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In the context of a sample survey, the collection of information on a sensitive variable is difcult, which may cause nonresponse
and measurement errors. Due to this, the estimates can be biased and the variation may increase. To overcome this difculty, we
propose an estimator for the estimation of a sensitive variable by using auxiliary information in the presence of nonresponse and
measurement errors simultaneously. Te properties of the proposed estimators have been studied, and the results have been
compared with those of the usual complete response estimator. Teoretical results have been verifed through a simulation study
using an artifcial population and two real-life applications. With the outcomes of the proposed estimator, a suitable recom-
mendation has been made to the survey statisticians for their real-life application.

1. Introduction

Te utilization of auxiliary information in sample research
intends to improve the precision of estimators. Te esti-
mation in this research article is accomplished through
stratifed successive sampling. To reduce population het-
erogeneity, a possible sampling strategy would be stratifed
by random sampling. Researchers use stratifed random
sampling when they are already aware of subdivisions within
a population that need to be accounted for in their research.
For example, in socioeconomic surveys, a group of people
living in rural, sub-urban, and urban regions may need to be
examined. It is understood that the nature of the study
variable may difer for diferent parts of the population and
each component or part should be considered as separate
strata. In addition to the overall estimate, it may also require
to estimate particular strata parameters of the population.
Tis can be done only through stratifed random sampling.
Tus, in stratifed sampling, we frst divide the entire
population into homogeneous subpopulations or subgroups,

which are known as strata. Ten, random samples are se-
lected independently from each stratum, such that each
subgroup of a population is best represented by the entire
population being studied. Kadilar and Cingi [1] developed
ratio estimators in stratifed random sampling and Bouza
et al. [2] have utilized auxiliary information to develop new
ratio estimators for population parameters in stratifed
random sampling.

In longitudinal surveys, successive sampling is a well-
known approach for estimating population parameters and
measuring diferences or changes in a study variable. In this
type of sampling, some units drawn on the frst occasion are
preserved and utilized on the second occasion, while the rest
of the units are replaced by new ones drawn on the current
occasion. Tis partial unit replacement lowers survey costs.
Jessen’s [3] study was the beginning of the theory of suc-
cessive sampling. Furthermore, the work is extended by
several authors, including Singh et al. [4] who suggested a
logarithmic type estimator to estimate the population mean
in successive sampling in the presence of random
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nonresponse and measurement errors. Moreover, Singh
et al. [5] proposed some imputationmethods to deal with the
problem of missing data in two-occasion successive sam-
pling. Furthermore, Khalid and Singh [6] investigated some
imputation methods to deal with the issue of missing data
problems due to random nonresponse in two-occasion
successive sampling among others.

Among surveys on sensitive variables, it is usual to
encounter that some people do not respond, whereas others
respond but often prefer to disguise the true value to avoid
social disapproval. For example, estimating the number of
drug addicts in a town or students who have cheated on an
exam would provide false answers. In such cases, the re-
sponses are clearly sensitive. Tis situation is present in
many surveys. Many respondents not responding correctly
may cause a social desirability bias. To avoid social desir-
ability response bias, Warner [7] developed a data collection
procedure, termed as randomized response technique
(RRT), that allows researchers to evoke sensitive questions.
Furthermore, it is extended by the work of Diana and Perri
[8] who proposed a class of estimators for quantitatively
sensitive data. Likewise, Gupta et al. [9] suggested a unifed
measure of respondent privacy and model efciency in
quantitative RRTmodels; Zhang et al. [10] proposed a ratio
estimation of the mean under RRTmodels and many others.
Nonresponse and measurement errors may be observed in a
socioeconomic survey on sensitive data. For instance, in a
survey of annual income and expenditure per household,
people may attempt to suppress or distort the amount of
income or expenditure. Similarly, when assessing the
number of illegal abortions performed in a city each year,
both nonresponse and measurement errors may occur.

It is impossible to obtain complete information about
sample units in surveys where sensitive questions are present.
Incomplete information is known as nonresponse, which is a
source of nonsampling error. To deal with this issue of
nonresponse in sample surveys, Hansen and Hurwitz [11]
suggested techniques by taking a subsample from nonre-
spondent groups. Furthermore, Bouza [12] also developed the
problem of the subsampling fraction in the case of nonre-
sponse. Diana et al. [13] proposed a Hansen and Hurwitz
estimator with scrambled responses on the second call if the
survey is sensitive in nature. Singh et al. [14] used a calibration
method for the estimation of population variance in stratifed
successive sampling with random nonresponse. Moreover,
Mukhopadhyay et al. [15] have worked on a general technique
for estimating the population means under stratifed suc-
cessive sampling in the presence of random scrambled re-
sponses and nonresponses. Apart from nonresponse,
measurement error is also a serious issue in sample surveys
due to the lack of proper data. A measurement error happens
when the real value of the sample units difers from what is
observed. Singh et al. [16] investigated diference-type esti-
mators for the estimation of mean in the presence of mea-
surement errors. Zhang et al. [17] have suggested a mean
estimation in the simultaneous presence of measurement
errors and nonresponse using optional RRT models under
stratifed sampling. Furthermore, Zahid et al. [18] have also
been proposed a generalized class of estimators for a sensitive

variable in the presence of nonresponse and measurement
errors under stratifed sampling. Furthermore, Tiwari et al.
[19, 20], Kumar and Kour [21], and others have addressed the
issue of nonresponse and measurement error in various
sampling strategies, using prior studies as inspiration and
realizing the essence of how to handle these faws in a sample
survey. Furthermore, the exponential estimator(s) proposed
by Bahl and Tuteja [22] are known to perform better than the
corresponding usual ratio and product-type estimators under
certain efciency conditions. But, if these conditions are not
readily satisfed, then we propose a logarithmic-type estimator
as it is the inverse operation to exponentiation, where both the
study and the auxiliary variables are sensitive in nature under
ORRT models to estimate the population mean of the sen-
sitive variable in the presence of nonresponse and mea-
surement error simultaneously under stratifed successive
sampling.

2. Sample Structure and Notations

Let us consider a fnite stratifed population
U � 1, 2, . . . , N{ } with N distinct units divided into L ho-
mogeneous subgroups, known as strata with Nh (

L
h�1 Nh �

N) units in the hth(h � 1, 2, . . . , L) stratum. On the frst(-
second) occasion, the character under study is represented
by xh(yh). We further assume that information on an
auxiliary variable zh is available on both occasions and is
correlated with the study variable. Let a simple random
sample (without replacement) of size nh unit is selected on
the frst occasion. From the frst occasion, a sample of size
mh � nhph, (0<ph < 1) units is retained (matched) on the
second occasion. Again, on the second occasion, an inde-
pendent sample of size uh � nhqh � nh − mh, (qh � 1 − ph)

units (i.e., unmatched units with the frst occasion) is drawn
from the entire population, so that the sample size on the
second (current) occasion is also nh(nh � uh + mh). To deal
with nonresponses, we divide the whole population into two
groups, i.e., respondents and nonrespondents. Let N1h and
N2h be the number of responding and nonresponding units
in the hth stratum, respectively. From sample units, n1h units
respond and n2h units do not respond. Similarly, in the
unmatched sample, u1h units respond and u2h do not re-
spond and from matched units m1h respond and m2h do not
respond. Again, a subsample of size n2h(� nsh/kh); kh > 1
units is drawn from the nonrespondent class of the sample
units. Furthermore, we take a subsample from the nonre-
spondent group of size msh � (m2h/kh); kh > 1, and ush �

