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Spatial data analysis provides valuable information to the government as well as companies. Te rapid improvement of modern
technology with a geographic information system (GIS) can lead to the collection and storage of more spatial data. We developed
algorithms to choose optimal locations from those permanently in a space for an efcient spatial data analysis. Distances between
neighboring permanent locations are not necessary to be equispaced distances. Robust and sequential methods were used to
develop algorithms for design construction. Te constructed designs are robust against misspecifed regression responses and
variance/covariance structures of responses. Te proposed method can be extended for future works of image analysis which
includes 3 dimensional image analysis.

1. Introduction

Companies can learn consumer behavior to increase their
profts through spatial data analysis. A common consumer
behavior pattern can be identifed in neighborhoods. When
these patterns are identifed, companies can reduce ex-
penditures and wastage. Recently, massive amount of spatial
data have been collected through remote sensing techniques,
magnetic resonance imaging (MRI) scanners, X-ray ma-
chines, cameras, governments, and companies. Tese types
of data are mostly nonexperimental observational data [1].
Jaworski et al. [2] noted that data analysis with a large sample
is a time-consuming and expensive procedure. Te sub-
sampling method can overcome this obstacle and was de-
veloped by many authors including Rocke and Dai [3] and
Salloum et al. [4]. Moreover, Wang et al. [5] and Yao and
Wang [6], among others, discussed the optimal subsampling
method for nonexperimental data.

Groundwater contamination started with the industrial
revolution. Gas sectors, mining industries, and industrial
waste are the main sources of groundwater contamination.
Water pollution brings risks to human health. Terefore,
groundwater monitoring is important to identify potential
water contamination. Te selection of optimal wells from

a large number of wells lead an efcient understanding of
groundwater pollution and a cost reduction in groundwater
monitoring [7]. Naturally, the levels of contamination in
water are highly correlated if two wells are close to each
other. In this paper, we accommodate these kinds of cor-
relations among responses in design construction.

Te robustness including correlation structure among
responses is discussed in many studies; for instance, see Shi
et al. [8] Wiens [9] and Wiens [10] on the construction of
designs. Te misspecifed variance/covariance structure was
considered by Wiens [10] in the development of a robust
method to construct designs for spatial analysis. However,
they developed algorithms to choose optimal locations from
equispaced locations. Wiens [11] included the misspecifed
variance/covariance structure in the model by incorporating
robust methods. Te universal kriging estimate was used in
his development of the loss function for design construction.
In this paper, theoretical works ofWiens [11] were applied to
establish an algorithm to select optimal locations from
permanent locations that are not necessarily equispaced
locations.

Te rest of this paper is organized as follows.We describe
the model formulation and methods in §2. In §3, an algo-
rithm is described using the sequential method, and the
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proposed algorithm for the design construction is validated
by some test cases. In §4, we outline an algorithm to choose
optimal locations from fxed permanent locations and give
an example using the algorithm. Also, the discussed robust
method was applied to ‘coal-ash’ data in the same section.
We summarize our fndings in §5.

2. Materials and Methods

Te material in this section is based on the theory in Wiens
[11]. We discuss how to fnd n optimal locations from
a design space Ω � x1, x2, . . . , xN􏼈 􏼉 where xi ∈ R

q with xi �

(xi0, xi1, xi2, . . . , xip)′ and q � (p + 1). xi contains in-
formation regarding ith spatial location. We assume that the
relationship between responses and locations can be
expressed by a linear model. We include robustness by
considering the model misspecifcation and correlations
among responses in the construction of designs. We con-
sider the following approximately linear model:

Y xi( 􏼁 � f ′ xi( 􏼁θ + ψ xi( 􏼁 + ε xi( 􏼁, i � 1, 2, . . . , N, (1)

for some small model error ψ(xi), and ε(xi) is a homosce-
dastic measurement error with Var[ε(xi)] � σ2ϵ , q-di-
mensional vector regressors f(x), and model parameters θ.
However, the experimenter assumes the incorrect model
E[Y(xi)] � f ′(xi)θ. Based on this assumption, the true
unknown parameters can be obtained by

