotically (𝑝 + 2)-variate normal with mean
vector (𝛽, 𝛼, 𝛾) and dispersion matrix 𝐼∗−1, where 𝐼∗ is the
Fisher information matrix obtained from 𝐼 by taking the
expected values of each entry.

There are different algorithms available to estimate the
parameters by solving the score equations or directly optimiz-
ing the likelihood function. The Newton-Raphson method is
the most common method used to estimate since it is easy
to determine the derivatives of the score equations. In this
numerical iterative method, the initial values play a vital role
due to the logarithm function. In the simulation studies given
in Section 4, we use the simplex method proposed by Neldar
and Mead [15] to estimate the parameters. The simplex
method is a simple method to use to estimate the parameters
by maximizing the likelihood function where we do not need
the derivatives of the function to be optimized.

3. Testing and Confidence Intervals for 𝛽

Tests and interval estimates of parameters can be derived by
the likelihood ratio test procedure. We are mainly interested
in the regression parameter𝛽where the parameters 𝜃 = (𝛼, 𝛾)
are normally considered as nuisance parameters.

Let the 𝑝 vector regression parameter be denoted as 𝛽 =
(𝛽
1
, 𝛽
2
), where 𝛽

1
and 𝛽

2
are of vectors of sizes 𝑘 and 𝑝 − 𝑘,

respectively, and 𝜃 is the other parameter in themodel.We are
interested in testing

𝐻
0
: 𝛽
1
= 𝛽
0

1
against 𝐻

1
: 𝛽
1
̸= 𝛽
0

1
, (15)

where 𝛽0
1
is the specified regression parameter value. To test

𝐻
0
, we construct the likelihood ratio statistic

Λ
∗
= 2𝑙 (𝛽

1
, 𝛽
2
, 𝜃) − 2𝑙 (𝛽

0

1
, 𝛽
2
, 𝜃) , (16)

where 𝛽
1
, 𝛽
2
, and 𝜃 are the maximum likelihood estimates

under the full model. For a large value of 𝑛, Λ∗ follows the 𝜒2
𝑘

distribution under the null hypothesis.
Alternatively, we can use the test statistic

Λ
1
= (𝛽
1
− 𝛽
0

1
)𝑉
−1

11
(𝛽
1
− 𝛽
0

1
) , (17)

where 𝑉
11
can be obtained from 𝑉 = 𝐼(𝛽, 𝜃)

−1, which is par-
titioned as

𝑉 = [
𝑉
11
𝑉
12

𝑉
21
𝑉
22

] . (18)

Under the null hypothesis, Λ
1
follows 𝜒2

𝑘
distribution.

Assuming asymptotic normality, we can construct the
100(1 − 𝛼)% confidence interval for the individual regression
parameter 𝛽

𝑗
as

𝛽
𝑗
± 𝑧
𝛼/2

s.e. (𝛽
𝑗
) , (19)

where s.e.(𝛽
𝑗
) can be obtained from 𝑉

11
.

Another important problem is the selection of important
covariates in the proportional reversed hazard models. Since

we assume a parametric model, we can use variable selection
methods such as the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC). To test adequacy of
the parametricmodel, Cox-Snell residuals can be used, which
is explained in Section 5 with a case example.

4. Performance Analysis

To assess the performance of the proposed method, we
carried out a large number of simulations.We generated sam-
ples of size 100 from an inverted Weibull distribution, with
different values of parameters as 𝛼 = (0.5, 1, 1.5, 2) and
𝛾 = (0.5, 1, 1.5, 2). We considered a single covariate which
is generated from Uniform (0,1) and a regression parameter
assumed to be 𝛽 = (0.5, 1.1.5, 2). We developed the censoring
mechanism using the random data generated from the
exponential distributionwith the parameter 𝜆.We choose the
value of 𝜆 such that the percent of censored data is between
10 and 20 percent. We used the simplex method proposed
by Neldar and Mead [15] to estimate the parameters. We
repeated the study for 10000 times and computed the mean
and standard deviation of the parameter estimates.The entire
study was repeated for a sample size of 250. The summary of
the parameter estimates is given in Table 1.

From Table 1 we can see that the mean of the parameter
estimates based on 10000 simulation is very close to the true
parameter values and the standard deviation is also small.
When the sample size increases the standard error of the
estimates decreases and bias reduces. It should be noted that
there is a slight positive bias in all cases, even though it is
negligibly small. Since there are no comparable models based
on reversed hazard rates, we did not perform any comparison
studies.

