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In this communication, we deal with a generalized residual entropy of record values and weighted distributions. Some results on
monotone behaviour of generalized residual entropy in record values are obtained. Upper and lower bounds are presented. Further,
based on this measure, we study some comparison results between a random variable and its weighted version. Finally, we describe
some estimation techniques to estimate the generalized residual entropy of a lifetime distribution.

1. Introduction

There have been several attemptsmade by various researchers
to generalize the Shannon entropy (see Shannon [1]) since
its appearance in Bell System Technical Journal. For various
properties and applications of the generalized entropy mea-
sures, we refer to Kapur [2], Renyi [3], Tsallis [4], and Varma
[5]. In this paper, we consider generalized residual entropy
due to Varma [5]. Let 𝑋 be a nonnegative random variable
representing the lifetime of a system with an absolutely con-
tinuous cumulative distribution function 𝐹(𝑥), probability
density function 𝑓(𝑥), survival function 𝐹(𝑥)(= 1 − 𝐹(𝑥)),
and hazard rate 𝜆

𝐹
(𝑥). The generalized entropy of 𝑋 is given

by (see Varma [5])

𝑉
𝛼,𝛽 (𝑋) = (

1
𝛽 − 𝛼

) ln∫

∞

0
𝑓
𝛼+𝛽−1

(𝑥) 𝑑𝑥,

0 ≤ 𝛽 − 1 < 𝛼 < 𝛽.

(1)

Measure (1) reduces to Renyi entropy (see Renyi [3]) when
𝛽 = 1 and reduces to Shannon entropy (see Shannon [1])
when 𝛽 = 1 and 𝛼 → 1. We often find some situations
in practice where the measure defined by (1) is not an
appropriate tool to deal with uncertainty. For example, in
reliability and life testing studies, sometimes it is required
to modify the current age of a system. Here, one may be
interested to study the uncertainty of the random variable
𝑋
𝑡

= [𝑋 − 𝑡 | 𝑋 ≥ 𝑡]. The random variable 𝑋
𝑡
is dubbed

as the residual lifetime of a system which has survived up to

time 𝑡 ≥ 0 and is still working. Analogous to Ebrahimi [6],
the generalized entropy of the residual lifetime𝑋

𝑡
is given by

𝑉
𝛼,𝛽 (𝑋; 𝑡) = (

1
𝛽 − 𝛼

) ln∫

∞

𝑡

𝑓
𝛼+𝛽−1

(𝑥)

𝐹
𝛼+𝛽−1

(𝑡)

𝑑𝑥,

0 ≤ 𝛽 − 1 < 𝛼 < 𝛽, 𝑡 ≥ 0,

(2)

which is also known as the generalized residual entropy. It
reduces to (1) when 𝑡 = 0. Also (2) reduces to Renyi’s
residual entropy (see Asadi et al. [7]) when 𝛽 = 1 and
reduces to residual entropy (see Ebrahimi [6]) when 𝛽 = 1
and 𝛼 → 1. Based on the generalized entropy measures
given in (1) and (2), several authors obtained various results
in the literature. In this direction, we refer to Kayal [8–11],
Kayal and Vellaisamy [12], Kumar and Taneja [13], and Sati
and Gupta [14]. In this paper, we study some properties and
characterizations of the generalized residual entropy given by
(2) based on the upper record values.

Let {𝑋
𝑛

: 𝑛 = 1, 2, . . .} be a sequence of identically
and independently distributed nonnegative random variables
having an absolutely continuous cumulative distribution
function𝐹(𝑥), probability density function𝑓(𝑥), and survival
function 𝐹(𝑥). An observation 𝑋

𝑗
in an infinite sequence

𝑋1, 𝑋2, . . . is said to be an upper record value if its value
is greater than that of all the previous observations. For
convenience, we denote 𝑈1 = 1 and, for 𝑖 ≥ 2, 𝑈