θ0 � argmin
θ

􏽘

N

i�1
E Y xi( 􏼁􏼂 􏼃 − f ′ xi( 􏼁θ􏼒 􏼓

2
. (2)

Defne the N × q matrix F having rows f ′(xi)􏽮 􏽯
N

i�1and
N × 1 vector ψN with elements ψ(xi)􏼈 􏼉

N

i�1. We assume that F
has full column rank. Condition (2) leads to the following
orthogonality requirement:

F′ψN � 0q×1. (3)

Responses Y(xi) i � 1, 2, . . . , N are correlated having the
following covariance matrix:

CN � COV[Y] �
def σij􏼐 􏼑

i,j�1,2,...,N
, (4)

where Y � (Y1, Y2, . . . , YN)′.
In general, the experimenter has an objective to measure

ni ≥ 0 responses Yik
(xi)􏽮 􏽯

ni

ik�1 at the location xi. We assume
that covariances among responses have the following
structure;

COV Yik, Yjl􏽨 􏽩 � σij +
σ2ε , (i, k) � (j, l),

0, otherwise.

⎧⎨

⎩ (5)

We impose the following conditions:

(i) ψN

����
����
2 ≤

α2

n
,

(ii) CN

����
����M≤

β2

n
,

(6)

where α and β are constants, ‖ · ‖M is an induced matrix
norm. Te experimenter has a plan to collect data
y � (y1, y2, . . . , yn)′.

LetΨ be a class of functions ψ(·) satisfying conditions (3)
and (6) and C be the class of positive semi-defnite matrices
C satisfying condition (6). Te model misspecifcation is
accounted by a function in Ψ and covariance matrix in C.
We defne the covariance matrix of y by

Cn � COV[y]: n × n. (7)

Also, we defne the incidence matrix E to express Cn in
terms of CN and it is described as follows:

E �

e1′

⋮

e′N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where  ei
′ �

0′1×n, ni � 0,

0
􏽘
j<i

nj

′⋮1ni
′⋮0

􏽘
j>i

nj

′⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, ni > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Tus, the covariance matrix Cn can be expressed by

Cn � E′CNE + σ2ε In. (9)

Te optimal linear predictors 􏽢Y of the random quantities
Y � (Y1, Y2, . . . , YN)′ can be obtained by the universal
kriging [12]. Tis task can be achieved by minimizing the
prediction mean squared error (PMSE) that is defned by

PMSE � 􏽘 E Yi − 􏽢Yi􏼐 􏼑
2

� E ‖Y − 􏽢Y‖
2

􏼐 􏼑. (10)

By using Teorem 1 of Wiens [11]; the PMSE can be
written as follows:

PMSE � A0ψN

����
����
2

+ tr A0CNA0′􏼈 􏼉 + σ2ε tr L0L0′􏼈 􏼉, (11)

for any function ψN in Ψ and covariance matrix CN in C,
where

L0 � IN − CNV0( 􏼁F F′V0F􏼒 􏼓
− 1
F′ + CN􏼢 􏼣EC−1

n ,

A0 � IN − CNV0( 􏼁 IN − F F′V0F􏼒 􏼓
−1
F′V0􏼠 􏼡,

V0 � EC−1
n E′.

(12)
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Theorem 1. Let Cc � (1 − c)C0;N + cCN|‖CN‖M≤ β
2/n􏽮 􏽯

for c ∈ [0, 1] be a family of covariance structures, where C0;N

is the true covariance matrix. Ten under the assumptions of

Ψ and C satisfying condition (6), the maximum value of
PMSE over Ψ and C is (α2 + β2c + σ2ε + 1 − c)/n times

L(ξ) � (1 − a − b − c)chmaxA0A0′ + a · tr A0A0′􏼈 􏼉 + b · tr nA0C0;NA0′􏽮 􏽯

+ c · tr nL0L0′􏼈 􏼉,
(13)

where a � β2c/(α2 + β2c + σ2ε + 1 − c), b � (1 − c)/
(α2 + β2c + σ2ε + 1 − c), c � σ2ε /(α

2 + β2c + σ2ε + 1 − c), σε �

δ
���
c/b

√
with 0< δ < 1.

