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Knowledge of the dependence between random variables is necessary in the area of risk assessment and evaluation. Some of the
existing Archimedean copulas, namely the Clayton and the Gumbel copulas, allow for higher correlations on the extreme left and
right, respectively. In this study, we use the idea of convex combinations to build a hybrid Clayton–Gumbel–Frank copula that
provides all dependence scenarios from existing Archimedean copulas. (e corresponding density and conditional distribution
functions of the derived models for two random variables, as well as an estimator for the proportion parameter associated with the
proposed model, are also derived. (e results show that the proposed model is able to show any case of dependence by providing
coefficients for the upper tail and lower tail dependence.

1. Introduction

Dependence measures such as Pearson’s correlation coef-
ficient have been and are still being used in several areas of
dependence analysis. According to Haugh [1], the Pearson
correlation coefficient is not useful when it comes to
modeling of increasing and continuous transformation of
random variables. (us, in a case where nonlinear depen-
dence is required, if Pearson’s correlation coefficient is used,
unreliable estimates may be obtained, leading to an incorrect
assessment of risk. Copulas have the ability to cater to the
cases of increasing and continuous transformations of
random variables. (is is because it is built on scale-free
measures of dependence.

Copulas have the tendency to identify tail dependencies
no matter how extreme. Amongst the set of copulas, the
Archimedean copulas most often do not properly cater for
dependencies in random variables [2, 3].

(ere are some existing Archimedean copulas that
provide tail dependencies.(ese dependencies may be upper
tail, lower tail, or dependence between the tails. Also,
obtaining a generator function for an Archimedean copula is
quite difficult [4].

Copulas have had applications in fields such as finance
[5], hydrology [6], public health and medicine [7], and
actuarial science [8, 9].

(e Clayton, Gumbel, and Frank copulas are some of
such existing Archimedean copulas. (e Clayton copula
allows for only lower tail dependence [10], the Frank copula
allows for dependence around the mode [11], and the
Gumbel copula allows for only upper tail dependence [12].
(e difference between the Clayton and Gumbel copulas is
that: (i) for the Clayton copula, the correlations on the
extreme left sides of distributions are more concentrated
(i.e., higher correlations) than those in the extreme right
sides of the distributions, and (ii) for the Gumbel copula, the
correlations on the extreme right sides of distributions are
more concentrated (i.e., higher correlations) than those in
the extreme left sides of the distributions.

Mixtures of the Clayton and Gumbel copulas have
been discussed in literature [13–17]. (eir models provide
no explicit formulae for the copula density and condi-
tional distribution function. Also, another limitation is
that the proportion of each copula in the mixture is ar-
bitrarily chosen. (is means that evaluating the propor-
tions from data will be impossible, given their approach.
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To the best of the researcher’s knowledge, there have been
no mixtures involving the Clayton, Gumbel, and Frank
copulas.

Since tail dependence is very vital in modeling depen-
dence in cases of extreme events, this study seeks to in-
troduce a set of mixture Archimedean copulas using the
abovementioned copulas that attempt to resolve these
problems.

2. Methods

2.1. Archimedean Copulas. (e general definition of
Archimedean copulas is given and the Clayton, Gumbel, and
Frank copulas are also discussed, together with the definition
of tail dependence of a bivariate copula. An Archimedean
copula with a strict generator has the following form:

C · u1,u2,...,ud  � ϕ− 1 ϕ u1(  + · · · + ϕ ud( ( , (1)

where the generator function ϕ satisfies the following
conditions [18]:

(i) ϕ is continuous, strictly decreasing and convex
function mapping [0, 1] onto [0,∞)

(ii) ϕ (0)�∞
(iii) ϕ (1)� 0

In what follows, the generator functions, inverse gen-
erator functions, Kendall’s Tau representations, and copula
models of the Clayton, Frank, and Gumbel copulas are
defined.