(u2h/kh); kh > 1 units are drawn from the matched and
unmatched portions, respectively, where kh is the inverse
sampling ratio. Along with nonresponses, the measurement
error is also associated with these sample units, i.e., Vih �

xih − Xih, Uih � yih − Yih and Wih � zih − Zih; for both oc-
casions, which are random in nature with a mean zero and
population variance S2Uh, S2Vh, and S2Wh. Hence, the following
notations are used for their further use:

xh(yh): the sensitive study variable on the frst (second)
occasion
zh: the sensitive auxiliary variable for both occasions
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Xh(Yh): means of the hth stratum on the frst and
second occasion, respectively
Zh: means of the auxiliary variable for hth stratum on
both occasions
X(Y): the population means of the sensitive study
variables on the frst and second occasion, respectively
Z: the population mean of the auxiliary variable for
both occasions
ymh, yuh, xmh, xnh, znh, and zuh: the sample means of the
variables yh, xh, and zh, based on the respective sample
size shown in their subscripts
ρyhxh

, ρyhzh
, and ρxhzh

: the correlation coefcients be-
tween their respective variables, as shown in their
subscripts
S2xh, S

2
yh, and S2zh: the population variances of the variable

xh, yh, and zh, respectively
y
∗′
mh, y
∗′
uh, x
∗′
mh, x
∗′
nh, z
∗′
nh, and z

∗′
uh: the sample means of the

variables yh, xh, and zh, when there is a presence of
sensitivity with nonresponse and measurement error
simultaneously, based on the respective sample size
shown in their subscripts

3. Optional Randomized Response
Technique (ORRT)

In this section, let S1h and S2h be two scrambled variables
with mean S1h and S2h and known variances S2S1h

and S2S2h
,

respectively. Let Wh represent the probability that the re-
spondent will fnd the question sensitive. Since the ORRT
model is more efcient, we add it optionally to the Diana and
Perri [8] model. In the ORRT version, the respondent may
answer in the two ways given in equation (1), depending on
whether the respondent considers the question sensitive or
not. As a result, for the matched and unmatched portion, we
may use the general scrambling model for the sensitive study
variable Yah is given as follows:

Z1ah �
Yah, with probability 1 − Wh( ,

S1hYah + S2h, with probabilityWh,
 (1)

where a � (u, m).
Temean and variance of Z1ah are given by the following

expression:

E Z1ah(  � E Yah(  1 − Wh(  + E S1hYah + S2h( Wh � E Yah( ,

Var Z1ah(  � E Z
2
1ah  − E

2
Z1ah(  � 

L

h�1
S
2
yah + S

2
S2h

Wh + S
2
S1h

S
2
yah + Y

2
ah Wh.

(2)

We write the randomized linear model as follows:

Z1ah � S1hYah + S2h( Jh + Yah 1 − Jh( , (3)

and the expectation and variance of the randomized
mechanism are as follows:

ER Z1ah(  � S1hWh + 1 − Wh( Yah + S2hWh,

VR Z1ah(  � 

L

h�1
Y
2
ahS

2
S1h

+ S
2
S2h

 Wh.
(4)

For sensitive study variable Xbh for the unmatched
portion, the general scrambling model is given as follows:

Z2bh �
Xbh, with probability 1 − Wh( ,

S1hXbh + S2h, with probabilityWh,
 (5)

where b � (m, n).
Ten, the mean and variance of Z2bh are given by the

following expression:

E Z2bh(  � E Xbh(  1 − Wh(  + E S1hXbh + S2h( Wh � E Xbh( ,

Var Z2bh(  � E Z
2
2bh  − E

2
Z2bh(  � 

L

h�1
S
2
xbh + S

2
S2h

Wh + S
2
S1h

S
2
xbh + X

2
bh Wh.

(6)

Terefore,

Z2bh � S1hXbh + S2h( Jh + Xbh 1 − Jh( , (7)

and the mean and variance are given as follows:

ER Z2bh(  � S1hWh + 1 − Wh( Xbh + S2hWh,

VR Z2bh(  � 
L

h�1
X

2
bhS

2
S1h

+ S
2
S2h

 Wh.

(8)

Similarly, for auxiliary variable Zch, we write as follows:
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Z3ch �
Zch, with probability 1 − Wh( ,

S1hZch + S2h, with probabilityWh,
 (9)

where c � (u, m, n).
Ten, the mean and variance of Z3ch are given by the

following expressions:

E Z3ch(  � E Zch(  1 − Wh(  + E S1hZch + S2h( Wh � E Zch( ,

Var Z3ch(  � E Z
2
3ch  − E

2
Z3ch(  � 

L

h�1
S
2
zch + S

2
S2h

Wh + S
2
S1h

S
2
zch + Z

2
ch Wh.

(10)

Terefore,

Z3ch � S1hZch + S2h( Jh + Zch 1 − Jh( ,

ER Z3ch(  � S1hWh + 1 − Wh( Zch + S2hWh,

VR Z3ch(  � 
L

h�1
Z
2
chS

2
S1h

+ S
2
S2h

 Wh,

(11)

where S1h and S2h follow a normal distribution with mean
(1, 0) and variances (S2S1h

, S2S2h
), i.e., S1h∼N(1, S2S1h

) and
S2h∼N(0, S2S2h

), Jh ∼ Bernoulli (Wh) with

E Jh(  � Wh,Var Jh(  � Wh 1 − Wh( ,

E J
2
h  � Var Jh(  + E

2
Jh(  � Wh.

(12)

When face-to-face interview of subsampled units of
nonrespondents is performed in the second phase of the
Hansen and Hurwitz [11] procedure, we give respondents
the opportunity to scramble their responses using ORRT. In
this case, we used Hansen and Hurwitz’s technique by as-
suming that the respondent group provides direct responses
in the frst phase, and then, the ORRT model is used to
provide responses from a sample of nonrespondents in the
second phase.

Let yiah denotes a transformation of the randomized
response on the ith block, the expectation of which is a real
response yiah and is given as follows:

yiah �
z1iah − S2h

S1hWh + 1 − Wh

, (13)

with

ER yiah(  � yiah,

VarR yiah(  � 
L

h�1

VR z1iah( 

S1hWh + 1 − Wh( 
2 � 

L

h�1

y
2
iahS

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2 � 

L

h�1
κ1iah.

(14)

Also, xibh denotes a transformation of the randomized
response on the ith block, whose expectation equals to xibh

and is defned as follows:

xibh �
z2ibh − S2h

S1hWh + 1 − Wh

, (15)

with

ER xibh(  � xibh,

VarR xibh(  � 
L

h�1

VR z2ibh( 

S1hWh + 1 − Wh( 
2 � 

L

h�1

x
2
ibhS

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2 � 

L

h�1
κ2ibh,

VarR xibh(  � 
L

h�1

VR z2ibh( 

S1hWh + 1 − Wh( 
2 � 

L

h�1

x
2
ibhS

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2 � 

L

h�1
κ2ibh.

(16)

Likewise, zich denotes a transformation of the ran-
domized response on the ith block, whose expectation equals
to zich and is given as follows:
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zich �
z3ich − S2h

S1hWh + 1 − Wh

, (17)
with

ER zich(  � zich,

VarR zich(  � 
L

h�1

VR z3ich( 

S1hWh + 1 − Wh( 
2 � 

L

h�1

z
2
ichS

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2 � 

L

h�1
κ3ich.

