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Te explosion of time series count data with diverse characteristics and features in recent years has led to a proliferation of new
analysis models and methods. Signifcant eforts have been devoted to achieving fexibility capable of handling complex de-
pendence structures, capturing multiple distributional characteristics simultaneously, and addressing nonstationary patterns such
as trends, seasonality, or change points. However, it remains a challenge when considering them in the context of long-range
dependence. Te Lévy-based modeling framework ofers a promising tool to meet the requirements of modern data analysis. It
enables the modeling of both short-range and long-range serial correlation structures by selecting the kernel set accordingly and
accommodates various marginal distributions within the class of infnitely divisible laws. We propose an extension of the basic
stationary framework to capture additional marginal properties, such as heavy-tailedness, in both short-term and long-term
dependencies, as well as overdispersion and zero infation in simultaneous modeling. Statistical inference is based on composite
pairwise likelihood.Temodel’s fexibility is illustrated through applications to rainfall data in Guinea from 2008 to 2023, and the
number of NSF funding awarded to academic institutions. Te proposed model demonstrates remarkable fexibility and ver-
satility, capable of simultaneously capturing overdispersion, zero infation, and heavy-tailedness in count time series data.

1. Introduction

Time series of count data arises in diferent disciplines,
where observed counts are recorded over time, such as
economics, epidemiology, fnance, and insurance. Several
aspects of count time data have been the subject of extensive
research as evidenced by the rich literature on this area. A
major issue entails modeling dependence arising from the
observations’ discrete nature, which renders the autore-
gressive structure for continuous data incoherent. Te ef-
forts directed towards handling time series of count data are
aimed at ensuring the validity of inference and consequently
data-driven decisions. Te challenge of handling serial
correlation in count data continues to attract the attention of
many researchers and scholars, who are inspired by the
difculties that arise when dealing with these data in various
situations, including the trend of daily COVID-19 deaths in

Ghana [1], stock market trends [2], road accident counts [3],
and crime analysis [4]. Count data exhibit features such as
nonnegativity, integer-valued, and frequently overdispersed
which indicates that the variance is greater than the cor-
responding mean, zero-infation which is a high occurrence
of zero values in the dataset, and heavy-tailedness which
refers to higher probability relative frequency of having
extremes values or outliers in the dataset. Te presence of
zero-infation, extreme values, or outliers in count data can
have an efect on mean and variance estimations, as well as
the validity of statistical inferences. Consequently, com-
plexities arise in this setting due to the requirement to
provide a modeling strategy capable of capturing the de-
pendence patterns and simultaneous modeling as well as the
marginal features of the observations. Tere are various
modeling strategies that have been proposed to deal with the
issues arising when handling time series for count data.Tere
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are two paradigms predominant in the literature for han-
dling serial dependence in count data, the frst is the discrete
autoregressive moving-average models introduced by Jacobs
and Lewis [5], and a given ARMA (p, q) model is defned as
follows:

Xt � c + 􏽘

p

i�1
ϕiXt− i + εt + 􏽘

q

i�1
θiεt− i, (1)

where, in the given time series model, Xt represents the
value at time t, with c as the intercept and ϕi and θi as
coefcients to estimate autoregressive and moving-average
lags. Te error term εt is a statistically independent random
variable, uncorrelated both with itself over time and with
other random variables in the model. Te second is based on
a thinning operator and was introduced by McKenzie [6]
and Al-Osh and Alzaid [7]. Te corresponding model used
for modeling the dynamics of an integer-time sequence Y is
defned as follows:

Yt � ϑ⊖Yt− 1 + εt, t ∈ Z, (2)

where 0≤ ϑ< 1, Yt− 1 represents the value of the sequence at
the time step preceding t, ⊖ is a thinning operator, and
εt􏼈 􏼉t�n ∈ Z is a sequence of random variables. Te advantage
of the frst approach is that in such a stationary process, their
marginal distribution can be of any kind shown by
McKenzie [8]. However, count data’s drawback includes
long runs of constant values, making sample paths un-
realistic in many applications. Te second provides a diverse
set of models. Sample pathways from thinning models
frequently appear more realistic than those from discrete
autoregressive moving-average processes. Tinned models,
on the other hand, cannot generate an arbitrary marginal
distribution for integer-valued data [9].