2.2. Clayton Copula. (e Clayton copula has a generator
function given by

ϕ(t) �
1
θ

t
− θ

− 1 , θ> 0, t ∈ [0, 1], (2)

where θ is the dependence parameter for the Clayton copula.
Using the generator function, we obtain the inverse

function as follows:

(i) Let z� 1/θ (t− θ − 1)

(ii) θu + 1� t− θ − 1
(iii) θu + 1� t− θ

(θu + 1)
− (1/θ)

� t, (3)

(us

ϕ− 1
(t) � t

− θ
− 1  + 1 

− (1/θ)
. (4)

(e Copula obtained from the inverse is

CC(u, v) � (u, v) � u
− θ

+ v
− θ

− 1 
− (1/θ)

. (5)

Equation (6) gives the relationship between the de-
pendence parameter of the copula and Kendall’s Tau. (is
representation is given as

τ �
θ

θ + 2
. (6)

2.3. Frank Copula. (e generator function of the Frank
copula is given as

ϕ(t) � − log
exp(− ωt) − 1
exp(− ω) − 1

 , ω ∈ (− ∞,∞), t ∈ [0, 1],

(7)

where ω is the dependence parameter for the Frank copula.
(e inverse generator function of the Frank copula is

given as

ϕ− 1
(t) � −

1
ω
log[exp(− t)(exp(− ω) − 1) + 1]. (8)

(e Frank copula is given as

CF(u, v) � −
1
ω
log 1 +

(exp(− ωu) − 1)(exp(− ωv) − 1)

exp(− ω) − 1
 .

(9)

Kendall’s Tau representation for the Frank copula is

τ � 1 −
4
ω

+
4D1(ω)

ω
, (10)

where D1(ω) � 
ω
0 (x/ω)/(exp(x) − 1)dx(Debye function).

2.4. Gumbel Copula. (e generator function of the Gumbel
copula is given as

ϕ(t) � (− log t)
β
, β ∈ [1,∞], t ∈ [0, 1], (11)

where β is the dependence parameter for the Gumbel
copula.

ϕ− 1
(t) � exp − tβ− 1

 . (12)

Kendall’s Tau representation for the Gumbel copula is

τ � 1 −
1
β

CG(u, v) � exp − (− log u)
β

+(− log v)
β

 
β− 1

 .

(13)

2.5. Combination of Copulas. A preliminary study by
Boateng et al. [19] on copulas and random variables
revealed that, in general, the copula of a pair of random
variables is Archimedean. (is finding supported those of
Adjasi et al. [20] and Trede and Savu [3]. Existing
Archimedean copulas need improvement in terms of tail
dependence. (is part of the study is focused on providing
Archimedean copulas with superior tail dependence
characteristics. Firstly, a combination based on the
product of the selected copulas is explored and their tail
dependence assessed. Secondly, a convex combination of
all three copulas is discussed.
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2.6. Multiplication of Copulas (Result 1)

Theorem 1. Let C1(u, v) and C2(u, v) be 2-dimensional
Archimedean copulas, respectively.5enC3(u, v) � C1(u, v) ·

C2(u, v) is also a copula.

Corollary 1. Let TL1
and TU1

be the lower and upper tail
dependence coefficients of a copula C1(u, v) and TL2

and TU2
be the lower and upper tail dependence coefficients of a copula
C2(u, v). 5en the copula has as lower and upper tail de-
pendence coefficients, respectively.

Proof. TL � limu⟶0(C3(u, u)/u)

Here, we treat C3(u, v) as C1(u, v) and C2(u, v) , thus, we
find the lower tail dependence as a product of the individual
tail dependence of C1(u, v) and C2(u, v).

TL � limu⟶0
C1(u, u)C2(u, u)( 

u
limu⟶0

C1(u, u)

u
limu⟶0

C2(u, u)

u
� TL1

TL2
. (14)

(e lower tail dependence coefficient of the product of
two copulas is the product of the individual lower tail de-
pendence coefficients of the copulas being multiplied. (is

follows from the explanation for the split of the lower tail
dependencies.