(18)

Now, the Hansen and Hurwitz [11] estimator in the
presence of nonresponse by using ORRT is represented as
follows:

yah � w1hy1ah + w2h
y2ah,

xbh � w1hx1bh + w2h
x2bh,

zch � w1hz1ch + w2h
z2ch,

(19)

where

y2ah � 

nsh

i�1

yiah

nsh

 ,

x2bh � 

nsh

i�1

xibh

nsh

 ,

z2ch � 

nsh

i�1

zich

nsh

 .

(20)

It is simple to illustrate that

E yah  � Yah; E xbh  � Xbh; E zch  � Zch, (21)

i.e., yah, xbh, and zch are usual unbiased estimators.
Te variance of yah, xbh, and zch are as follows:

Var yah  � 
L

h�1
λahS

2
yah + λ∗ahS

2
yah(2) +

W2hkh

nh

S
2
yah(2) + y

2
ah(2) S

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2

⎛⎝ ⎞⎠,

Var xbh  � 
L

h�1
λbhS

2
xbh + λ∗bhS

2
xbh(2) +

W2hkh

nh

S
2
xbh(2) + x

2
bh(2)  S

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2

⎛⎝ ⎞⎠,

Var zch  � 
L

h�1
λchS

2
zch + λ∗chS

2
zch(2) +

W2hkh

nh

S
2
zch(2) + z

2
ch(2) S

2
S1h

+ S
2
S2h

}Wh

S1hWh + 1 − Wh( 
2

⎛⎝ ⎞⎠,

(22)

where λah �
ah − nh( 

ahnh

,

λbh �
bh − nh( 

bhnh

,

λ∗lh �
W2h kh − 1( 

nh

,

l � a, b, c.

(23)
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Let the measurement error associated with the sensitive
variable(s) (Z1ah, Z2bh, and Z3ch) in a face-to-face interview
be given as Piah � z1iah − Z1iah, Qibh � z2ibh − Z2ibh, and
Rich � z3ich − Z3ich with mean zero and variances S2pah, S2qbh,
and S2rch, respectively.

Various notations under measurement error are given as
follows:

Ω∗uh � 
L

h�1


n1h

i�1
Uih + 

n2h

i�1
Pih

⎛⎝ ⎞⎠,

Ω∗vh � 

L

h�1


n1h

i�1
Vih + 

n2h

i�1
Qih

⎛⎝ ⎞⎠,

Ω∗wh � 
L

h�1


n1h

i�1
Wih + 

n2h

i�1
Rih

⎛⎝ ⎞⎠,

(24)

where Pih, Qih, and Rih are measurement errors on Z1ah, Z2bh,
and Z3ch, respectively.

So, the variance of yah and xbh ad zch in the presence of
measurement error is given by the following expressions:

Var y
∗
ah  � 

L

h�1
λah S

2
yh + S

2
uh  + λ∗ah S

2
yh(2) + S

2
ph  + K1h,

Var x
∗
bh  � 

L

h�1
λah S

2
xh + S

2
vh  + λ∗ah S

2
xh(2) + S

2
qh  + K2h,

Var z
∗
ch  � 

L

h�1
λah S

2
zch + S

2
wh  + λ∗ah S

2
zch(2) + S

2
rh  + K3h,

(25)

where

K1h �
W2hkh

nh

S
2
yah(2) + y

2
ah(2) S

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2

⎛⎝ ⎞⎠,

K2h �
W2hkh

nh

S
2
xbh(2) + x

2
bh(2) S

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2

⎛⎝ ⎞⎠,

K3h �
W2hkh

nh

S
2
zch(2) + z

2
ch(2) S

2
S1h

+ S
2
S2h

 Wh

S1hWh + 1 − Wh( 
2

⎛⎝ ⎞⎠,

a � (u, m),

b � (m, n),

c � (u, m, n).

(26)

respectively.

4. Proposed Estimator

Under certain efciency conditions, exponential-type esti-
mators are known to outperform the related customary ratio
and product-type estimators in terms of lesser mean square
errors. Terefore, the question arises as to what happens

when the conditions that favor exponential-type estimators
over the customary estimators are not readily met. Te
answer of course lies in the use of other efcient estimators
that would perform better than both the existing exponential
and customary estimators. So, we examine the logarithmic-
type estimator in our search for such efcient estimators
because the logarithm is the inverse operation of expo-
nentiation. Te logarithmic function has some helpful
qualities and is used extensively in a variety of scientifc and
nonscientifc domains. Motivated by the abovementioned
discussions and following the work of Singh et al. [14], we
formulate two independent estimators for estimating the
population mean of the sensitive variable on the current
(second) occasion. Te proposed class of estimator T

∗′ is
defned as a convex linear combination of two separate

classes of estimators T
∗′
u and T

∗′
m.

T
∗′

� ϕT
∗′
u +(1 − ϕ)T

∗′
m, (27)

where ϕ(0≤ ϕ≤ 1) is an unknown constant that must be
determined, so that the mean squared error (MSE) of the
proposed estimator T

∗′ is minimum.
Te T

∗′
u estimator is based on uh, i.e., unmatched sample,

and T
∗′
m estimator is based on mh, i.e., matched sample, and is

defned as follows:

T
∗′
u � 

L

h�1
Ph

y
∗′
uh + βhlog 1 +

Zh − z
∗′
uh

Zh + z
∗′
uh

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

T
∗′
m � 

L

h�1
Ph

y
∗′
mh + αhlog 1 + x

∗
nh − x

∗
mh(  ,

(28)

where

x
∗
nh � x

∗′
nh + log 1 +

Zh − z
∗′
nh

Zh + z
∗′
nh

⎛⎜⎝ ⎞⎟⎠,

x
∗
mh � x

∗′
mh + log 1 +

Zh − z
∗′
mh

Zh + z
∗′
mh

⎛⎜⎝ ⎞⎟⎠,

(29)

Ph � Nh/N; βh and αh are the constants to be determined by
minimizing the mean square errors of the estimators.

Using the following transformations, the bias and mean
square errors of the estimators T

∗′
u and T

∗′
m are derived up to

the frst degree of approximation. Let
y
∗′
uh � Yh 1 + e

∗
0uh( ,

y
∗′
mh � Yh 1 + e

∗
0mh( ,

z
∗′
uh � Zh 1 + e

∗
1uh( ,

z
∗′
nh � Zh 1 + e

∗
1nh( ,

x
∗′
mh � Xh 1 + e

∗
2mh( ,

x
∗′
nh � Xh 1 + e

∗
2nh( ,

(30)