𝑖
=

min{𝑗; 𝑈
𝑖−1 < 𝑗 and 𝑋

𝑗
> 𝑋
𝑈𝑖−1

}. Then, 𝑋
𝑈1

, 𝑋
𝑈2

, . . . is
called a sequence of upper record values. The probability
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density function and the survival function of the 𝑛th upper
record value 𝑋

𝑈𝑛
are given by

𝑓
𝑈𝑛

(𝑥) =
𝐻
𝑛−1

(𝑥)

(𝑛 − 1)!
𝑓 (𝑥) , (3)

𝐹
𝑈𝑛

(𝑥) =

𝑛−1
∑

𝑗=0

𝐻
𝑗
(𝑥)

𝑗!
𝐹 (𝑥) =

Γ (𝑛;𝐻 (𝑥))

Γ (𝑛)
, (4)

respectively, where 𝐻(𝑥) = − ln𝐹(𝑥) and Γ(𝑎; 𝑥) =

∫
∞

𝑥
𝑒
−𝑢

𝑢
𝑎−1

𝑑𝑢, 𝑎 > 0, 𝑥 ≥ 0. Note that Γ(𝑎; 𝑥) is known as
incomplete gamma function. Also the hazard rate of 𝑋

𝑈𝑛
is

𝜆
𝐹𝑈𝑛

(𝑥) =
𝐻
𝑛−1

(𝑥) / (𝑛 − 1)!
∑
𝑛−1
𝑗=0 𝐻𝑛 (𝑥) /𝑗!

𝜆
𝐹 (𝑥) . (5)

Record values have wide spread applications in real life. For
the applications of record values in destructive testing of
wooden beams and industrial stress testing, one may refer to
Glick [15] and Ahmadi and Arghami [16]. Record values are
also useful in meteorological analysis and hydrology. For an
extensive study of record values and applications, we refer to
Arnold et al. [17]. The paper is arranged as follows.

In Section 2, we obtain various properties on the gener-
alized residual entropy. It is shown that the measure given
by (2) of the 𝑛th upper record value of any distribution
can be expressed in terms of that of the 𝑛th upper record
value from 𝑈(0, 1) distribution. Upper and lower bounds are
obtained. Monotone behaviour of (2) based on the upper
record values is investigated. In Section 3, based on (2),
we study comparisons between a random variable and its
weighted version.We describe some estimation techniques to
estimate the generalized residual entropy of a life distribution
in Section 4. Some concluding remarks have been added
in Section 5. Throughout the paper, we assume that the
random variables are nonnegative. The terms increasing
and decreasing stand for nondecreasing and nonincreasing,
respectively.

2. Main Results

In this section, we study several properties of the generalized
residual entropy given by (2) based on the upper record
values. First, we state the following lemma. The proof is
straightforward hence omitted.

Lemma 1. Let 𝑋
𝑈
∗

𝑛

denote the 𝑛th upper record value from a
sequence of independent observations from 𝑈(0, 1). Then,

𝑉
𝛼,𝛽

(𝑋
𝑈
∗

𝑛

; 𝑡)

= (
1

𝛽 − 𝛼
) ln

Γ (𝛾 (𝑛 − 1) + 1, − ln (1 − 𝑡))

Γ𝛾 (𝑛; − ln (1 − 𝑡))
.

(6)

In the following theorem, we show that the generalized
residual entropy of the upper record value 𝑋

𝑈𝑛
can be

expressed in terms of that of𝑋
𝑈
∗

𝑛

. Let𝑋 be a random variable
having truncated gamma distribution with density function

𝑓 (𝑥 | 𝑎, 𝑏) =
𝑏
𝑎

Γ (𝑎, 𝑡)
𝑒
−𝑏𝑥

𝑥
𝑎−1

,

𝑥 > 𝑡 ≥ 0, 𝑎 > 0, 𝑏 > 0.
(7)

For convenience, we denote 𝑋 ∼ Γ
𝑡
(𝑎, 𝑏).