TU � limu⟶1
1 − 2u + C3(u, u)

1 − u
limu⟶1

1 − 2u + C3(u, u)

1 − u
limu⟶1

1 − 2u + C2(u, u)

1 − u
� TU1

TU2
. (15)

(us, the upper tail dependence coefficient of the
product of two copulas is the product of the individual upper
tail dependence coefficients of the copulas being
multiplied. □

2.7. Tail Dependence Coefficient for Products of Copulas.
Applying results from Corollary 1, on the product of the
selected copulas (Clayton, Gumbel, and Frank copula), the
tail dependence coefficient of the selected copula and their
product are given in Table 1.

Remark 1. Using the known tail dependence coefficients of
the Clayton, Gumbel, and Frank copulas, the tail coefficient
of such a combination (product) is greatly affected. (is is
especially because none of the copulas in the combination
has both lower and upper tail dependence coefficients (this
can be seen in Table 1).

2.8. Addition of Copulas (Results 2). Let U1 and U2 be two
d-dimensional random variables on (Ω, P) distributed
according to the copulas C1 and C2, respectively. Let Z be a
shifted Bernoulli random variable such thatP (Z� 1)� α and
P (Z� 2)� 1- α for some α ∈ I suppose that U1, U2, and Z are
independent. Now we consider the d-dimension random
variable U∗.

U
∗

� σ1(Z)U1 + σ2(Z)U2, (16)

where for i ∈ 1, 2, σi(x) � 1 if x� i, σi(x) � 0, otherwise.
(en U∗ is distributed according to the copula.

αC1 +(1 − α)C2. (17)

Corollary 2. Suppose CC � [u− θ
1 + u− θ

2 , . . . , +u− θ
d + 1−

d]− (1/θ) and CG � (exp[− 
d
j�1((− log uj)

β)β− 1]) are respec-
tively Clayton and Gumbel copulas for the d-dimensional
random variable U � (u1, . . . , ud), then for any λ ∈ [0, 1],

CCG u1, . . . , ud(  � λ u
− θ
1 + u

− θ
2 + · · · + u

− θ
d + 1 − d 

− (1/θ)
+(1 − λ) exp − 

d

j�1
− log uj 

β
 

β− 1
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠. (18)

is a copula. Corollary 3. Let CCG(u, v) be a 2-dimensional Clay-
ton–Gumbel copula, then the conditional distribution func-
tion is given by [14, 21]

Table 1: (e dependence coefficient (product).

Copula Lower tail Upper tail
Clayton 2− (1/θ) 0
Frank 0 0
Gumbel 0 2 − 21/β
Clayton–Gumbel 0 0
Clayton–Gumbel–Frank 0 0
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CCG(v|u) �
λu

− θ
u

− θ
+ v

− θ
− 1 

− ((θ+1)/θ)
+ (λ − 1)(− log u)

β
e

− (− log u)β+(− log v)β( )
1/β

(− log u)β+(− log v)β( )
(1/β)− 1

 /log(u) 

u
.

(19)

Corollary 4. Let CCG(u, v) be a 2-dimensional Clay-
ton–Gumbel copula, then the joint density function is given by

fu, v(u, v) �
1
u

− λ(− θ − 1)u
− θ

v
− θ− 1

u
− θ

+ v
− θ

− 1 
− ((θ− 1)/θ)− 1

−
1

v log(u)
(λ − 1)

1
β

− 1 β  ×

(− log u)
β
(− log v)

β− 1
(− log u)

β
e

− (− log u)β+(− log v)β( )
1/β

(− log u)β+(− log v)β( )
(1/β)− 2

(λ − 1)(− log u)
β
(− log v)

β− 1
e

− (− log u)β+(− log v)β( )
1/β

(− log u)β+(− log v)β( )
(2/β)− 2

v log(u)

(20)