such that
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E e
∗
ιuh(  � E e

∗
ιmh(  � E e

∗
ιnh(  � 0; (ι � 0, 1, 2),

E e
∗2
0uh  �

1
Y
2
h

λhu S
2
yh + S

2
Uh  + λ∗hu S

2
yh(2) + S

2
ph  + K1h  �

1
Y
2
h

A
∗′
u + K1h ,

E e
∗2
0mh  �

1
Y
2
h

λhm S
2
yh + S

2
Uh  + λ∗hm S

2
yh(2) + S

2
ph  + K1h  �

1
Y
2
h

A
∗′
m + K1h ,

E e
∗2
1uh  �

1

Z
2
h

λhu S
2
zh + S

2
Wh  + λ∗hu S

2
zh(2) + S

2
rh  + K3h  �

1

Z
2
h

B
∗′
u + K3h ,

E e
∗2
1mh  �

1

Z
2
h

λhm S
2
zh + S

2
Wh  + λ∗hm S

2
zh(2) + S

2
rh  + K3h  �

1

Z
2
h

B
∗′
m + K3h ,

E e
∗2
1nh  �

1

Z
2
h

λhn S
2
zh + S

2
Wh  + λ∗hn S

2
zh(2) + S

2
rh  + K3h  �

1

Z
2
h

B
∗′
n + K3h  � E e

∗
1nhe
∗
1mh( ,

E e
∗2
2mh  �

1
X

2
h

λhm S
2
xh + S

2
Vh  + λ∗hm S

2
xh(2) + S

2
qh  + K2h  �

1
X

2
h

C
∗′
m + K2h ,

E e
∗2
2nh  �

1
X

2
h

λhn S
2
xh + S

2
Vh  + λ∗hn S

2
xh(2) + S

2
qh  + K2h  �

1
X

2
h

C
∗′
n + K2h  � E e

∗
2nhe
∗
2mh( ,

E e
∗
0uhe
∗
1uh(  �

1
YhZh

λhu ρyhzh
SyhSzh  + λ∗hu ρyhzh(2)Syh(2)Szh(2)   �

1
YhZh

D
∗′
u ,

E e
∗
0mhe
∗
1nh(  �

1
YhZh

λhn ρyhzh
SyhSzh  + λ∗hn ρyhzh(2)Syh(2)Szh(2)   �

1
YhZh

D
∗′
n ,

E e
∗
0mhe
∗
1mh(  �

1
YhZh

λhm ρyhzh
SyhSzh  + λ∗hm ρyhzh(2)Syh(2)Szh(2)   �

1
YhZh

D
∗′
m ,

E e
∗
0mhe
∗
2nh(  �

1
YhXh

λhn ρyhxh
SyhSxh  + λ∗hn ρyhxh(2)Syh(2)Sxh(2)   �

1
YhXh

F
∗′
n ,

E e
∗
0mhe
∗
2mh(  �

1
YhXh

λhm ρyhxh
SyhSxh  + λ∗hm ρyhxh(2)Syh(2)Sxh(2)   �

1
YhXh

F
∗′
m ,

E e
∗
2mhe
∗
1mh(  �

1
XhZh

λhm ρxhzh
SxhSzh  + λ∗hm ρxhzh(2)Sxh(2)Szh(2)   �

1
XhZh

E
∗′
m ,

E e
∗
2nhe
∗
1nh(  �

1
XhZh

λhn ρxhzh
SxhSzh  + λ∗hn ρxhzh(2)Sxh(2)Szh(2)   �

1
XhZh

E
∗′
n ,

E e
∗
2nhe
∗
1mh(  �

1
XhZh

E
∗′
n  � E e

∗
2mhe
∗
1nh( ,

(31)

where
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λhu �
1

uh
−

1
Nh

 ,

λhm �
1

mh
−

1
Nh

 ,

λhn �
1

nh
−

1
Nh

 ,

λ∗hu �
W2(k − 1)

uh
,

λ∗hm �
W2(k − 1)

mh
,

λ∗hn �
W2(k − 1)

nh
.

(32)

Using the abovementioned results, the bias of the esti-
mator T

∗′ to the frst degree of approximation is calculated
as follows:

B T
∗′

  � ϕB T
∗′
u  +(1 − ϕ)B T

∗′
m , (33)

where

B T
∗′
u  � E T

∗′
u − Y 

h
� −

3
8



L

h�1
Phβh

1

Z
2
h

B
∗′
1

⎡⎢⎣ ⎤⎥⎦, (34)

B T
∗′
m  � E T

∗′
m − Y 

h

� −
1
2



L

h�1
Phαh

1

2Z
2
h

B
∗′

− C
∗′

−
1

Zh

E
∗′⎡⎢⎣ ⎤⎥⎦,

(35)

where

B
∗′
1 � B

∗′
u + K3h ,

B
∗′

� B
∗′
n − B
∗′
m ,

C
∗′

� C
∗′
n − C
∗′
m ,

E
∗′

� E
∗′
n − E
∗′
m .

(36)

Temean square error (MSE) of the estimator T
∗′ to the

frst degree of approximation is calculated as follows:

MSE T
∗′

  � ϕ2MSE T
∗′
u  +(1 − ϕ)

2
MSE T

∗′
m , (37)

where

MSE T
∗′
u  � E T

∗′
u − Yh 

2
� 

L

h�1
P
2
h

A
∗′
1 + β2h

B
∗′
1

4Z
2
h

+ βh

D
∗′
u

Zh

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

MSE T
∗′
m  � E T

∗′
m − Yh 

2
� 

L

h�1
P
2
h

A
∗′
2 − α2h C

∗′
+

1

4Z
2
h

B
∗′

+
1

Zh

E
∗′⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎣

+ αh 2F
∗′

+
D
∗′

Zh

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦,

(38)

where

A
∗′
1 � A

∗′
u + K1h ,

A
∗′
2 � A

∗′
m + K1h ,

D
∗′

� D
∗′
n − D
∗′
m ,

F
∗′

� F
∗′
n − F
∗′
m .

(39)

Temean square errors of T
∗′
u and T

∗′
m are functions of the

unknown constants βh and αh, respectively. So, we minimize

the MSEs of T
∗′
u and T

∗′
m, with respect to βh and αh, re-

spectively. Te optimal values are obtained as follows:

βh � −
2 D
∗′
uZh

B
∗′
1

� βh(opt),

αh �
2F
∗′

+ D
∗′/Zh 

2 C
∗′

+ 1/4Z
2
h B
∗′

+ 1/Zh( E
∗′

 

� αh(opt).

(40)

After substituting the optimum value of βh(opt) and
αh(opt) in equations (37) and (38), we obtain the minimum
MSE of T

∗′
u and T

∗′
m.
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min.MSE T
∗′
u  � 

L

h�1
P
2
h

A
∗′
1 −

D
2∗′
u

B
∗′
1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

min.MSE T
∗′
m  � 

L

h�1
P
2
h

A
∗′
2 +

1
4
δ
∗′

 ,

(41)

where

δ
∗′

�
2F
∗′

+ D
∗′/Zh  

C
∗′

+ 1/4Z
2
h B
∗′

+ 1/Zh( E
∗′

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (42)

Te MSE of T
∗′ is dependent on the unknown constant

“ϕ;” then, we minimize equation (35) w.r.t “ϕ” and equate it
to zero, and we obtained the optimum value of “ϕ” as
follows:

ϕopt �
min.MSE T

∗′
m 

min.MSE T
∗′
u  + min.MSE T

∗′
m 

. (43)

Substituting the optimum value of ϕopt in equation (35),
we obtain the optimum mean square error of the estimator
T
∗′ as follows:

MSE T
∗′

 
opt

�
min.MSE T

∗′
u min.MSE T

∗′
m 

min.MSE T
∗′
u  + min.MSE T

∗′
m 

. (44)

Case 1. If S2Uh � S2Vh � S2Wh � S2ph � S2qh � S2rh � 0, then the
mean square error of the proposed estimator without
measurement error reduces to the following expression:

MSE T
∗

  � ϕ2MSE T
∗
u  +(1 − ϕ)