Theorem 2. The generalized residual entropy of 𝑋
𝑈𝑛

can be
expressed as

𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡)

= 𝑉
𝛼,𝛽

(𝑋
𝑈
∗

𝑛

; 𝐹 (𝑡))

+ (
1

𝛽 − 𝛼
) ln [𝐸 (𝑓

𝛾−1
(𝐹
−1

(1 − 𝑒
−𝑉𝑛)))] ,

(8)

where 𝑉
𝑛
∼ Γ
−ln𝐹(𝑡)

(𝛾(𝑛 − 1) + 1, 1).

Proof. From (2), (3), and (4) and using the transformation
𝑢 = − ln𝐹(𝑥), we obtain

𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡) = (
1

𝛽 − 𝛼
)

⋅ ln∫

∞

−ln𝐹(𝑡)

𝑓
𝛾−1

(𝐹
−1

(1 − 𝑒
−𝑢

)) 𝑒
−𝑢

𝑢
(𝑛−1)𝛾

[Γ (𝑛; − ln𝐹 (𝑡))]
𝛾

𝑑𝑢

= 𝑉
𝛼,𝛽

(𝑋
𝑈
∗

𝑛

; 𝐹 (𝑡)) + (
1

𝛽 − 𝛼
)

⋅ ln [𝐸 (𝑓
𝛾−1

(𝐹
−1

(1 − 𝑒
−𝑉𝑛)))] ,

(9)

since𝑉
𝛼,𝛽

(𝑋
𝑈
∗

𝑛

; 𝐹(𝑡)) = Γ(𝛾(𝑛−1)+1, −ln𝐹(𝑡)).This completes
the proof.

As a consequence of Theorem 2, we get the following
remark.

Remark 3. Let 𝑋
𝑈
𝐸

𝑛

denote the 𝑛th upper record value from
a sequence of independent observations from a standard
exponential distribution. Then,

𝑉
𝛼,𝛽

(𝑋
𝑈
𝐸

𝑛

; 𝑡) = (
1

𝛽 − 𝛼
) ln

Γ (𝛾 (𝑛 − 1) + 1, 𝑡)
Γ𝛾 (𝑛, 𝑡)

+ (
1

𝛽 − 𝛼
) ln𝐸 (𝑒

−(𝛾−1)𝑍
) ,

(10)

where 𝑍 ∼ Γ
𝑡
(𝛾(𝑛 − 1) + 1, 1).

In Table 1, we obtain expressions of 𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡) for
Weibull and Pareto distributions. It is easy to show that
𝜆
𝐹𝑈𝑛

(𝑡)/𝜆
𝐹
(𝑡) and 𝑓

𝑈𝑛
(𝑡)/𝑓(𝑡) are increasing functions in 𝑡 ≥

0 (see Li and Zhang [18]). Therefore, we have the following
theorem whose proof follows along the lines similar to those
inTheorem 8 of Kayal [11].
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Table 1: Expressions of 𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡).

Probability density functions (PDF) 𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡)

𝑓 (𝑥 | 𝜃) = 𝜃𝑥
𝜃−1

𝑒
−𝑥
𝜃

, 𝑥 > 0, 𝜃 > 0 (
1

𝛽 − 𝛼
) ln

Γ(𝑛𝛾 − ((𝛾 − 1)/𝜃); 𝑡𝜃)
Γ𝛾(𝑛; 𝑡𝜃)

+ (
𝛾 − 1
𝛽 − 𝛼

) ln 𝜃 − (
𝑛𝛾 − (1/𝜃)(𝛾 − 1)

𝛽 − 𝛼
) ln 𝛾

𝑓 (𝑥 | 𝜃, 𝛿) =
𝜃𝛿
𝜃

𝑥𝜃+1
, 𝑥 ≥ 𝛿 > 0, 𝜃 > 0 (

1
𝛽 − 𝛼

) ln(
(𝜃/𝛿)
𝛾−1

Γ(𝛾(𝑛 − 1) + 1; −𝜃 ln(𝛿/𝑡))
((1 + (1/𝜃))(𝛾 − 1) + 1)𝛾(𝑛−1)+1Γ𝛾(𝑛; −𝜃 ln(𝛿/𝑡))

)

Table 2: Bounds of 𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡).