Eforts to apply the ARMA framework to continuous
data have emerged despite challenges, yielding promising
results, particularly with Gaussian data. Tis adaptation
refects innovative strategies to accommodate continuous
data’s distinct nature while retaining ARMA’s core princi-
ples. Successful application in Gaussian contexts demon-
strates the model’s potential for capturing temporal
dependencies, it has limitations in the count data feld, and
Gaussian ARMA-type processes are insufcient for cap-
turing features of integer-valued time series, such as over-
dispersion and zero infation [10]. Since this model does not
generate integer predictions, it is prone to approximation
errors when applied to count data. Tis has led to the
creation of specifc data counting approaches, some of which
draw concepts from the autoregressive modeling of con-
tinuous data. Some popular approaches such as the integer
autoregressive modeling framework (INAR) strive to keep
the data’s distinct nature. Several researchers have applied
this technique in both univariate and multivariate contexts.
However, a signifcant challenge emerges when attempting
to capture higher-order dependencies, especially in the
extension to multivariate cases. Tis introduces complexities
in implementation within this framework. To tackle this
problem, some authors adopt Markov modeling for example

[11]. However, Markov models have limited memory and do
not explicitly capture long-term dependencies or past events
beyond the current state. In situations of systems with in-
tricate temporal relationships or require considerable his-
torical data for appropriate modeling and prediction, this
can be an obstacle. Hidden Markov models (HMMs) reduce
this issue in part by including hidden states that collect more
information [12], but they fail to capture long-term de-
pendencies in some cases. In addition, they work on the
assumption that transitions between states are independent
events which is also not realistic. Another solution would be
to use copula-based modeling, which accounts for de-
pendence inmultivariate count data. Although copulas allow
for diferent kinds of dependence structures, fnding para-
metric distributions for high-dimensional random vectors
remains difcult because any type of high-dimensional
multivariate distribution is limited in covariance
structure [13].

Time series of count data recorded in various applica-
tions exhibits diverse characteristics and features such as
overdispersion, zero infation, heavy-tailedness, volatility,
nonstationarity, and complex dependence structures. In
response to this, numerous models have been introduced to
efectively handle count time series data by accounting for
zero infation and overdispersion. However, the aspect of
heavy-tailedness has received less attention, as noted by
Qian et al. [10]. However, ignoring the extreme values or
outliers that characterize the feature of the heavy tail may
result in the loss of useful information since it is not feasible
to ignore the tail probability or assume that it decreases very
slowly. Modeling heavy-tailed data present a challenge be-
cause it necessitates identifying distributions that can cap-
ture both the major portion of the data and the extreme
values or outliers [14]. Zhu and Joe [15] introduced a family
of distributions known as the generalized Poisson-inverse
Gaussian distribution. Tis distribution is constructed to
efciently capture heavy-tailed count data and provides
a fexible strategy for such scenarios. Building upon this
work, Qian et al. [10] introduced a novel approach called the
GPIG-INAR model of the frst order, which involves an
INAR process incorporating innovations from the gener-
alized Poisson-inverse Gaussian distribution. For GPIG-I-
NAR to successfully model time series data with heavy-tailed
count distributions, this methodology was developed.
However, it was considered only in the short-range de-
pendence INAR (1), whereby the motivation of this work
considers both short- and long-range dependence.

Additionally, simultaneous modeling of two or more of
these aspects when present in the data presents challenges in
model specifcation and estimation. Tis is further aggra-
vated by the need to specify a modeling strategy that respects
the integer nature of the data when accounting for the serial
correlation over time. Existing frameworks, such as Markov
modeling, INAR strategy, and GLM framework, though
successful in their own right, encounter challenges in ac-
commodating numerous features as well as capturing certain
dependence patterns such as a long-range serial correlation.
Te Lévy-based modeling approach was frst introduced in
the area of turbulence modeling by Barndorf-Nielsen and
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Schmiegel [16] where they found that the Lévy-based
framework allows very fexible autocorrelation structures
and can produce any kind of marginal distribution within
the class of integer-valued infnitely divisible distributions.
In the context of time series analysis, the Lévy-based
framework has been adopted in modeling time series of
count data in recent years, see Barndorf-Nielsen et al. [9];
Veraart [17]; Bennedsen et al. [18]; Leonte and Veraart [19].
Tis approach entails modeling serially correlated count and
integer-valued data in continuous time and ofers several
advantages including fexibility of the autocorrelation
structure, simplicity, and accommodating short or long
memory processes. Tis framework due to its simplicity and
dynamical control can be enhanced to accommodate various
features to develop fexible models within the count time
series landscape. Zero infation and overdispersion are
common aspects in various application areas, and failure to
account for them, if present in the data, may result in
misleading inference.

To the best of our knowledge, there are existing gaps in
the literature. First, how can heavy-tailed count data be
modeled, considering both short-range and long-range
dependence under stationary conditions in the data? In
other words, how can we account for all memory ranges in
count data, given that it exhibits stationarity and heavy-
tailedness? Another question is this how can these features
be handled in a simultaneous modeling framework?

In this work, we consider marginal distributions that can
account for more features in the data such as zero infation
and overdispersion within the stationary setting and heavy-
tailedness in both short- and long-range dependence. To
achieve this aim, we develop stationary Poisson inverse-
Gaussian Lévy-based models for time series of count data
with heavy-tailed characteristics; and stationary semi-Poisson
Lévy-based models for zero infation and overdispersion time
series of count data for simultaneous modeling.