Corollary 5. CCG(u1, . . . , ud) and CF(u1, . . . , ud) be the
d–dimension Clayton–Gumbel and Frank copula, respec-
tively. 5en for any c ∈ [0, 1], CCGF(u1, . . . , ud) is a copula
given by

CCGF u1, . . . , ud(  � cCCG u1, . . . , ud( 

+(1 − c) CF u1, . . . , ud( ( .
(21)

Corollary 6. Let CCG(u|v) andCF(u|v) be the conditional
distribution functions of the Clayton–Gumbel and the Frank
copulas, respectively. 5en the conditional distribution of the
Clayton–Gumbel–Frank copula is given by

CCGF(u|v) � cCCG(u|v) +(1 − c)FF(u|v), c ∈ [0, 1].

(22)

Corollary 7. Let FCG(u, v) andFF(u, v) be the joint distri-
bution function of the Clayton–Gumbel and the Frank cop-
ulas, respectively. 5en the joint distribution function of the
Clayton–Gumbel–Frank copula is given by

FCGF(u, v) � cFCG(u, v) +(1 − c)FF(u, v), c ∈ [0, 1].

(23)

Using the fact that the Clayton–Gumbel is also a copula,
we combine the Clayton–Gumbel copula with the Frank
copula to obtain the Clayton–Gumbel–Frank copula.

Next, we deduce Kendall’s tau representation ∈ for the
proposed model for a bivariate case.

Proposition 1. Let τ � ((θ/θ) + 2) and τ � 1 − (1/β) be
Kendall’s Tau representations for the Clayton and Gumbel
copulas, respectively. 5en for λ ∈ [0, 1], Kendell’s Tau for the
hybrid Clayton–Gumbel copula is given by

τ �
λβθ +(1 − λ)(θ + 2)(β − 1)

(θ + 2)β
. (24)

Proposition 2. Let
τ � (λβθ + (1 − λ)(θ + 2)(β − 1))/((θ + 2)β) for the hybrid
Clayton–Gumbel copula and τ � 1 − (4/ω) + (4D1(ω)/ω)

for the Frank copula. 5en for c ∈ [0, 1],

τ � c
λβθ +(1 − λ)(θ + 2)(β − 1)

(θ + 2)β
 

+(1 − λ) 1 −
4
ω

+
4D1(ω)

ω
 .

(25)

From Kendall’s Tau representation, the proportion pa-
rameters λ and c are obtained in the proposition as follows:

Proposition 3. Let CCG(u, v) be a 2-dimensional Clay-
ton–Gumbel copula, with

τ �
λβθ +(1 − λ)(θ + 2)(β − 1)

(θ + 2)β
. (26)

The estimate of λ is

λ �
(θ + 2)(βτ − (β − 1))

βθ − ((θ + 2)(β − 1))
. (27)

Proposition 4. Let CCGF(u, v) be a 2-dimensional Clay-
ton–Gumbel–Frank copula with

τ � c
λβθ +(1 − λ)(θ + 2)(β − 1)

(θ + 2)β
 

+(1 − λ) 1 −
4
ω

+
4D1(ω)

ω
 ,

(28)

5en the estimate of c is
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c �
τ − 1 − (4/ω) + 4D1(ω)/ω(  

[(λβθ +(1 − λ)(θ + 2)(β − 1))/(θ + 2)β] − 1 − (4/ω) + 4D1(ω)/ω(  
. (29)

Remark 2. For the Clayton–Gumbel–Frank (CCGF) copula,
if the convex combination parameter c � 0, we obtain the
Frank copula. If c � 1, we obtain the Clayton–Gumbel (CCG)

copula. We can derive the proportions in the Clay-
ton–Gumbel copula using λ.

Remark 3. In obtaining the proportion parameters λ and c

c ∈ [0, 1] , the above estimators may be used. However, the
alternative of selecting an arbitrary choice of parameters in
[0, 1] and comparing them is not ruled out.

2.9. Tail Dependence Analysis. For the hybrid model, the
lower tail coefficient will be the combination of the lower tail
dependencies of the copulas combined. Likewise, the upper
tail dependence coefficient will be the combination of the
upper tail dependencies of the combined copulas.