PDF Bounds

𝑓 (𝑥 | 𝜃, 𝛿) =
𝜃𝛿
𝜃

𝑥𝜃+1
, 𝑥 ≥ 𝛿 > 0, 𝜃 > 0

≤ 𝐵
𝑟
(𝑡) + (

1
𝛽 − 𝛼

) ln[
𝜃
𝛾
𝛿
𝜃(𝛾−1)

(𝜃 + 1) (𝛾 − 1) 𝑡(𝜃+1)(𝛾−1)
]

≤ (≥)𝑉
𝛼,𝛽

(𝑋
𝑈
∗
𝑛
; 𝑡) + (

𝛾 − 1
𝛽 − 𝛼

) ln(
𝜃

𝛿
), for 𝛼 + 𝛽 > (<)2

𝑓 (𝑥 | 𝜃) =
1
𝜃
exp(

−𝑥

𝜃
), 𝑥 > 0, 𝜃 > 0 ≤ 𝐵

𝑟
(𝑡) +

1
𝛽 − 𝛼

ln(
𝜃
1−𝛾

𝛾 + 1
exp(

−𝑡 (𝛾 + 1)

𝜃
))

≤ (≥)𝑉
𝛼,𝛽

(𝑋
𝑈
∗
𝑛
; 𝑡) −

𝛾 − 1
𝛽 − 𝛼

ln(𝜃), for 𝛼 + 𝛽 > (<)2

Theorem 4. The 𝑛th upper record value 𝑋
𝑈𝑛

is increasing
(decreasing) generalized residual entropy (IGRE (DGRE)) if 𝑋
is IGRE (DGRE).

Note that for 𝑛th and (𝑛 + 1)th upper record values,
𝜆
𝐹𝑈𝑛+1

(𝑡)/𝜆
𝐹𝑈𝑛

(𝑡) is increasing in 𝑡 ≥ 0 (see Kochar [19])

and hence 𝑋
𝑈𝑛

𝑙𝑟

≤ 𝑋
𝑈𝑛+1

. Therefore, the following corollary
immediately follows fromTheorem 4.

Corollary 5. The (𝑛 + 1)th upper record value 𝑋
𝑈𝑛+1

is IGRE
(DGRE) if 𝑛th upper record value 𝑋

𝑈𝑛
is IGRE (DGRE).

The following theorem provides bounds for the general-
ized residual entropy of the 𝑛th upper record 𝑋

𝑈𝑛
. We omit

the proof as it follows in an analogous approach similar to
that of Theorem 11 given in Kayal [11].

Theorem 6. (a) Let 𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡) be finite. If 𝑚
𝑟
= max{𝛾(𝑛 −

1), − ln𝐹(𝑡)} is the mode of Γ−ln𝐹(𝑡)(𝛾(𝑛 − 1) + 1, 1), then

𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡) ≤ 𝐵
𝑟 (𝑡)

+ (
1

𝛽 − 𝛼
) ln∫

∞

𝑡

𝜆
𝐹 (𝑥) 𝑓

𝛾−1
(𝑥) 𝑑𝑥,

(11)

where 𝐵
𝑟
(𝑡) = −(𝛾/(𝛽 − 𝛼)) ln Γ(𝑛; − ln𝐹(𝑡)) + (𝛾(𝑛 − 1)/(𝛽 −

𝛼)) ln𝑚
𝑟
− (1/(𝛽 − 𝛼))𝑚

𝑟
.

(b) Let 𝑀 = 𝑓(𝑚) < ∞, where 𝑚 is the mode of the
distribution with density function 𝑓(𝑥). Also 𝑋

𝑈
∗

𝑛

denote the
𝑛th upper record value from a sequence of observation from
𝑈(0, 1). Then, for 𝛼 + 𝛽 > (<)2,

𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡) ≤ (≥)𝑉𝛼,𝛽 (𝑋𝑈∗
𝑛

; 𝑡) + (
𝛾 − 1
𝛽 − 𝛼

) ln𝑀. (12)

As an application of Theorem 6, we obtain bounds of Pareto
and exponential distributions presented in Table 2. The
following theorem gives the monotone behaviour of the

generalized residual entropy of upper record values in terms
of 𝑛.