Te proof of Teorem 1 follows directly fromTeorem 2
and Remark 1 of Wiens [11]. In this study, the loss function
L(·) in Teorem 1 is used for design constructions. We will
discuss two types of correlation functions in the next section.

2.1. Correlation Matrix. We assume two correlation func-
tions: (i) the isotropic Gaussian correlation function ρij �

corr(xi, xj) � exp −λ‖xi − xj‖
2􏽮 􏽯 and (ii) the anisotropic

Gaussian correlation function ρij � corr(xi

−xj) � exp −λ((xi − xj)
Tdiag(1, 5)(xi–xj))

(1/2)
􏽮 􏽯 for

i, j � 1, 2, . . . , N, where ‖ · ‖ is Euclidean norm [9]. Also, the
true correlation matrix P0;N has the following form:

P0;N �

x1

x2

· · ·

xN−1

xN

x1 x2 · · · xN−1 xN

ρ11 ρ12 · · · ρ1(N−1) ρ1N

ρ21 ρ22 · · · ρ2(N−1) ρ2N

· · · · · · · · · · · · · · ·

ρ(N−1)1 ρ(N−1)2 · · · ρ(N−1)(N−1) ρ(N−1)N

ρN1 ρN2 · · · ρN(N−1) ρNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

Wiens [9] suggests the value of λ is 0.9 that is the nearest
neighbor correlation. We will use the same value of λ in the
construction of optimal locations in §3 and §4.1. Te true
covariance matrix C0;N can be evaluated by C0;N � σ20P0;N

for a specifed constant σ20.

3. Design Construction

In this section, we will discuss how to choose n optimal
locations from N locations in a two dimensional space. We
consider the approximately linear model

E Y xi( 􏼁􏼂 􏼃 � θ′xi + ψ xi( 􏼁, i � 1, 2, . . . , N, (15)

where xi
′ � (1, xi1, xi2), θ

′ � (θ0, θ1, θ2), Y(xi) is a response
observed at xi, and ψ(xi) is a small departure from the
assumed model by the experimenter. We suppose that
a region, R1, is a two dimensional square with 1 unit length.
Te region R1 consists of vertices (0, 0), (0, 1), (1, 0), and (1,
1). Let x1 and x2 be the horizontal and vertical distance (in
units) from origin (0, 0). In the next subsection, brute-force

procedures were applied to pick optimal locations from all
possible subsamples for a given set of parameters that are
required to compute the loss function.

3.1. Brute-Force Search. Te loss function (13) depends on
parameters σ0, δ, a, b, and c. Tere are restrictions among
these parameters which are 0< a + b + c< 1, 0< δ < 1, and
σ0 > 0. We chose these parameters to include a wide range of
possible scenarios. Also, small or moderate values were
selected for σ0 from the interval [0.3, 2]. Te selected set of
parameters were reported in Table 1.

Eight diferent values of the parameters were taken to
evaluate the proposed algorithm in §3.2 through brute-force
sequential search. Tese values are shown in Table 1. In this
section, we construct some test cases to evaluate the per-
formance of Algorithm 1 that is discussed in §3.2. Let n0 be
the required number of locations to an investigator. Tese
test cases can be constructed by the brute-force search of