2
MSE T

∗
m , (45)

where

MSE T
∗
u  � E T

∗
u − Yh 

2
� 

L

h�1
P
2
h

A
∗
1 + β2h1

B
∗
1

4Z
2
h

+ βh1

D
∗′
u

Zh

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

MSE T
∗
m  � E T

∗
m − Yh 

2
� 

L

h�1
P
2
h

A
∗
2 − α2h1 C

∗
+

1

4Z
2
h

B
∗

+
1

Zh

E
∗′⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎣

+ αh1 2F
∗′

+
D
∗′

Zh

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦,

(46)

where

A
∗
1 � A

∗
u + K1h A

∗
u � λhuS

2
yh + λ∗huS

2
yh(2),

B
∗
1 � B

∗
u + K3h B

∗
u � λhuS

2
zh + λ∗huS

2
zh(2),

A
∗
2 � A

∗
m + K1h A

∗
m � λhmS

2
yh + λ∗hmS

2
yh(2)

B
∗

� B
∗
n − B
∗
m C
∗

� C
∗
n − C
∗
m B
∗
n � λhnS

2
zh + λ∗hnS

2
zh(2),

B
∗
m � λhmS

2
zh + λ∗hmS

2
zh(2)

C
∗
n � λhnS

2
xh + λ∗hnS

2
xh(2)

C
∗
m � λhmS

2
xh + λ∗hmS

2
xh(2).

(47)

Te MSE of T
∗
u and T

∗
m are minimum, when

βh1 � −
2 D
∗′
uZh

B
∗
1

� βh1(opt),

αh1 �
2F
∗′

+ D
∗′/Zh

2 C
∗

+ 1/4Z
2
h
B
∗

+ 1/Zh( E
∗′

 

� αh1(opt).

(48)

After substituting the optimum value of βh1(opt) and
αh1(opt) inMSEs, we obtain the minimumMSE of T

∗
u and T

∗
m.

min.MSE T
∗
u  � 

L

h�1
P
2
h

A
∗
1 −

D
2∗′
u

B
∗
1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

min.MSE T
∗
m  � 

L

h�1
P
2
h

A
∗
2 +

1
4
δ
∗

 ,

(49)
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where

δ
∗

�
2F
∗′

+ D
∗′/Zh 

C
∗

+ 1/4Z
2
h
B
∗

+ 1/Zh( E
∗′

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (50)

To obtain the optimum value of ‘ϕ’, we minimize
equation (35) w.r.t “ϕ” and equate it to zero, as follows:

ϕopt �
min.MSE T

∗
m 

min.MSE T
∗
u  + min.MSE T

∗
m 

. (51)

After substituting the optimum value of ϕopt in equation
(35), we obtain the optimum mean square error of the es-
timator T

∗ as follows:

MSE T
∗

 opt �
min.MSE T

∗
u min.MSE T

∗
m 

min.MSE T
∗
u  + min.MSE T

∗
m 

. (52)

Case 2. If S2ph � S2qh � S2rh � K1h � K2h � K3h � 0, then the
mean square error of the proposed estimator without sen-
sitivity becomes

MSE T
∗′

  � ϕ2MSE T
∗′
u  +(1 − ϕ)

2
MSE T

∗′
m , (53)

where

MSE T
∗′
u  � E T

∗′
u − Yh 

2
� 

L

h�1
P
2
h A
∗′
u + β2h2

B
∗′
u

4Z
2
h

+ βh2

D
∗′
u

Zh

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

MSE T
∗′
m  � E T

∗′
m − Yh 

2
� 

L

h�1
P
2
h A
∗′
m − α2h2 C

∗′
+

1

4Z
2
h

B
∗′

+
1

Zh

E
∗′⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎣

+ αh2 2F
∗′

+
D
∗′

Zh

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦,

(54)

where

A
∗′
u � λhu S

2
yh + S

2
Uh  + λ∗hu S

2
yh(2) + S

2
Uh(2) ,

B
∗′
u � λhu S

2
zh + S

2
Wh  + λ∗hu S

2
zh(2) + S

2
Wh(2) ,

A
∗′
m � λhm S

2
yh + S

2
Uh  + λ∗hm S

2
yh(2) + S

2
Uh(2) ,

B
∗′

� B
∗′
n − B

∗′
m ,

C
∗′

� C
∗′
n − C

∗′
m ,

B
∗′
n � λhn S

2
zh + S

2
Wh  + λ∗hn S

2
zh(2) + S

2
Wh(2) ,

B
∗′
m � λhm S

2
zh + S

2
Wh  + λ∗hm S

2
zh(2) + S

2
Wh(2) ,

C
∗′
n � λhn S

2
xh + S

2
Vh  + λ∗hn S

2
xh(2) + S

2
Vh(2) ,

C
∗′
m � λhm S

2
xh + S

2
Vh  + λ∗hm S

2
xh(2) + S

2
Vh(2) .

(55)

Te MSE of T
∗
u and T

∗
m are minimum, when

βh2 � −
2 D
∗′
uZh

B
∗′
u

� βh2(opt),

αh2 �
2F
∗′

+ D
∗′/Zh 

2 C
∗′

+ 1/4Z
2
hB
∗′

+ 1/Zh( E
∗′

 

� αh2(opt).

(56)

By substituting the optimum value of βh2(opt) and αh2(opt)

in MSEs, we obtain the minimum MSE of T∗
′

u and T∗
′

m.

min.MSE T
∗′
u  � 

L

h�1
P
2
h A
∗′
u −

D
2∗′
u

B
∗′
u

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

min.MSE T
∗′
m  � 

L

h�1
P
2
h A
∗′
m +

1
4
δ∗′ ,

(57)

where

δ∗′ �
2F
∗′

+ D
∗′/Zh 

C
∗′

+ 1/4Z
2
h B
∗′

+ 1/Zh( E
∗′

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (58)

To obtain the optimum value of “ϕ,” we minimize
equation (52) w.r.t “ϕ” and equate it to zero as follows:

ϕopt �
min.MSE T

∗′
m 

min.MSE T
∗′
u  + min.MSE T

∗′
m 

. (59)

After substituting the optimum value of ϕopt in equation
(52), we obtain the optimum mean square error of the es-
timator T

∗ as follows:
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MSE T
∗′

 
opt

�
min.MSE T

∗′
u min.MSE T

∗′
m 

min.MSE T
∗′
u  + min.MSE T

∗′
m 

. (60)

Case 3. If we substitute S2Uh � S2Vh � S2Wh � S2ph � S2qh � S2rh �

K1h � K2h � K3h � 0 in equation (60), then the mean square

error of the proposed estimator reduces to only the non-
response case (i.e., absence of measurement and sensitivity)
as follows:

MSE T
∗

(  � ϕ2MSE T
∗
u(  +(1 − ϕ)

2
MSE T

∗
m( , (61)

where

MSE T
∗
u(  � E T

∗
u − Yh( 

2
� 

L

h�1
P
2
h A
∗
u + β2h3

B
∗
u

4Z
2
h

+ βh3

D
∗′
u

Zh

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

MSE T
∗
m(  � E T

∗
m − Yh( 

2
� 

L

h�1
P
2
h A
∗
m − α2h3 C

∗
+

1

4Z
2
h

B
∗

+
1

Zh

E
∗′⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎣

+ αh3 2F
∗′

+
D
∗′

Zh

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦,

(62)

where

A
∗
u � λhu S

2
yh  + λ∗hu S

2
yh(2) ,

B
∗
u � λhu S

2
zh  + λ∗hu S

2
zh(2) ,

A
∗
m � λhm Syh  + λ∗hm S

2
yh(2) ,

B
∗

� B
∗
n − B
∗
m( ,

C
∗

� C
∗
n − C
∗
m( ,

B
∗
n � λhn S

2
zh  + λ∗hn S

2
zh(2) ,

B
∗
m � λhm S

2
zh  + λ∗hm S

2
zh(2) ,

C
∗
n � λhn S

2
xh  + λ∗hn S

2
xh(2) ,

C
∗
m � λhm S

2
xh  + λ∗hm S

2
xh(2) ,

(63)

which are minimum, when

βh3 � −
2 D
∗′
uZh

B
∗
u

� βh3(opt),

αh3 �
2F
∗′

+ D
∗′/Zh 

2 C
∗

+ 1/4Z
2
h B
∗

+ 1/Zh( E
∗′

 

� αh3(opt).