Definition 7. Let 𝑋 and 𝑌 be two nonnegative random
variables with survival functions 𝐹(𝑥) and 𝐺(𝑥), respectively.
Then, 𝑋 is said to be smaller than 𝑌 in the usual stochastic
ordering, denoted by 𝑋

st
≤ 𝑌, if 𝐹(𝑥) ≤ 𝐺(𝑥), for all 𝑥 ≥ 0.

Theorem 8. Let 𝑋
𝑈1

, 𝑋
𝑈2

, . . . be a sequence of upper record
values from a distribution with cumulative distribution func-
tion 𝐹(𝑥) and probability density function 𝑓(𝑥). Also let 𝑓(𝑥)

be an increasing function. Then, 𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡) is increasing
(decreasing) in 𝑛 for 𝛼 + 𝛽 > (<)2.

Proof. From (8), we have

𝑉
𝛼,𝛽

(𝑋
𝑈𝑛+1

; 𝑡) −𝑉
𝛼,𝛽

(𝑋
𝑈𝑛

; 𝑡)

= 𝑉
𝛼,𝛽

(𝑋
𝑈
∗

𝑛+1
; 𝐹 (𝑡)) −𝑉

𝛼,𝛽
(𝑋
𝑈
∗

𝑛

; 𝐹 (𝑡))

+(
1

𝛽 − 𝛼
) ln

𝐸 (𝑓
𝛾−1

(𝐹
−1

(1 − 𝑒
−𝑉𝑛+1)))

𝐸 (𝑓𝛾−1 (𝐹−1 (1 − 𝑒−𝑉𝑛)))
.

(13)

Moreover, for 𝛼 + 𝛽 > (<)2,

∫
∞

−ln𝐹(𝑡) 𝑒
−𝑥

𝑥
𝛾(𝑛−1)

𝑑𝑥

∫
∞

−ln𝐹(𝑡) 𝑒
−𝑥𝑥(𝑛−1)𝑑𝑥

(14)

is an increasing (decreasing) function in 𝑡. Therefore, for
𝑢(𝑥) = 𝑥 and V

𝛾
(𝑥) = 𝑒

−𝑥
𝑥
−𝛾, we have 𝑊

𝛾

st
≥ (

st
≤)𝑊1 for

𝛼+𝛽 > (<)2. Hence, fromTheorem 12 of Kayal [11], it can be
proved that 𝑉

𝛼,𝛽
(𝑋
𝑈
∗

𝑛

; 𝐹(𝑡)) is increasing (decreasing) for 𝛼 +

𝛽 > (<)2. Now, along the lines of the proof ofTheorem 3.7 of
Zarezadeh and Asadi [20], the proof follows. This completes
the proof of the theorem.
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3. Weighted Distributions

To overcome the difficulty to model nonrandomized data set
in environmental and ecological studies, Rao [21] introduced
the concept of weighted distributions. Let the probability
density function of 𝑋 be 𝑓(𝑥), and let 𝑤(𝑥) be the nonneg-
ative function with 𝜇

𝑤
= 𝐸(𝑤(𝑋)) < ∞. Also let 𝑓

𝑤
(𝑥) and

𝐹
𝑤
(𝑥), respectively, be the probability density function and

survival function of the weighted random variable𝑋
𝑤
, which

are given by

𝑓
𝑤 (𝑥) =

𝑤 (𝑥) 𝑓 (𝑥)

𝜇
𝑤

, (15)

𝐹
𝑤 (𝑥) =

𝐸 (𝑤 (𝑋) | 𝑋 ≥ 𝑥) 𝐹 (𝑥)

𝜇
𝑤

. (16)

The hazard rate of 𝑋
𝑤
is

𝜆
𝐹𝑤

(𝑥) =
𝑤 (𝑥)

𝐸 (𝑤 (𝑋) | 𝑋 ≥ 𝑥)
𝜆
𝐹 (𝑥) . (17)

For some results and applications on weighted distributions,
one may refer to Di Crescenzo and Longobardi [22], Gupta
and Kirmani [23], Kayal [9], Maya and Sunoj [24], Navarro et
al. [25], and Patil [26]. In the present section, we obtain some
comparison results based on the generalized residual entropy
between a random variable and its weighted version.We need
the following definition in this direction.