Te article is structured as follows: Section 2 provides
brief preliminaries and components of the Lévy-based
modeling framework. In Section 3, model specifcation
consists of choosing the distributions and the kernel set. We
estimate the parameters of our models using moments-
based methods and composite pairwise likelihood in Sec-
tion 4. In Section 5, a simulation study is presented. Real data
applications are considered in Section 6. We give a con-
clusion in Section 7.

2. Lévy Bases

Tis section briefy introduces the Lévy-based framework.
Tis framework can accommodate any kind of marginal
distribution within the class of integer-valued infnitely
divisible distributions. Further details are provided in
Barndorf-Nielsen and Schmiegel [16]. A Lévy basis is
a random measure that is infnitely divisible and in-
dependently scattered, meaning it can be decomposed into
an infnite number of smaller independent random mea-
sures. Tis characteristic is useful for modeling a variety of
phenomena, such as disease spread, trafc movement, and
customer arrivals at stores. Additional information about

independently scattered random measures can be found in
Rajput and Rosinski [20] and Kwapien andWoyczynski [21].

Let (Ω,F, P) be probability space, and let (S,S, | · |)

denote a Lebesgue-Borel space and |D| denotes the Lebesgue
measure of. We assume that S is a subset of Rd, i.e., S ⊂ Rd

with (d ∈ N). Te set BLeb(S) represents the collection of
Borel measurable sets with fnite Lebesgue measure con-
tained in S. We can think of S as a collection of events that
have a time and location in space. Te measure l is fnite if
l(R)<∞. Lévy measure on R is Borel measure such that
l(0) � 0 and 􏽒

R
min(1, y2)l(dy)<∞. Finally,Bb(S) defnes

the bounded Borel sets of S such that:

Bb(S) � D ∈ S: |D|<∞{ }. (3)

Te cumulant transform of a random variable X is given
by C(θ, X) � log(E(eiθX)) [22], denoted X�

d
Y, if X and Y are

identically distributed.

2.1. Defnition. Lévy basis Λ on (S, S) is a collection of
random variables Λ� Λ(D): D ∈BLeb(S)􏼈 􏼉 such that:

(i) Te law of Λ is infnitely divisible for all
D ∈BLeb(S). Tus, for any natural number n ∈ N,
the measure can be expressed as the sum of n in-
dependent and identically distributed random
measuresΛn,k, where k � 1, . . . , n. OtherwiseΛ�dΛn,1
+ · · · +Λn,n.

(ii) Te random variables Λ(D1), . . . ,Λ(Dn) are in-
dependent whenever D1, D2, . . . , Dn ∈BLeb(S) are
disjoint (Independent scattering property).

(iii) For every disjoint sequence D1, D2, . . . , Dn ∈BLeb
(S) with bounded union ∪∞i�1Di ∈BLeb(S) then
we have,

Λ ∪∞i�1Di( 􏼁 �
a.s

􏽘

∞

i�1
Λ Di( 􏼁. (4)

(Additivity property).
Te Lévy basis controls the marginal distribution of the

resulting stochastic process and is specifed by an infnitely
divisible distribution. Tis is the only restriction to its
marginal distribution. Tis ofers a wide range of stochastic
processes that can be supported on integer and real number
states that have light or heavy tail properties. In addition,
a Lévy basis Λ on S is homogeneous if it is stationary. Teir
statistical properties remain unchanged across diferent
points in time.

2.2. Defnition. A Lévy basis Λ on (S, S) is said to be sta-
tionary if for any j ∈ S and D ∈Bb(S) such that
j + D � j + x | x ∈ D􏼈 􏼉 then

Λ(D) �
d Λ(j + D). (5)

A Lévy basis is considered homogeneous if it exhibits
stationarity, and its characteristic function follows the fol-
lowing form:
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C(θ,Λ(D)) � iθ9 −
1
2
θ2u + 􏽚

R
e

iθv
− 1− iθy1[− 1,1](v)􏼐 􏼑l(dv)􏼒 􏼓Leb(D), (6)

where ε ∈ R, u ∈ R≥0, and l is a Lévy measure on R. Te
condition for a Lévy basis to be homogeneous is that its
characteristic function must be of the form given above
called Lévy–Khinchine. Tis condition ensures that the
distribution of Λ(D) is the same for all sets D that have the
same size and shape, regardless of their location in S.