(64)

We obtain the minimum MSE of T∗u and T∗m, after
substituting the optimum value of βh3(opt) and αh3(opt) in
abovementioned MSEs as follows:

min.MSE T
∗
u(  � 

L

h�1
P
2
h A
∗
u −

D
2∗′
u

B
∗
u

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (65)

min.MSE T
∗
m(  � 

L

h�1
P
2
h A
∗
m +

1
4
δ∗ , (66)

where

δ∗ �
2F
∗′

+ D
∗′/Zh  

C
∗

+ 1/4Z
2
h B
∗

+ 1/Zh( E
∗′

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (67)
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To derive the optimum value of the constant “ϕ,” we
diferentiate equation (60) w.r.t “ϕ” and equate it to zero; we
obtain as follows:

ϕopt �
min.MSE T

∗
m( 

min.MSE T
∗
u(  + min.MSE T

∗
m( 

. (68)

After substituting the optimum value of ϕopt from
equation (66), the optimummean square error of T

∗ is given
as follows:

MSE T
∗

( opt �
min.MSE T

∗
u( min.MSE T

∗
m( 

min.MSE T
∗
u(  + min.MSE T

∗
m( 

. (69)

Case 4. If we substitute Sxh(2) � Syh(2) � Szh(2)

� S2Uh � S2Vh � S2Wh � 0, then the mean square error of the
proposed estimator reduces to only the sensitivity case (i.e.,
absence of nonresponse andmeasurement errors) as follows:

MSE(T) � ϕ2MSE Tu  +(1 − ϕ)
2
MSE Tm , (70)

where

MSE Tu  � E Tu − Yh 
2

� 

L

h�1
P
2
h

Au + β2h4
Bu

4Z
2
h

+ βh4

Du

Zh

⎡⎢⎣ ⎤⎥⎦,

MSE Tm  � E Tm − Yh 
2

� 
L

h�1
P
2
h

Am − α2h4 C +
1

4Z
2
h

B +
1

Zh

E
⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎣

+ αh4 2F +
D

Zh

 ,

(71)

where
Au � λhu S

2
yh  + K1h,

Bu � λhu S
2
zh  + K3h,

Du � λhuρyhzh
SyhSzh,

Am � λhm S
2
yh  + K1h,

B � Bn − Bm ,

Bn � λhn S
2
zh  + K3h,

Bm � λhm S
2
zh  + K3h,

C � Cn − Cm ,

Cn � λhn S
2
xh  + K2h,

Cm � λhm S
2
xh  + K2h,

D � Dn − Dm ,

Dn � λhnρyhzh
SyhSzh,

Dm � λhmρyhzh
SyhSzh,

F � Fn − Fm ,

Fn � λhnρyhxh
SyhSxh,

Fm � λhmρyhxh
SyhSxh,

E � En − Em ,

En � λhnρxhzh
SxhSzh,

Em � λhmρxhzh
SxhSzh.

(72)

Te MSEs are minimum, when

βh4 � −
2 DuZh

Bu

� βh4(opt),

αh4 �
2F + D/Zh 

2 C + 1/4Z
2
h
B + 1/Zh( E 

� αh4(opt).

(73)

After substituting the optimum value of βh4(opt) and
αh4(opt) in equations (70) and (71), we obtain the minimum
MSE of Tu and Tm.

min.MSE Tu  � 
L

h�1
P
2
h

Au −
D
2
u

Bu

⎡⎣ ⎤⎦, (74)

min.MSE Tm  � 
L

h�1
P
2
h

Am +
1
4

δ , (75)

where

δ �
2F + D/Zh  

C + 1/4Z
2
h
B  + 1/Zh

E  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (76)

Te MSE of T is dependent on the unknown constant
“ϕ;” then, we diferentiate equation (69) w.r.t “ϕ” and
equate it to zero and we obtain the optimum value of “ϕ” as
follows:

ϕopt �
min.MSE Tm 

min.MSE Tu  + min.MSE Tm 
. (77)
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Substituting the optimum value of ϕopt from equation
(75), we obtain the optimum mean square error of the es-
timator T as follows:

MSE(T)opt �
min.MSE Tu min.MSE Tm 

min.MSE Tu  + min.MSE Tm 
. (78)

5. Complete Response Estimator

To evaluate the proposed estimators with complete response
situations to see how well they perform. Te complete re-
sponse estimator τ is defned as follows:

τ � ψτu +(1 − ψ)τm, (79)

where τu � yuh, τm � ymh/xmhxnm, and ψ(0≤ψ ≤ 1) is an
unknown constant to be determined by the minimization of
the mean square error of the estimator τ.

To the frst-order approximation, the minimum mean
square error of the estimator τ is given as follows:

min.MSE(τ) �
V τu( .MSE τm( 

V τu(  + MSE τm( 
, (80)

where

V τu(  � 
L

h�1
λhuS

2
yh,

MSE τm(  � 
L

h�1
λhmS

2
yh + λhm − λhn( εh ,

(81)

where

Rh �
Yh

xh

,

εh � R
2
hS

2
xh − 2ρyhxh

RhSyhSxh .

(82)

6. Simulation Study

In this section, we conduct a simulation study using R
software to verify the results of the previous sections. We
have generated a hypothetical (artifcial) population in
Section 6.1 and considered two real populations in Section
6.2. Te descriptions of the variables with parametric values
are given in Sections 6.1 and 6.2, respectively. Te results are
given in Tables 1–4, respectively.

6.1. Population Generated through Simulation Using Normal
Distribution. In this section, we investigated the efciency of
our estimator with the help of an artifcial population of N �

18, 000 and generated three strata of equal size, i.e., N1 � N2 �

N3 � 6000; then, a random sample is drawn from each stratum
of size nh; h � 1, 2, 3, i.e., n1 � n2 � n3 � 2000, such that n �


3
h�1 nh � 6000. On the frst occasion, we generated a

sample from n, and on the second occasion, a subsample of size
np � m, i.e., matched units, is taken from the frst occasion and
a fresh sample of size nq � u, i.e., unmatched units, is drawn

from the remaining population. In the second phase, we take
another sample nsh � n2h/k; k> 1 are drawn from the nonre-
spondents class. Again, a subsample from the nonrespondent
group of size msh � m2h/k; k> 1 and ush � u2h/k; k> 1 units
are drawn by using diferent values of k � 2, 3, 4, 5, respectively.
Te study variables and auxiliary variables are generated from
the normal distribution, i.e., X � −3.5 + Z + rnorm(N, 20, 5),
Y � −3.5 + Z + rnorm(N, 20, 5), and Z � rnorm(N, 20, 5),
respectively.Te scrambling variable S1h is taken from a normal
distribution with a mean value of 1 and a variance value of 0,
and S2h is also taken from a normal distribution with a mean
value of 0 and a variance value of 1.Temeasurement errors on
Yh,Xh, andZh have a normal distribution with amean value of
0 and a variance value approximately equal to 1. We analyzed
the mean squared error (MSE) of the proposed estimator(s) in
the cases of presence and absence of measurement errors, re-
spectively, for diferent values of k, W, and q.