Definition 9. A random variable 𝑋 with hazard rate 𝜆
𝐹
(𝑥)

is said to have a decreasing (increasing) failure rate (DFR
(IFR)), if 𝜆

𝐹
(𝑡) is decreasing (increasing) in 𝑡 ≥ 0.

Theorem 10. Let 𝑋 and 𝑌 be two random variables with
cumulative distribution functions 𝐹(𝑥) and 𝐺(𝑥), probability
density functions 𝑓(𝑥) and 𝑔(𝑥), survival functions 𝐹(𝑥)

and 𝐺(𝑥), and hazard rates 𝜆
𝐹
(𝑥) and 𝜆

𝐺
(𝑥), respectively. If

𝜆
𝐹
(𝑡) ≤ 𝜆

𝐺
(𝑡), for all 𝑡 ≥ 0, and either 𝐹(𝑥) or 𝐺(𝑥) is DFR,

then 𝑉
𝛼,𝛽

(𝑋; 𝑡) ≤ (≥)𝑉
𝛼,𝛽

(𝑌; 𝑡), for 𝛼 + 𝛽 > (<)2.

Proof. The proof follows along the lines of that of Theorem 4
of Asadi et al. [7].

Theorem 11. Under the assumptions of Theorem 10, if 𝜆
𝐹
(𝑡) ≥

𝜆
𝐺
(𝑡), for all 𝑡 ≥ 0, and either 𝐹(𝑥) or 𝐺(𝑥) is DFR, then

𝑉
𝛼,𝛽

(𝑋; 𝑡) ≥ (≤)𝑉
𝛼,𝛽

(𝑌; 𝑡), for 𝛼 + 𝛽 > (<)2.

Proof. Proof follows from that of Theorem 4 of Asadi et al.
[7].

Theorem 12. (a) Suppose 𝐸(𝑤(𝑋) | 𝑋 ≥ 𝑡), or 𝑤(𝑡), is
decreasing. If 𝑋 or 𝑋

𝑤
is DFR, then, for all 𝑡 ≥ 0, 𝑉

𝛼,𝛽
(𝑋; 𝑡) ≤

(≥)𝑉
𝛼,𝛽

(𝑋
𝑤
; 𝑡), for 𝛼 + 𝛽 > (<)2.

(b) Suppose 𝐸(𝑤(𝑋) | 𝑋 ≥ 𝑡), or 𝑤(𝑡), is increasing. If 𝑋
or 𝑋
𝑤
is DFR, then, for all 𝑡 ≥ 0, 𝑉

𝛼,𝛽
(𝑋; 𝑡) ≥ (≤)𝑉

𝛼,𝛽
(𝑋
𝑤
; 𝑡),

for 𝛼 + 𝛽 > (<)2.

Proof. It is not difficult to see that 𝜆
𝐹
(𝑡) ≤ 𝜆

𝐹𝑤
(𝑡), for all 𝑡 ≥ 0,

when either 𝐸(𝑤(𝑋) | 𝑋 ≥ 𝑡) or 𝑤(𝑡) is decreasing. Now,

the proof of part (a) follows from Theorem 10. Part (b) can
be proved similarly. This completes the proof of the theorem.

Let 𝑋 be a random variable with density function 𝑓(𝑥)

and cumulative distribution function 𝐹(𝑥). Also let 𝜇
𝑥

=

𝐸(𝑋) > 0 be finite. Denote the length biased version of 𝑋

by 𝑋
𝐿
. Then, the probability density function of 𝑋

𝐿
is given

by

𝑓
𝐿 (𝑥) =

𝑥𝑓 (𝑥)

𝜇
𝑥

. (18)

The randomvariable𝑋
𝐿
arises in the study of lifetime analysis

and various probability proportional-to-size sampling prop-
erties. Associated with a random variable 𝑋, one can define
another random variable 𝑋

𝐸
with density function

𝑓
𝐸
(𝑥) =

𝐹 (𝑥)

𝜇
𝑥

. (19)

This distribution is known as equilibrium distribution of 𝑋.