2.10. Lower Tail Dependence. (e lower tail dependence is
defined as

lim
u⟶1

C(u, u)

u
� TL � lim

u⟶0

λC1 u, v; θ1(  +(1 − λ)C2 u, v; θ2( 

u
� λT

θ1
L +(1 − λ)T

θ2
L . (30)

2.11. Upper Tail Dependence. (e upper tail dependence is
defined as

lim
u⟶1

1 − 2uC(u, u)

1 − u
� UL lim

u⟶1

1 − 2u + λC1 u, v; θ1(  +(1 − λ)C2 u, v; θ2( 

1 − u
� λT

θ1
U +(1 − λ)T

θ2
U . (31)

Table 2 gives the tail dependence coefficients of the
standalone models and that of the proposed Clay-
ton–Gumbel–Frank model.

3. Application of Model to Data

Data obtained from the Ghana Stock Exchange (GSE) for
two companies are used in the model validation. (ese two
stocks were chosen because they were the most consistent in
terms of trading on the stock exchange. (e two stocks had
data available for the period under study. (e data set was
the returns data (https://gse.com.gh/daily-shares-and-etfs-
trades/) from the 1st of January 2018 to the 1st of July 2021.
In all, there were 2048 data points. (e descriptive statistics

(Table 3) give a quantitative analysis of the returns series of
both CAL and GCB banks.

(e returns from the two indices have positive means
and more kurtosis than normal. (is indicates that both
returns series exhibit positive excess kurtosis (fat-tailed
distributions), making them leptokurtic. (e two returns
series are fairly symmetrical, looking at the value of the
skewness. Time series models were fitted to the individual
stock returns in order to find the appropriate marginal
distributions. (e returns for CAL had an MA [22] model
while that of GCB had an ARMA [1, 1] model. Since stock
returns exhibit dynamic volatility in general, the two series
were subjected to heteroscedasticity tests. Using the ARCH-
LM test, the two series were found to be heteroscedastic.

Table 2: Tail dependencies of models.

Copula Lower tail dependence Upper tail dependence
Clayton 2− (1/θ) 0
Frank 0 0
Gumbel 0 2 − 2− (1/β)

Clayton–Gumbel λ2− (1/θ) (1 − λ)(2 − 2− (1/β))

Clayton–Gumbel–Frank c(λ2− (1/θ)) (1 − c)(1 − λ)(2 − 2− (1/β))

Table 3: Descriptive statistics of the returns series for CAL bank and GCB bank.

Index Mean Median Minimum Maximum Standard deviation Skewness Kurtosis
CAL 0.001445 0.0000 − 0.2000 0.6500 0.003936 10.2022 169.7232
GCB 0.009087 0.0000 − 0.6500 3.7400 0.19880 15.25557 204.7648
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Autoregressive conditional heteroscedasticity and general-
ized autoregressive heteroscedasticity models were then
applied to the residuals of the MA [22] and ARMA [1, 1]
models, respectively. (is finally produced an MA [22]-
GARCH [1, 1] model as themarginal distribution of the CAL
return series and an ARMA [1, 1]-GARCH [1, 1] model as
the marginal distribution of the GCB returns series.

3.1. Estimates of λ and c for the Hybrid Model. From the
Kendall’s tau representations, the following estimates are
obtained and used to calculate the value of λ and c for the
hybrid model: θ � 0.05, β � 1.02,

ω � 0.19, τ � 0.02 , and D1(ω) � 0.953502.
Table 4 shows that the proportion (λ) of the Clayton

copula in the Clayton–Gumbel mixture is approximately
0.082 with that of Gumbel being approximately 0.918. (e
proportion in the Clayton–Gumbel–Frank copula (c) is
approximately 0.78 for the Clayton–Gumbel and approxi-
mately 0.22 for the Frank copula. (is implies that for the
returns series under study, they exhibit all scenarios of
dependence, i.e., lower tail, upper tail, and dependence in-
between the tails. (us, they are likely to lose and gain
together.