From Tables 1 and 2, we have noted the following
observations:

(i) It is investigated from Tables 1 and 2 that when no
error is present (i.e., a complete response), the MSE
of τ is better than that of the other considered
estimators. Furthermore, for the considered esti-
mator, the MSE of T (i.e., presence of sensitivity
only) is more efcient than that of the other esti-
mators (i.e., the presence and absence of mea-
surement errors). It represents
τ < T<T∗ < T

∗ <T∗′ < T
∗′.

(ii) Also, fromTables 1 and 2, it is observed that with the
increasing value of k, the MSEs of each estimator,
i.e., T, T∗, T

∗
, T∗′, and T

∗′, also increase.
(iii) With an increase in the value of W from 0.4 to 0.8,

the mean squared error of each estimator also in-
creases, i.e., T, T∗, T

∗
, T∗′, and T

∗′, also increases,
which is shown in Tables 1 and 2.

(iv) From Table 1, it can be seen that when ρxy � 0.9 and
ρyz � 0.7, then for the increasing value of q � 0.2 to
0.4, the MSE of T

∗′ (i.e., presence of sensitivity with
nonresponse and measurement errors) increases;
the MSEs of all the other considered estimators, i.e.,
T, T∗, T

∗, and T∗′, frst increase and then decrease.
(v) From Tables 1 and 2, it is observed that for the

increasing value of q � 0.2 to 0.4, the MSE of T
∗′

increases. But, for q � 0.2, the MSEs all the other
estimators, i.e., T, T∗, T

∗, and T∗′ frst increase, then
decrease for q � 0.4 and increase for q � 0.6.

(vi) Higher the values of the correlation coefcient
between the study and auxiliary variable, the more
efective the suggested technique shown in Tables 1
and 2. Tis behavior assists us in selecting a pop-
ulation for the application of our strategy in real life.

6.2. Numerical Illustration Using Two Known Natural
Population. Two real-life datasets are considered from the
work of Singh et al. [14] for numerical comparison, and we
have taken into account S1 � 1; S2 � 0 and S2s1 � 0.05; S2s2 � 1
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Table 1: MSE of the proposed estimators with nonresponse and measurement errors for W � 0.4 and diferent values of k and q.

MSE(τ) is 0.00600

Q k
Estimators

T
∗′ T

∗
T∗′ T∗ TWith M.E Without M.E With M.E Without M.E

0.2

2 0.05505 0.00713 0.00749 0.00697 0.00598
3 0.10336 0.00834 0.00898 0.00811 0.00606
4 0.15158 0.00954 0.01045 0.00924 0.00614
5 0.19979 0.01073 0.01192 0.01036 0.00621

0.4

2 0.05489 0.00713 0.00736 0.00699 0.00601
3 0.10303 0.00832 0.00870 0.00810 0.00609
4 0.15110 0.00950 0.01002 0.00921 0.00616
5 0.19914 0.01067 0.01134 0.01031 0.00624

0.6

2 0.05476 0.00701 0.00727 0.00686 0.00588
3 0.10276 0.00821 0.00864 0.00798 0.00596
4 0.15069 0.00939 0.01000 0.00910 0.00603
5 0.19859 0.01057 0.01135 0.01020 0.00611

ρxy � 0.9, ρyz � ρxz � 0.7, and MSE(τ) is 0.00480

0.2

2 0.05482 0.00616 0.00656 0.00599 0.00491
3 0.10322 0.00746 0.00814 0.00721 0.00500
4 0.15149 0.00873 0.00968 0.00840 0.00509
5 0.19971 0.00997 0.01121 0.00957 0.0051

0.4

2 0.05456 0.00613 0.00638 0.00596 0.00491
3 0.10288 0.00739 0.00780 0.00715 0.00500
4 0.15099 0.00863 0.00920 0.00831 0.00508
5 0.19905 0.00985 0.01057 0.00946 0.00517

0.6

2 0.05457 0.00613 0.00642 0.00596 0.00491
3 0.10265 0.00739 0.00788 0.00715 0.00500
4 0.15061 0.00863 0.00930 0.00831 0.00508
5 0.19852 0.00985 0.01070 0.00946 0.00517

ρxy � 0.75, ρyz � ρxz � 0.55, and MSE(τ) is 0.00580

0.2

2 0.05503 0.00706 0.00742 0.00690 0.00590
3 0.10334 0.00827 0.00892 0.00804 0.00598
4 0.15158 0.00948 0.01040 0.00918 0.00606
5 0.19978 0.01067 0.01187 0.01030 0.00614

0.4

2 0.05486 0.00704 0.00727 0.00689 0.00591
3 0.10302 0.00823 0.00861 0.00801 0.00598
4 0.15109 0.00941 0.00994 0.00912 0.00606
5 0.19913 0.01059 0.01126 0.01022 0.00614

0.6

2 0.05477 0.00704 0.00730 0.00689 0.00591
3 0.10277 0.00823 0.00867 0.00801 0.00599
4 0.15069 0.00942 0.01003 0.00912 0.00606
5 0.19859 0.01059 0.01137 0.01023 0.00614

ρxy � 0.65, ρyz � ρxz � 0.45, and MSE(τ) is 0.0063

0.2

2 0.05515 0.00747 0.00783 0.00733 0.00635
3 0.10341 0.00866 0.00929 0.00844 0.00643
4 0.15162 0.00984 0.01075 0.00955 0.00650
5 0.19982 0.01102 0.01220 0.01066 0.00657

0.4

2 0.05498 0.00746 0.00768 0.00732 0.00636
3 0.10309 0.00863 0.00900 0.00841 0.00643
4 0.15114 0.00979 0.01030 0.00951 0.00650
5 0.19917 0.01095 0.01161 0.01060 0.00658

0.6

2 0.05487 0.00746 0.00771 0.00732 0.00636
3 0.10283 0.00863 0.00905 0.00842 0.00643
4 0.15073 0.00979 0.01038 0.00951 0.00651
5 0.19862 0.01096 0.01171 0.01060 0.00658
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Table 2: MSE of the proposed estimators with nonresponse and measurement errors for W � 0.8 and diferent values of k and q.