The random variables 𝑋
𝐿
and 𝑋

𝐸
are weighted versions of

𝑋 with weight function 𝑤
𝐿
(𝑥) = 𝑥 and 𝑤

𝐸
(𝑥) = 1/𝜆

𝐹
(𝑥),

respectively. The following corollary is a consequence of
Theorem 12.

Corollary 13. Let 𝑋 be DFR. Then, for all 𝑡 ≥ 0,

(a) 𝑉
𝛼,𝛽

(𝑋; 𝑡) ≥ (≤)𝑉
𝛼,𝛽

(𝑋
𝐿
; 𝑡) for 𝛼 + 𝛽 > (<)2;

(b) 𝑉
𝛼,𝛽

(𝑋; 𝑡) ≥ (≤)𝑉
𝛼,𝛽

(𝑋
𝐸
; 𝑡) for 𝛼 + 𝛽 > (<)2.

4. Estimation

In this section, we discuss the problem of estimation of
the generalized residual entropy of a statistical distribution
based on upper record values. Here, we consider exponential
distribution. It has various applications in practice. Let 𝑋

follow exponential distribution with mean 𝜆. Then, from (2),
we obtain

𝑉
𝛼,𝛽 (𝑋; 𝑡) = (

𝛼 + 𝛽 − 1
𝛽 − 𝛼

) ln 𝜆

−(
1

𝛽 − 𝛼
) ln (𝛼 + 𝛽− 1) .

(20)

Based on the 𝑛 upper record values, the maximum likelihood
estimator (mle) of 𝜆 can be obtained as 𝛿 = 𝑋

𝑈𝑛
/𝑛, where

𝑋
𝑈𝑛

is the 𝑛th upper record value. Now, applying invariance
property, we obtain the mle of 𝑉

𝛼,𝛽
(𝑋; 𝑡) as

�̂�
ml
𝛼,𝛽

= (
𝛼 + 𝛽 − 1
𝛽 − 𝛼

) ln(

𝑋
𝑈𝑛

𝑛
)

−(
1

𝛽 − 𝛼
) ln (𝛼 + 𝛽− 1) .

(21)

Also the uniformly minimum variance unbiased estimator
(umvue) of 𝑉

𝛼,𝛽
(𝑋; 𝑡) can be obtained as
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�̂�
mv
𝛼,𝛽

= (
𝛼 + 𝛽 − 1
𝛽 − 𝛼

) ln(

𝑋
𝑈𝑛

exp (𝜓 (𝑛))
)

−(
1

𝛽 − 𝛼
) ln (𝛼 + 𝛽− 1) ,

(22)

where 𝜓(𝑛) is a digamma function. To illustrate the esti-
mation techniques developed in this section, we consider
simulated data from exponential distribution with mean 1.
In this purpose, we use Monte-Carlo simulation.

Example 14. In this example, we consider a simulated sample
of size 𝑛 = 5 from the exponential distributionwithmean 0.5.
The simulated upper records are as follows:

0.265410, 0.637725, 0.688878, 0.791721,

2.114831.
(23)

Based on these upper record values, we have �̂�
ml
𝛼,𝛽

= −6.64759
and �̂�

mv
𝛼,𝛽

= −6.06166 when 𝛼 = 1.2 and 𝛽 = 1.5.

5. Concluding Remarks

In this paper, we consider generalized residual entropy due
to Varma [5] of record values and weighted distributions. We
obtain some results on monotone behaviour of this measure
in upper record values. Some bounds are obtained. Further,
some comparison results between a random variable and its
weighted version based on the generalized residual entropy
are studied. Finally, two estimators of the generalized residual
entropy of exponential distribution have been described.
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