5. An Example

We consider an extract of left censored data from an Aus-
tralian twin study given inDuffy et al. [16].The data consist of
information on the age of appendectomy ofmonozygotic and
dizygotic twins. There are observations with missing age at
onset and therefore the data are left censored.The individuals
having age at onset of less than 11 are left censored. The
covariate, namely, Zygocity, has values from 1 to 6. This data
set consists of 54 observations of which 15 are left censored.
We use this data to illustrate the utility of the parametric
reverse hazard rate model. Probability plotting and statistical
test confirmed the distribution of data as inverted Weibull
distribution. We use the simplex method to estimate the
parameters. Since the parameter values are unknown and to
avoid the effect of inappropriate initial values, we consider
different initial values and choose the estimates which have
maximum likelihood. Estimates of the parameters are �̂� =

2.3940, 𝛽 = −0.0142, and 𝛾 = 444.0586. The 95% confidence
interval for 𝛽 indicates that the regression coefficient corre-
sponding to Zygocity is not significantly different than zero;
that is, the effect of Zygocity is negligible. This conclusion is
also verified through the likelihood ratio test statistic value
0.0074 having a 𝑃 value of 0.93.
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Table 1: Averages and standard deviation (in brackets) of parameter estimates.

True parameter values Estimate of parameters (𝑛 = 100) Estimate of parameters (𝑛 = 250)
𝛼 𝛽 𝛾 �̂� 𝛽 𝛾 �̂� 𝛽 𝛾

1 1 1 1.0228 1.0189 1.0351 1.0080 1.0127 1.0096
(0.0924) (0.4040) (0.2486) (0.0556) (0.2434) (0.1444)

1 0.5 1 1.0199 0.5104 1.0287 1.0075 0.5046 1.0115
(0.0906) (0.3984) (0.2389) (0.0564) (0.2489) (0.1476)

1 1.5 1 1.0196 1.5321 1.0302 1.0083 1.5113 1.0121
(0.0877) (0.4033) (0.2413) (0.0547) (0.2457) (0.1430)

1 2 1 1.0200 2.0348 1.0313 1.0090 2.0178 1.0113
(0.0862) (0.4123) (0.2384) (0.0535) (0.2530) (0.1423)

1 1 0.5 1.0234 1.0260 0.5107 1.0085 1.0090 0.5049
(0.0977) (0.4338) (0.1347) (0.0607) (0.2708) (0.0824)

1 1 1.5 1.0199 1.0191 1.5590 1.0081 1.0064 1.5225
(0.0860) (0.3848) (0.3553) (0.0539) (0.2381) (0.2128)

1 1 2 1.0200 1.0223 2.0800 1.0081 1.0104 2.0301
(0.0843) (0.3759) (0.4708) (0.0534) (0.2361) (0.2823)

0.5 1 1 0.5099 1.0277 1.0252 0.5040 1.0088 1.0109
(0.0459) (0.3986) (0.2400) (0.0285) (0.2452) (0.1459)

1.5 1 1 1.5308 1.0156 1.0372 1.5142 1.0081 1.0121
(0.1330) (0.4072) (0.2480) (0.0814) (0.2474) (0.1449)

2 1 1 2.0460 1.0229 1.0329 2.0160 1.0129 1.0100
(0.1794) (0.4050) (0.2444) (0.1111) (0.2512) (0.1484)

We use a Cox-Snell residual plot to assess the goodness of
fit. The Cox-Snell residual is defined by

𝑟
𝑖
= − log𝐹 (𝑦

𝑖
) =

𝛾

𝑦
𝛼

𝑖

𝑒
𝛽𝑥
𝑖 , 𝑖 = 1, . . . , 𝑛. (20)

If the model fits the data, then the residuals should have a
standard exponential distribution, so that a hazard plot of
residuals versus theNelson-Aalen estimator of the cumulative
hazard of the residuals will be a straight line with slope
one. A plot of Cox-Snell residuals against the Nelson-Aalen
estimates of the cumulative hazard rate of residuals is given
in Figure 1, which shows that the fit is reasonably good.

6. Conclusions

Proportional reversed hazard rate models are more suitable
for modeling the left censored lifetime data. In this paper,
we proposed a parametric PRH model assuming that the
lifetime data follows an inverted Weibull distribution. The
estimation and hypothesis testing of the parameters of the
model have been discussed in detail. The performance of the
proposedmodel is assessed based on a large number ofMonte
Carlo simulations. Our simulations results clearly indicated
that the proposed model is performing well. We applied the
proposedmodel to a real life example to illustrate the utility of
the method. Recently, Bayesian methodology was extensively
employed in the analysis of lifetime data. The inference
procedures of the proposedmodel by selecting an appropriate
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Figure 1: Plot of cumulative hazard rates of Cox-Snell residuals
versus residuals.

prior distribution are topics of research to be explored. The
present work can be easily extended to any location-scale
families of distributions.
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