N

n0
􏼠 􏼡 all possible subsample locations. We display four test

cases with the assumption of isotropic Gaussian correlations
structure, N � 25 and n0 � 7 in Figure 1. In this case,
480,700 possible subsample locations were checked to obtain
optimal locations. In Figure 2, we show four test cases with
the assumption of anisotropic Gaussian correlations struc-
ture, N � 36 and n0 � 8. In this scenario, 30,260,340 possible
subsample locations were verifed to select optimal locations.
We used the MATLAB command “nchoosek” to take all
possible subsample locations from N locations for the brute-
force search. If the number of subsample locations is greater
than 108, we cannot apply the command “nchoosek” for the
brute-force search to choose optimal locations.Tus, further
research is needed to apply the brute-force search if the
number of subsample locations is greater than 108. However,
Algorithm 1 in §3.2 and Algorithm 2 in §4.1 work for any N

and n0(<N).

3.2. Sequential Method. Te sequential method is widely
applied in the area of the construction of optimal designs;
for instance, Wiens [10] developed algorithms using the
sequential approach to choose optimal designs. In the
sequential method, one design point at a time is added to
the current design. We collect spatial locations. Terefore,
locations are chosen without replacement. Next, we discuss
Algorithm 1, which will be based on the sequential
approach.
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4. Applications

In this section, we discuss how to choose optimal locations
from permanent locations. Te procedure is described in
Algorithm 2 and this algorithm is explained in §4.1. In §4.2,
we apply Algorithm 1 to the “coal-ash” data.

4.1. Application 1

jn � argmin
j∈I∗−I∗n−1

xin
− x∗j

�����

�����, (16)

where the empty setI∗0 � ∅ andI∗n � j1, j2, . . . , jn􏼈 􏼉.

Tus, the set S∗n0 � x∗j1 , x
∗
j2

, . . . , x∗jn0
􏼚 􏼛 contains the

chosen optimal permanent locations.

We simulated r0 � 90 permanent locations in a square
that has vertices (0, 0), (0, 1), (1, 0), and (1, 1). Tese per-
manent locations are displayed in Figure 3(a). Algorithm 2
was applied to choose n0 � 11 optimal locations from these
90 permanent locations. Equispaced locations were gener-
ated with size N � 121. Tese locations are shown in Figure
3(b). Te isotropic Gaussian correlation structure was
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Figure 1: Te x-axis and y-axis represent the variable x1 and x2, respectively. Te values of parameters and minimum loss (minloss) for
optimal locations are reported in Table 1.Te isotropic Gaussian correlation structure was assumed in the construction of optimal locations.

Table 1: Te selected values of parameters and the minimum loss (minloss) that was computed using optimal locations for the brute-force
search and Algorithm 1.

Figure σ0 δ a b c Minloss

1(a) 1.0 0.6 0.4 0.3 0.2 26.560
1(b) 2.0 0.6 0.4 0.3 0.2 33.664
1(c) 1.0 0.9 0.1 0.7 0.1 14.111
1(d) 1.0 0.4 0.4 0.3 0.2 28.478
2(a) 1.0 0.1 0.4 0.3 0.2 64.328
2(b) 0.5 0.1 0.4 0.3 0.2 51.646
2(c) 0.8 0.6 0.7 0.1 0.1 41.002
2(d) 0.3 0.4 0.1 0.2 0.5 44.903
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assumed in the construction of 11 grid-based optimal lo-
cations. An initial design is required to run Algorithm 2.Te
number of initial locations n1 � 6 was used to run Algorithm
2. Although initial locations were removed and new

locations were chosen instead of initial locations at the end
of Algorithm 2, the choice of the fnal locations slightly
depends on the initial locations.Tus, we considered 100 runs
using Algorithm 2 to obtain the grid-based optimal locations.
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Figure 2: Te x-axis and y-axis represent the variable x1 and x2, respectively. Te values of parameters and the minimum loss (minloss) of
an optimal design are reported in Table 1. Te anisotropic Gaussian correlation structure was assumed in the construction of optimal
locations.