3. Models Specification

Lévy-based framework has two key components which
consist of the choice of the marginal distribution which has
to be infnitely divisible, and the kernel set where we con-
sider shapes able to induce a fexible autocorrelation
structure, which is expected to be a fexible and valid
autocorrection structure, and fnally possible to induce both
long-range and short-range dependence. For various choices
of kernel sets, see Barndorf-Nielsen et al. [9] and Veraart
[17]. Te criterion for choosing the kernel set in this
framework, frstly, is that it must have a fnite Lebesgue
measure, and secondly, as we concentrate on stationary
processes in this context, we make the assumption that the
shape of the kernel set remains constant over time.

Te Lévy basis determines the marginal law of the
process with the chosen distribution depending on the
problem at hand. It can handle various marginal distribu-
tions as long as they are infnitely divisible.Te semi-Poisson
distribution is efective in addressing overdispersion and
zero-infation scenarios, while in cases of heavy-tailedness
modeling, we consider the Poisson-inverse Gaussian
distribution.

3.1. Stationary Poisson-Inverse Gaussian Process. Using Lévy
based framework, we defne the following observation-
driven model Yt with a Poisson-inverse Gaussian process:

Yt �PIG Dt( 􏼁 � 􏽚
Dt

PIG(s)ds, s ∈ R, (7)

where PIG is a homogeneous Poisson-inverse Gaussian Lévy
basis, PIG(s) is the value of a stochastic process following
a Poisson-inverse Gaussian distribution at a specifc location

s within the real numbers with Dt ⊂ Rd, and d ∈ N is
a kernel set.

More specifcally, the Poisson-inverse Gaussian process
is given by

Yt �PIG Dt( 􏼁 ∼ Poisson − inverseGaussian(μ|D|, σ),

(8)

with μ ∈ R+ .
Moreover, a Lévy basis PIG on (S, S) is said to be sta-

tionary if for any j ∈ S and D ∈Bb(S) such that
j + D � j + x | x ∈ D􏼈 􏼉 then

PIG(D) �
d PIG(j + D). (9)

More specifcally, the Poisson-inverse Gaussian basis
satisfes PIG(D) ∼ Poisson − inverseGaussian(μ|D|, σ),
where probability mass function (pmf) of Poisson-inverse
Gaussian (PIG(μ, σ)) distribution is derived from the mixed
Poisson distribution. Te proposed PIG(D) model ofers
enhanced fexibility in capturing complex autocorrelation
structures through the incorporation of a kernel set D,
potentially providing a better ft for time series data com-
pared to the standard PIG distribution.

3.2. Defnition. A discrete random variable X follows
a Poisson-inverse Gaussian (PIG) distribution parameter-
ized by two positive real numbers, μ and σ. Te stochastic
representation of X given Y � y is Poisson with a mean
(μ, y), where Y is a random variable with an inverse
Gaussian distribution with E[Y] � 1. We denote
X ∼ PIG(μ|D|, σ), and the moment-generating function of
X is given by

ΦX(t) ≡ E e
tX

􏽨 􏽩 � exp σ 1 −

�����������������

1 − 2σ− 1μ e
t

− 1􏼐 􏼑|D|

􏽱

􏼒 􏼓􏼒 􏼓,

(10)

with t< log(1+ σ/2μ|D|).

Te probability mass function is given by

p(k) ≡ P(PIG� k) �

�
2

√

��
π

√ [σ(σ + 2μ|D|)]
− (k− 1/2)/2 e

σ
(μ|D|)

k

k!
􏼠 􏼡Kk− 1/2􏼠

�����������

σ(σ + 2μ|D|)

􏽱

)􏼡, (11)

for k � 0, 1, . . . where Kλ(t) � 1/2􏽒
∞
0 uλ− 1 exp(− 1/2u2)

u + 1/udu the altered Bessel function of the third kind is
a mathematical function that can be calculated using soft-
ware such as Maple and Mathematica.

Te mean is defned as follows:

E(PIG(D)) � μ|D|. (12)

Te variance is defned as follows:

V(PIG(D)) � μ|D| +
(μ|D|)

2

σ
. (13)

Te heavy tail (HT) is defned as follows:
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HT�
P(PIG(D) � k + 1)

P(PIG(D) � k)
, k⟼∞,

p(h) �Cov Yt, Yt + h( 􏼁 � D∩Dh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 μ|D| +

(μ|D|)
2

σ
􏼠 􏼡,

r(h) �Corr Yt, Yt + h( 􏼁 �
Dt ∩Dt + h

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Dt

.

(14)

In this scenario, the condition 0≤ |Dt ∩Dt + h|≤ 1 in-
dicates that the model cannot exhibit negative correlations.
Additionally, considering the expression, for Yt �PIG(Dt),
as the distance dth � ‖t − h‖ grows infnitely large, the
overlapping region |Dt ∩Dh| tends towards 0. Tis char-
acteristic guarantees that the process follows an α-mixing
pattern.