MSE(τ) is 0.00540

Q k
Estimators

T
∗′ T

∗
T∗′ T∗ TWith M.E Without M.E With M.E Without M.E

0.2

2 0.10030 0.00642 0.00667 0.00608 0.00524
3 0.19378 0.00767 0.00816 0.00716 0.00538
4 0.28724 0.00898 0.00972 0.00832 0.0055
5 0.38059 0.01022 0.01113 0.00937 0.00563

0.4

2 0.10072 0.00646 0.00670 0.00613 0.00529
3 0.19466 0.00773 0.00820 0.00724 0.00541
4 0.28852 0.00899 0.00970 0.00835 0.00553
5 0.38228 0.01017 0.01111 0.00938 0.00565

0.6

2 0.10082 0.00626 0.00651 0.00592 0.00508
3 0.19481 0.00752 0.00799 0.00703 0.00521
4 0.28879 0.00885 0.00960 0.00821 0.00534
5 0.38265 0.01008 0.01103 0.00929 0.00547

ρxy � 0.9, ρyz � ρxz � 0.7, and MSE(τ) is 0.00480

0.2

2 0.10027 0.00622 0.00648 0.00586 0.00503
3 0.19376 0.00748 0.00798 0.00696 0.00517
4 0.28722 0.00880 0.00955 0.00812 0.00531
5 0.38059 0.01005 0.01098 0.00922 0.00544

0.4

2 0.10069 0.0062 0.00645 0.00585 0.00502
3 0.19464 0.00748 0.00796 0.00698 0.00515
4 0.2885 0.00876 0.00948 0.00811 0.00528
5 0.38227 0.00994 0.01090 0.00913 0.00541

0.6

2 0.10081 0.00620 0.00645 0.00586 0.00501
3 0.19480 0.00746 0.00794 0.00697 0.00515
4 0.28879 0.00880 0.00955 0.00814 0.00528
5 0.38265 0.01003 0.01098 0.00923 0.00541

ρxy � 0.75, ρyz � ρxz � 0.55, and MSE(τ) is 0.00580

0.2

2 0.10041 0.00713 0.00736 0.00682 0.00596
3 0.19384 0.00834 0.00878 0.00787 0.00607
4 0.28728 0.00961 0.01030 0.00900 0.00617
5 0.38064 0.01082 0.01167 0.01006 0.00627

0.4

2 0.10082 0.00712 0.00735 0.00682 0.00596
3 0.19472 0.00836 0.0088 0.00791 0.00607
4 0.28856 0.00960 0.01026 0.009 0.00616
5 0.38232 0.01075 0.01165 0.01001 0.00626

0.6

2 0.10093 0.00712 0.00735 0.00682 0.00597
3 0.19487 0.00834 0.00877 0.00789 0.00607
4 0.28884 0.00963 0.01033 0.00904 0.00616
5 0.38268 0.01083 0.01173 0.01009 0.00626

ρxy � 0.65, ρyz � ρxz � 0.45, and MSE(τ) is 0.0063

0.2

2 0.10048 0.00756 0.00777 0.00726 0.00639
3 0.19388 0.00875 0.00918 0.00831 0.00648
4 0.28731 0.01001 0.01067 0.00942 0.00657
5 0.38066 0.01120 0.01203 0.01047 0.00665

0.4

2 0.10090 0.00756 0.00777 0.00727 0.00639
3 0.19476 0.00878 0.00920 0.00835 0.00648
4 0.28858 0.01004 0.01065 0.00943 0.00657
5 0.38234 0.01116 0.01203 0.01044 0.00665

0.6

2 0.10099 0.00756 0.00777 0.00727 0.00639
3 0.19491 0.00876 0.00918 0.00833 0.00648
4 0.28886 0.01004 0.01072 0.00947 0.00657
5 0.38270 0.01123 0.01210 0.01051 0.00665
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in order to minimize the efect of scrambling on the real
data. Te MSE of the estimators is calculated as follows:

MSE(∗) � Var(∗) +[Bias(∗)]2, (83)

where “∗” means τ, T
∗′, T
∗, T∗′, T∗, and T.

Te details of two real populations are as follows.

Te frst dataset is based on the Census 2011 literacy
rates in India. Te data are of N � 35 Indian states and
union territories, and they generated three strata of
unequal size, i.e., N1 � 13, N2 � 11, and N3 � 10; then,
a random sample is drawn from each stratum of size nh;
h � 1, 2, 3, i.e., n1 � 8, n2 � 7, and n3 � 5. Te literacy
rate is spread across themajor parameters overall, rural,
and urban. Let y, x, and z denote the number of lit-
erates (people) in 2001, 2011, and the total literacy rate
(2011), respectively.
Te second dataset is based on abortion rates from
Statistical Abstract of the United States (2011) to clarify
the performance of our proposed estimator (free access
to the data by the Statistical Abstracts of the United
States). Te population consists of N � 51 states of the
U.S. and generates three strata of unequal size, i.e.,
N1 � 10, N2 � 15, and N3 � 10; then, a random sample
is drawn from each stratum of size nh; h � 1, 2, 3, i.e.,
n1 � 8, n2 � 7, n3 � 5. Furthermore, let y, x, and z

denote the number of abortions reported in the state of
the U.S. during the years 2008, 2007, and 2005,
respectively.

Te results are shown in Tables 3 and 4 for the diferent
choices of the nonresponse, i.e., k � 2, 3, 4, 5 and diferent

probability levels of sensitive variables, i.e., W � 0.4 and 0.8,
are used.

Tables 3 and 4 display the mean squared error of the
proposed estimator(s) in the presence of nonresponse and
measurement errors using ORRT for diferent values of k

and W. It is envisaged from Tables 3 and 4 that in the
situation of a moderate level of the sensitive variable with
diferent levels of nonresponse and measurement errors, our
proposed estimators are more efcient. We also observed
that for an increase in the value of k, the MSE of all other
estimators increases.

It is noted from Tables 1–4 that the proposed estimator
“T” is always better than the other considered estimators in
terms of having a minimum MSE.

7. Conclusion

Trough this article, we have proposed a logarithmic type
estimator for the estimation of the population mean of a
sensitive variable under stratifed successive sampling in the
presence of nonresponse and measurement errors simul-
taneously by utilizing the ORRTmodel. Up to the frst degree
of approximation, the bias and MSE are derived. Te
properties of the proposed estimator have been studied and
we compared the results with respect to the complete re-
sponse situation. A simulation study has been performed for
both natural population and an artifcial generated pop-
ulation, and as a result of the simulation study, we have
demonstrated that our proposed estimator is most efcient
in the absence of both nonresponse and measurement error
situations and least efcient in the case when there is a

Table 3: MSE of the proposed estimators with nonresponse and measurement errors for diferent values of k and W.

W τ k
Estimators

T
∗′ T

∗
T∗′ T∗ TWith M.E Without M.E With M.E Without M.E

0.4 3.76111

2 16.30700 2.00065 9.04458 1.95015 1.82873
3 23.61560 2.18979 9.21859 2.11666 1.85261
4 30.89430 2.37457 9.39241 2.28008 1.87617
5 38.16080 2.55565 9.56606 2.44084 1.89943

0.8 3.95862

2 13.47750 2.87943 9.26937 2.81292 2.74132
3 17.80520 3.03436 9.43512 2.93475 2.76591
4 22.12540 3.18914 9.60084 3.05650 2.79014
5 26.44180 3.34378 9.76655 3.17818 2.81401

Table 4: MSE of the proposed estimators with nonresponse and measurement errors for diferent values of k and W.

W τ k
Estimators

T
∗′ T

∗
T∗′ T∗ TWith M.E Without M.E With M.E Without M.E

0.4 2.47430

2 15.5900 1.76780 7.27640 1.69680 1.65580
3 24.35600 1.90850 7.53100 1.80350 1.68800
4 32.92700 2.04800 7.78550 1.90980 1.71970
5 41.48800 2.18660 8.03990 2.01570 1.75080

0.8 3.49550

2 8.06550 2.69570 7.50100 2.60270 2.56070
3 8.84530 2.85230 7.76100 2.71250 2.59370
4 9.62280 3.00870 8.02080 2.82210 2.62610
5 10.39870 3.16500 8.28040 2.93150 2.65780
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presence of both nonresponse and measurement errors at
the same time. Tus, we recommend our suggested esti-
mator, i.e., T, for further use in practice.
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