Step 1: Collect n� n1 locations randomly without replacement from the design spaceΩ and letSn � xi1
, xi2

, . . . , xin
􏽮 􏽯 be the collected

locations and In � i1, i2, . . . , in􏼈 􏼉 be the corresponding index set, where ij ∈ I.
Step 2: Sequentially select n � n1 + 1, n1 + 2, . . . , n0 location such that
in � argmin

j∈I−In−1

L(ξn,j)

where ξn,j �
def

((n − 1)ξn−1 + (0, . . . , 0, 1
↓j
↓
j

, 0, . . . , 0)′/n). Tus, we have Sn0
� xi1

, xi2
, . . . , xin0

􏼚 􏼛 the chosen locations and
corresponding index set In0

.
Step 3: Remove the initial locations Sn1

from the set Sn0
. So, the collected locations are Sn0

− Sn1
� xin1+1

, xin1+2
, . . . , xin0

􏼚 􏼛 and the
corresponding index set is In � in1+1, in1+2, . . . , in0􏽮 􏽯 with n � n0 − n1. Also, we have ξn � ξn0

− ξn1
.

Step 4: Again sequentially choose n∗ � 1, 2, . . . , n1 location such that
in∗ � argmin

j∈I−In−1

L(ξn,j),where n � n0 − n1 + n∗,

In � in1+1, in1+2, . . . , in0, i1, . . . , in∗􏽮 􏽯, ξn,j �
def

((n − 1)ξn−1 + (0, . . . , 0, 1
↓j
↓
j

, 0, . . . , 0)′/n).

Finally, the set Sn0
� xi1

, xi2
, . . . , xin0

􏼚 􏼛 contains the selected optimal locations.

ALGORITHM 1: Let n0 be the required number of optimal locations and I � 1, 2, . . . , N{ } be the index set. Te set A − B denotes the set
diference of A and B. We follow steps 1–4 to get n0 optimal locations.
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Figure 4(b) shows the losses of 100 runs, and the minimum
loss for the grid-based optimal locations was 133.316 and it
occurred in the 32th run. So, we fnally chose 11 locations that
were generated in the 32th run. Tese selected grid-based
locations are shown in Figure 4(a). Te cluster of permanent
locations that was nearest to the cluster of grid-based optimal
locations was picked as the permanent optimal locations.
Tese permanent optimal locations are displayed in Figure
4(a). In fact, Algorithm 2 can be used to identify optimal
locations for an image, for instance, X-rays, a large number of
water wells in a region, or a soil test for a given area.

4.2. Application 2. In this section, we study ‘coal-ash’ data to
investigate the performance of the discussed method. Te
coal-ash core measurements were collected from 208 lo-
cations in the Pittsburgh coal seam. Tese locations are
with an approximately 2500 feet equispaced distance [12].
Wiens [10] applied his developed method to choose op-
timal locations for the ‘coal-ash’ study. Te values of the
parameters σ2ε , σ

2
0, and λ are essential to constructing op-

timal locations for this study.Te previous study results are
a solution to overcome this problem [13]. We used the
information on the fnal optimal locations with size 30 of
Wiens [10] to obtain the values for these parameters. Te
coal-ash core measurement 17.61 was an outlier at location
(5, 6) in this information. Generalized least squares esti-
mate performs poorly if there is an outlier in a data set [10].

However, although a data set contains outliers, M-esti-
mators are robust and efcient [14]. Tus, we preferred M-
estimate in this application. Tese M-estimate are
(σ2ε , σ

2
0, λ) � (0.94, 0.77, 0.027).

Te performance of the constructed optimal locations
was evaluated by the root mean squared error (RMSE) and it
is defned by

RMSE �

������������

􏽐
N
i�1 Yi − 􏽢Yi􏼐 􏼑

2

N

􏽳

,

where  􏽢Yi � 􏽢θ
′
xi,

(17)

where 􏽢θ � (􏽢θ0, 􏽢θ1, 􏽢θ2) are the M-estimates of the unknown
true parameters θ0 � (θ00, θ10, θ20).