3.3. Stationary Semi-Poisson Process. Using the Lévy-based
framework, we defne the following observation-driven
model Yt with a semi-Poisson distribution:

Yt � SP Dt( 􏼁 � 􏽚
Dt

SP(s)ds, s ∈ R, (15)

where SP is a homogeneous semi-Poisson Lévy basis, and
Dt ⊂ Rd, d ∈ N is a kernel set defned by k(.) an exponential
and sup-IG.

More specifcally, the semi-Poisson process is given by

Yt � SP Dt( 􏼁 ∼ Semi − Poisson(λ|D|), λ ∈ R+. (16)

Furthermore, a Lévy basis SP on (S, S) is said to be
stationary if for any a ∈ S and D ∈Bb(S) such that
a + D � a + x | x ∈ D{ }, then

SP(D) �
d SP(a + D). (17)

More specifcally, the semi-Poisson basis satisfes
SP(D) ∼ Semi − Poisson(λ|D|) where probability mass
function (pmf) of semi-Poisson (SP(λ)) distribution is
defned by

P(SP(D) � k) � Cλ
(k + 1)(λ|D|)

k + 2

(k + 2)k!
, k ∈ R, (18)

where Cλ � 1/((λ|D|)2 − λ|D| + 1)eλ|D| − 1, and λ> 0.
Te cumulative function is given by

C(y, SP(D)) � Eλ
Y + 1
Y + 2

􏼒 􏼓 − (λ|D|)
y
E

t!

(Y + t)
􏼠 􏼡

Y + t + 1
Y + t + 2

􏼒 􏼓􏼢 􏼣.

(19)

Te mean is defned as follows:

E(SP(D)) � e
λ|D|

− 2+ 2λ|D| − (λ|D|)
2

+(λ|D|)
3

􏽮 􏽯 + 2

e
λ|D| 1 − λ|D| +(λ|D|)

2
􏽮 􏽯 − 1

,

E SP(D)
2

􏼐 􏼑 �
eλ|D|λ|D|

4
+ 2eλ(λ|D|)

2
− 4eλ|D|λ|D| + 4eλ|D|

− 4
eλ|D|

(λ|D|)
2

− λ|D| + 1􏼐 􏼑 − 1
.

(20)

Hence, the variance can be obtained as follows:

V(SP(D)) �
e
λ|D|

(λ|D|)
2

− 2 − 4λ|D| − (λ|D|)
2

+ e
λ|D| 2+ 2λ|D|− 2(λ|D|)

2
+(λ|D|)

3
􏽮 􏽯􏽨 􏽩

e
λ|D| 1 − λ|D| +(λ|D|)

2
􏽮 􏽯 − 1􏽨 􏽩

2 . (21)

Te index of dispersion is defned as follows:

I�
V(SP(D))

E(SP(D))
�

e
λ|D|

(λ|D|)
2

− 2 − 4λ|D| − (λ|D|)
2

+ e
λ|D| 2+ 2λ|D|− 2(λ|D|)

2
+(λ|D|)

3
􏼐 􏼑􏼐 􏼑

e
λ|D| 1 − λ|D| +(λ|D|)

2
􏼐 􏼑 − 1􏼐 􏼑 e

λ|D|
− 2+ 2λ|D| − (λ|D|)

2
+(λ|D|)

3
􏼐 􏼑 + 2􏼐 􏼑

. (22)

We introduce the zero infation index as follows:

ZI� 1+
logP(SP(D) � 0)

E(SP(D))
. (23)

Te zero infation index (ZI) is a measure of the excess of
zeros in a dataset. A negative ZI indicates that there are more
zeros than expected, a zero ZI indicates no excess zeros, and
a positive ZI indicates fewer zeros than expected.
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Let h> 0. For each component, the autocovariance and
autocorrelation functions are given by

p(h) �Cov Yt, Yt + h( 􏼁 � D∩Dh

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
e
λ|D|

(λ|D|)
2

− 2 − 4λ|D| − (λ|D|)
2

+ e
λ|D| 2+ 2λ|D|− 2(λ|D|)

2
+(λ|D|)

3
􏽮 􏽯􏽨 􏽩

e
λ|D| 1 − λ|D| +(λ|D|)

2
􏽮 􏽯 − 1􏽨 􏽩

2 . (24)

Hence,

r(h) �Corr Yt, Yt + h( 􏼁 �
Dt ∩Dt + h

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Dt

. (25)

In this work, for the kernel sets, we consider a parametric
specifcation of the form:

D � (s, v): s ∈ R,0≤ v<
1
ϕ

k
s − μ
ϕ

􏼠 􏼡􏼨 􏼩, (26)

where μ and ϕ are location and scale parameters,
respectively.