3.2. Estimates of Tail Dependencies. Table 5 gives the esti-
mates of the dependence parameters, lower tail dependen-
cies (LTD), upper tail dependencies (UTD), AIC, and BIC of
the mixture copulas.

In all, there were 10 alternative models to compare.
However, the study objective hinged on the ability of the
mixture copulas to provide all possible dependence sce-
narios.(e CG-F copula, while providing for all dependence

cases, had the smallest AIC and BIC values, followed by the
C-G copula.

Remark 4. In terms of lower and upper tail dependence, the
hybrid Clayton–Gumbel–Frank copula behaves like the
hybrid Clayton–Gumbel copula. However, the former goes
further to show dependencies in-between the tails.

Remark 5. It can be observed that the magnitude of the
upper tail dependence for both the Clayton–Gumbel and the
Clayton–Gumbel–Frank is greater than that of the lower tail
dependence. (is means that the two stocks exhibit greater
dependence during market upturns than during market
downturns.

4. Conclusion

Result 1 showed that if combinations were to be done
multiplicatively, the tail dependence coefficients would be
zero. Result 2 provided evidence in support of the convex
mixture since tail dependence coefficients were obtained for
such a mixture. (e hybrid Clayton–Gumbel–Frank copula
has been constructed together with its corresponding joint
density and conditional distribution function for a bivariate
case.

(e hybrid model possessed all aspects of tail depen-
dence. Specifically, the hybrid Clayton–Gumbel–Frank
copula was found to have both lower and upper tail de-
pendence coefficients as well as an inherent dependence
between the tails.

(e model was applied to the returns series of CAL
bank and GCB bank from the Ghana Stock Exchange.
Barley et al. [22] examined the effects of perturbations on
some selected Archimedean copulas, namely, Clayton,
Joe, Frank, and Gumbel copulas. In their study, they
found the Gumbel copula to be the most robust. (is
study looked at the tail dependence strength of the hybrid
model built from convex combinations of the Clayton,
Gumbel, and Frank copulas. (e study has provided a
mixture model that gives a full spectrum of possible
dependence between random variables. (e study also
provides explicit formulae for the proportional param-
eters of the copulas in the mixture. Finally, the results
show that the two companies used in the study are likely
to lose or gain together based on results for the years
under review.
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Table 4: Estimates of proportion.

Copula Proportion
Clayton–Gumbel (λ) Clayton� 0.082, Gumbel� 0.918
Clayton–Gumbel–Frank
(c) Clayton–Gumbel� 0.780, Frank� 0.22

Table 5: Parameter estimates with LTD, UTD, AIC, and BIC.

Copula Parameter LTD UTD AIC BIC
C 0.05 9.6 × 10− 6 0 − 4.25 − 3.51
F 0.19 0 0 − 3.29 − 3.02
G 1.02 0 0.03 − 4.6 − 3.41
C-G 0.940 7.87 × 10− 7 0.0275 − 4.7824 − 3.686
C-F 0.0459 7.872 × 10− 7 0 − 3.7604 − 2.42
G-F 0.95194 0 0.02754 − 4.648 − 3.01
F-C 0.0808 7.872 × 10− 7 0 − 4.0388 − 2.31
G-C 0.94046 7.87 × 10− 7 2.46 × 10− 3 − 4.5713 − 3.001
F-G 0.8374 0 0.0234 − 4.3118 − 3.24
CG-F 0.775 6.14 × 10− 7 0.006 − 4.8214 − 3.9202
C�Clayton, F� Frank, G�Gumbel, C-G�Clayton–Gumbel, C-
F�Clayton–Frank, G-F�Gumbel–Frank, F-C� Frank–Clayton, G-
C�Gumbel–Clayton, F-G� Frank–Gumbel, and CG-
F�Clayton–Gumbel-Frank.
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