Data collection from a small number of locations yields
saving expenditure, reduction of time for an experiment,
and fast statistical analysis. Tus, the small number of
locations, n0, were considered to verify the performance of
our proposed method. Te various sizes of
n0 � 10, 20, 30, 50 were taken to compare information
obtained from optimal locations with full locations having
size n0 � 208. Tese results were reported in Table 2. Te
value of RMSE for the full locations is 1.1220. Te maxi-
mum diference between RMSE for optimal locations and
full locations is 0.0847. Meanwhile, the minimum difer-
ence between RMSE for optimal locations and full locations
is 0.0082. Terefore, RMSE for full locations is

Step 1: Let N � (􏽪
��
r0

√
􏽭 + 1)2, where ⌊∙⌉ is the nearest integer function.

Step 2: Identify a rectangle that includes all permanent locations.
Step 3: Generate equispaced locations with size N in the rectangle. We assume that the generated design space isΩ � x1, x2, . . . , xN􏼈 􏼉,
where xi contains information that is related to i th generated location for i � 1, 2, . . . , N.
Step 4: Choose optimal locations with size n0 using Algorithm 1 fromΩ. LetSn0

� xi1
, xi2

, . . . , xin0
􏼚 􏼛 be the selected optimal locations.

Step 5: Sequentially pick n � 1, 2, . . . , n0 location such that

ALGORITHM 2: We suppose that r0 permanent locations are in a two dimensional space, for instance, water wells in a region. Te
experimenter is interested in choosing n0 optimal locations from these permanent locations. Let Ω∗ � x∗1 , x∗2 , . . . , x∗r0􏽮 􏽯 be a design space,
where x∗j contains information about j th permanent location for j � 1, 2, . . . , r0. Defne the index set I∗ � 1, 2, . . . , r0􏼈 􏼉.
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Figure 3: (a) Simulated permanent locations and (b) generated equispaced locations are displayed.Te variables x1 and x2 are defned in §3.
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Figure 4: (a) Generated permanent locations (PL), selected permanent optimal locations (POL), grid-based optimal locations (GOL), and
(b) losses of 100 sequential runs for 11grid-based locations are displayed for the values of parameters a � 0.4, b � 0.3, c � 0.2, δ � 0.6. In
subplot (b), the x-axis and y-axis represent minimum loss and run, respectively. Te variables x1 and x2 are defned in §3.

Table 2: M-estimates of the model parameters, standard errors in parentheses, and RMSE for the coal-ash study.

n0
􏽢θ0 􏽢θ1 􏽢θ2 RMSE

10 10.1990 (0.8765) −0.1823 (0.0838) 0.0773 (0.0511) 1.2067
20 11.0270 (0.6505) −0.1776 (0.0660) 0.0277 (0.0406) 1.1302
30 10.6620 (0.5085) −0.1593 (0.0520) 0.0272 (0.0316) 1.1368
50 10.6110 (0.3479) −0.1428 (0.0359) 0.0105 (0.0219) 1.1431
208 11.0390 (0.1986) −0.1781 (0.0222) −0.0011 (0.0124) 1.1220
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Figure 5: Continued.
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Figure 5: In subplots (a) and (b), the x-axis and y-axis indicate the position of a location in the east-west and north-south directions
respectively. (a) 20 optimal locations; (b) 30 optimal locations; (c) losses of 150 runs for 20 optimal locations; and (d) losses of 150 runs for 30
optimal locations for the coal-ash study. In subplot (c) and (d), the x-axis and y-axis represent minimum loss and run, respectively.

Table 3: M-estimates of themodel parameters; standard errors are in parentheses and RMSE for n0 � 30, δ � 0.79 and various combinations
of a, b, and c for the coal-ash study.