For a short-range dependence, we consider the expo-
nential shape in the form:

Dt � (s, v) : s≤ t, 0≤ v< e
− λ(t− s)

􏽮 􏽯, λ> 0, t≤ 0, (27)

and the autocorrelation function is given by r(h) � exp(− λh)

with h≥ 0; consequently, for t≥ 0,
|D| � 1/λ, |Dt ∩D| � 1/λe− λt and |Dt/D| � 1/λ(1 − e− λt).

For a long-range process dependence, we have

Dt � (s, v) : s≤ t, 0≤ v< 1 −
2t

c2􏼠 􏼡

1/2

exp δc 1 −

������

1 −
2t

c
2

􏽳

⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭, (28)

for t≤ 0. Te autocorrelation function is as follows:

r(h) �Cor Yt, Yt+h( 􏼁 � exp δc 1 −

������

1 −
2h

c
2

􏽳

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (29)

with

|D| �
c

δ
, Dt ∩D
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
c

δ
e
δc 1− ηt( ), Dt\D

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

c

δ
1 − e

δc 1− ηt( )􏼒 􏼓,

(30)

where ηt �
�������
2t/c2 + 1

􏽰
.

Te choice of our kernel set is due to both analytical
tractability and modeling fexibility. Te exponential kernel
is the simplest, while the super-GIG kernel is fexible,
consistent with data properties, and computationally trac-
table. For the process’s realization, we have the set that is
moving along the time axis via the location parameter μ
governing the movement and temporal dependence of the
process with the shape parameter controlling the strength
and pattern of this dependence via the scale parameter ϕ.

4. Parameters Estimation

Tis section looks into the statistical properties of the
moments-based methods and composite likelihood based
on pairs of observations for the estimation of parameters.
We give a thorough overview of moments-based methods.
We also review pairwise likelihood methods and highlight
their advantages over the standard likelihood method.
Indeed, the maximum likelihood becomes impractical
when the number of observations is very large. Tis is
mainly due to computational challenges that arise with the
increased size of the dataset. Pairwise likelihood can be

useful in situations with large datasets or complex models
where computing the whole likelihood function is difcult
or when data are sparse or partial.

4.1. Composite Pairwise Likelihood. Te introduction of
composite likelihood methods is important because there
are a number of situations, such as time series models, where
the computation of the full likelihood is very difcult and too
time-consuming [23]. Te term composite likelihood de-
notes a general class of pseudolikelihoods [24] based on
likelihood-type objects. Consider an m− dimensional vector
random variable Y, with probability density function f(z; θ)

for unknown p− dimensional parameter vector θ ∈ Θ.
Let A1, A2, . . . , Ak be a collection of marginal or con-

ditional events, with associated composite likelihoods
Lk(θ; y) proportional to f(y ∈ Ak; θ) that is Lk(θ; y)

� L(θ; Ak(y)) with k � 1, 2, . . ..
A composite likelihood is defned as follows:

CL(θ; y) � 􏽙
K

k�1
Lk(θ; y)

wk , (31)

wherewk are suitable nonnegative weights that do not depend
on θ. Here, we discuss an alternative strategy based on
a simple pseudolikelihood known as “pairwise likelihood.” Its
advantage is that it reduces the computational burden so that
it is possible to ft highly structured statistical models. Te
pairwise likelihood is a statistical technique that breaks down
the joint likelihood function into a product of pairwise
conditional ormarginal likelihoods.Tis simplifcation allows
for more manageable parameter estimation and inference,
making it particularly useful in situations with complex or
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high-dimensional data where traditional likelihood methods
become computationally infeasible. For more details, we
point to Lindsay [24]; Varin et al. [25]; and Davis and Yau
[26]; since the bivariate distributions are available in closed
form, this technique has also been used in Bennedsen et al.
[27] to make conclusions about related procedures. For the
pairs, (Yi, Yj; i< j) can be decomposed as follows:

Yj � 􏽥Yj\i + 􏽥Y0,

Yi � 􏽥Yi\j + 􏽥Y0,
(32)

where 􏽥Yj\i ∼ Semi − Pois(λ|Dj\Di|), 􏽥Yi\j ∼ Semi − Pois(λ
|Di\Dj|), and 􏽥Y0 ∼ Semi − Pois(λ|Di ∩Dj|) are random
variables, and 􏽥Yj and 􏽥Yi have 􏽥Y0 in common. Since the semi-
Poisson Lévy basis is independently scattered, the sets are
disjoint and independent.Te pairwise composite likelihood
function of order k (k �max time lag)

pcL(θ; y) � 􏽘
n− k

i�1
􏽘

i + k

j�i+1
Pr Yi � yi, Yj � yj; θ􏼐 􏼑, (33)

where y is the observed data, θ� (λ) is the parameter to be
estimated, and Yi and Yj represent random variables at time
i and j, respectively.