Scenarios σ2ε a b c 􏽢θ0 􏽢θ1 􏽢θ2 RMSE

S1 0.94 0.0 0.2 0.3 10.84 (0.4725) −0.2347 (0.0492) 0.0593 (0.0289) 1.1484
S2 112.34 0.0 0.005 0.9 9.869 (0.3556) −0.1438 (0.0363) 0.0652 (0.0215) 1.2743
S3 0.94 0.3 0.2 0.3 10.662 (0.5085) −0.1593 (0.0520) 0.0272 (0.0316) 1.1368
S4 0.0007 0 0.92 0.001 10.482 (0.4923) −0.1321 (0.0524) 0.0173 (0.0318) 1.1528
S5 12.482 0 0.01 0.2 10.15 (0.4014) −0.1374 (0.0390) 0.0534 (0.0243) 1.1950
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Figure 6: Continued.
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approximately equal to RMSE for optimal locations. Tat
is, the information obtained from optimal locations is
approximately the same as information obtained from full
locations. Terefore, when we conduct an experiment in
the optimal locations, expenditure can be reduced without
losing information. Optimal locations having size n0 � 20
and n0 � 30 are displayed in Figure 5.

We selected 5 sets of parameters a, b, and c to observe
patterns and test the efectiveness of optimal locations.Tese
sets of parameters are reported in Table 3. σ2ε is the variance
of a homoscedastic measurement error ε(xi) and it depends
on the parameters b, c and δ. Terefore, we computed the
values of σ2ε and these values are in Table 3. Also, the value of
σ2ε (� 0.94) was taken from the paper of Wiens [10] for
scenario 1 (S1) and that value was computed using the fnal
30 optimal locations. We used b � 0.2 and c � 0.3 for S1.Te
value of δ can be calculated by the formula σε

���
b/c

√
and the

calculated value of δ was 0.79. We used this value for all
scenarios in Table 3.

Te optimal locations are condensed in the border of the
target region (see Figures 6(b) and 6(d)) to the large values
of σ2ε . Meanwhile, the optimal locations are scattered in the
target region (see Figures 6(a) and 6(c)) to the small values
of σ2ε . Also, the values of RMSE for the optimal locations are
faraway from the value of RMSE for full locations when we
assume a large value of σ2ε . In contrast, the values of RMSE
for the optimal locations are approximately the same as the
value of RMSE for full locations when we use a small value
of σ2ε .

5. Summary and Conclusion

We have discussed the robust method to construct optimal
locations for spatial data analysis. Te design constructions
are robust against model misspecifcations regarding re-
gression responses and variance/covariance structures of
responses. Te prediction mean squared error was

considered to form the loss function. Te loss function was
obtained by maximizing the misspecifed regression func-
tion and variance/covariancematrix of responses. Algorithm
1 was developed using the sequential method to choose
optimal locations from equispaced locations. However,
Algorithm 2 works for the nonequispaced locations.
Terefore, Algorithm 2 can be used to choose optimal
permanent locations from a two-dimensional space. Te
proposed approach can be used to answer a scientifc
question through an efective spatial analysis that includes
minimum cost and time. Tus, the proposed sequential
method can be applied to choose optimal locations from the
Earth for water and soil monitoring, X-rays for diagnosing
a disease, and a region for business analytics.Te brute-force
search only works If the number of subsample locations is
less than or equal to 108. So, further research regarding the
brute-force search should be done for any number of
subsample locations. However, the proposed sequential
method can be applied to select the optimal location from
a large number of locations. We can reduce measurement
error in data collection when we focus on a small number of
optimal locations. Also, an efcient spatial data analysis can
be done with optimal locations without losing any in-
formation. Optimal locations can be collected regardless of
the shape of a region using the proposed method. Also, the
proposed method is a way to conduct big data analytics as
fast and efciently as possible. However, it should be verifed
through future research for image analysis.

Data Availability

Te data that was used in Application 2 can be found in
Cressie (2015).
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Figure 6: Te x-axis and y-axis indicate the position of a location in the east-west and north-south directions respectively. 30 optimal
locations are displayed in (a)–(d) for scenario S1, S2, S3, and S5, respectively. Tese scenarios are described in Table 3.
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