Pr Yj � yj, Yi � yi􏼐 􏼑 � 􏽘

min yi,yj( 􏼁

w�0
Pr 􏽥Yj\i � yj − w􏼐 􏼑

· Pr 􏽥Yi\j � yi − w􏼐 􏼑Pr 􏽥Y0 � w( 􏼁

� 􏽘

min yi,yj( 􏼁

w�0
Cλ

yj − w + 1􏼐 􏼑 λ Dj\Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
yj− w+2

yj − w + 2􏼐 􏼑 yj − w􏼐 􏼑!

× 􏽘

min yi,yj( 􏼁

w�0
Cλ

yi − w + 1( 􏼁 λ Di\Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
yi− w+2

yi − w + 2( 􏼁 yi − w( 􏼁!

× 􏽘

min yi,yj( 􏼁

w�0
Cλ

(w + 1) λ Dj ∩Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
w+2

(w + 2)(w)!
,

(34)

with

Cλ �
1

λ Dj\Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

− λ Dj\Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 1􏼠 􏼡e
λ Dj\Di

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

×
1

λ Di\Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

− λ Di\Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 1􏼠 􏼡e
λ Di\Dj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

×
1

λ Dj ∩Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

− λ Dj ∩Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 1􏼠 􏼡e
λ Dj ∩Di

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

λ> 0.

(35)

Davis and Yau [26] provided evidence that it is not
necessary to use all possible lags.

To fnd the maximum likelihood estimator (MLE) for the
parameter λ based on the pairwise composite likelihood func-
tion, we need to maximize the log-likelihood function at the
form:

logpcL(λ; y) � log 􏽘
n− k

i�1
􏽘

i+k

j�i+1
􏽘

min yi,yj( 􏼁

w�0

yj − w + 1􏼐 􏼑 λ Dj\Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
yj− w+2

yj − w + 2􏼐 􏼑 yj − w􏼐 􏼑!
·

yi − w + 1( 􏼁 λ Di\Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
yi − w+2

yi − w + 2( 􏼁 yi − w( 􏼁!
·
(w + 2)(w + 1) λ Dj ∩Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
w+2

(w + 2)!

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(36)

where Cλ is the constant defned as follows:
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Cλ �
1

λ Dj\Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

− λ Dj\Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 1􏼠 􏼡e
λ Dj\Di

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

×
1

λ Di\Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

− λ Di\Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 1􏼠 􏼡e
λ Di\Dj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

×
1

λ Dj ∩Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

− λ Dj ∩Di

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 1􏼠 􏼡e
λ Dj ∩Di

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1

.

(37)

4.2. Method of Moments Estimation. While the pairwise
composite likelihood has proven efective within the uni-
variate context and has demonstrated efcient computa-
tional performance in terms of both time and estimation, its
application encounters challenges when transitioning to the
presence of multiple components. Te approach faces
computational challenges of increased magnitude, especially
when closed-form solutions are unavailable due to the
nontrivial interaction of two distributions like in Poisson-
inverse Gaussian. Another approach to bridge this gap is the
method of moments estimation (MME), introduced by Karl
Pearson in 1894. MME provides a fexible framework for
parameter estimation and gives the estimate by comparing
the functions of the sample and their theoretical moments.
MME is a specifc case of GMM and is often used to estimate
the parameters of a distribution by equating the sample
moments to the theoretical moments of the distribution.
Given that it is often impractical to gather data from an
entire population, we rely on a sample taken from that
population to estimate its moments.Te notion of a moment
is fundamental for describing features of a population.

Suppose an observation Xn � Xi: i � 1, . . . , n is a sample
from a population with mean μ for which we aim to estimate
an unknown parameter vector θ ∈ Θ ⊂ Rd. Tis estimation
involves using a vector Tn � Tn(Xn). Tese statistics have an
expected value c(θ) � E[Tn] in the theoretical context, where
c(θ) represents their theoretical counterparts under the
specifc model. Te concept of a “moment condition” is
introduced, which involves the expectation of a function
fn(θ; Xn) and is defned as E[fn(θ; Xn)] � 0. In this case,
fn(θ; Xn) is a continuous 1 × k vector function of θ, and
E[fn(θ; Xn)] is fnite and exists for all values of i and θ. In
practical terms, this moment condition is approximated
using its sample equivalent: 1/n􏽐

n
i�1(fnθ; Xi) � 0. Tis

equation allows us to obtain the estimator 􏽢θ. For the di-
mension of j � k, we arrive at what is known as the method
of moments (MM) estimator. Te MM estimator θn is ob-
tained by minimizing the expression:

􏽢θn � argmin
θ

1
n

􏽘

n

i�1
fn θ; Xn( 􏼁

T
Zn 􏽘

n

i�1
fn θ; Xn( 􏼁⎡⎣ ⎤⎦, (38)

where Zn represents a symmetric and positive defnite
weight matrix of size k × k. It can depend on the data and
should converge in probability to a positive defnite
matrix Z.

In our case for the moment conditions, with unknown
parameters θ � (μ, σ), let m1 and m2 denote the frst- and
second-order moments respectively, then

E(X) � μ|D|,

V(X) � μ|D| +
(μ|D|)

2

σ
,

1stmoment:

m1 �
1
n

􏽘

n

i�1
Xi,

E(PIG) � m1⟹􏽢μ|D| � m1⟹􏽢μ�
1

|D|
×

􏽐
n
i�1Xi

n
,

􏽢μ�
􏽐

n
i�1Xi

n|D|
,

2ndmoment:

m2 �
1
n

× 􏽘
n

i�1
Xi − m1( 􏼁

2
,

m2 �Var(PIG) � 􏽢μ|D| +
(􏽢μ|D|)

2

􏽢σ

�
m1

|D|
×|D| +

m1

|D|
􏼠 􏼡

2

×
1
􏽢σ

� m1 +
m

2
1

|D|
2􏽢σ
⟹ 􏽢σ �

m
2
1

|D|
2

m2 − m1( 􏼁
,

􏽢σ �
1/n􏽐

n
i�1Xi( 􏼁

2

|D|
2 1/n􏽐

n
i�1 Xi − 1/n􏽐

n
i�1Xi( 􏼁

2
− 1/n􏽐

n
i�1Xi􏼐 􏼑

.

(39)

By substituting the frst-moment estimator m1 into the
equation of 􏽢σ, we have

􏽢σ �
m

2
1

|D|
2 1/n􏽐

n
i�1 Xi − m1( 􏼁

2
− m1􏼐 􏼑

. (40)

Tis equation now expresses the sample variance esti-
mator 􏽢σ in terms of the frst-moment estimator m1 and the
diferences between each data point and the frst moment. In
this case, the criterion function seems to relate to the frst-
moment estimator m1 and the second-moment estimator 􏽢σ
through a formula that involves the diferences between each
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data point and the frst moment.Te purpose of the criterion
function would likely be related to parameter estimation or
evaluating the goodness-of-ft of a distribution to the
given data.

5. Simulation Studies

5.1. Slice Partition. Tis section presents the simulation
approach based on slice partition, let us start by decom-
posing the sets Aψ , . . . , Akψ into distinct slices denoted as S

collected in S. Tis allows for simulating the values of the
Poisson-inverse Gaussian Lévy basis Λ over each slice, and
the process leads to the formulation of the computation for
Xlψ as the sum of Λ(S) across slices contained within Alψ :

Xlψ � 􏽘
S⊂Alψ

Λ(S).
(41)

Exploiting the independent-scattered nature of the Lévy
basis, we can independently sample L(S)S∈S.Tis allows us to
utilize the additivity property of the Lévy basis [19]. As
a result, we can reconstruct the value of the trawl Xlψ by
summing the values derived from the Lévy basis simulations
over slices contained by Alψ .

For instance, if there exists a T< 0 such that ζ(T) � 0, let
I � 􏼆− T/ψ􏼇, using the ceiling function ⌈·⌉, and this conse-
quently defnes the slice partition as follows:

St1 � t≤ψ􏼈 􏼉∩
At

At+1
􏼠 􏼡,

Stj �
(j − 1) · ψ < t≤ j · ψ􏼈 􏼉∩At+j− 1􏼐 􏼑

At+j

, for j≥ 2.

(42)

Consequently, I consecutive trawl sets share nonempty
intersections, with each Aψ containing exactly I slices,
culminating in a total of kI slices. Defning stj � Leb(Stj), the
translational invariance of the Lebesgue measure establishes
stj � stj′ for j, j′ ≥ 2. Tis simplifes the process of de-
termining the slice areas Sij by computing stj for
t ∈ 1, . . . , k{ } and j ∈ 1, 2{ }. Te calculation is defned as
follows:

st1 � 􏽚
(− t+1)·ψ

− i·ψ
ζ(t)dt,

st2 � st1 − st+1,1,

(43)

in which we set sI+1,1 � 0.
Te equations given above completely explain the values

of the areas stj.

5.2. Inverse Transform Method. For the semi-Poisson Lévy
basis, we generate random variables using the inverse
transform method.

Theorem 1. Let X be a random variable with cumulative
distribution function (cdf) F(x), x ∈ R (continuous or not).

Ten,

F(X) ∼ U(0, 1). (44)

Proof. Let Y � F(X) and suppose that Y has cumulative
distribution function (cdf) K(y). Ten,

K(y) � P(Y≤y) � P(F(X)≤y)

� P X≤F
− 1

(y)􏼐 􏼑

� F F
− 1

(y)􏼐 􏼑 � y.

(45)

From the above, the inverse c.d.f. can be defned as
follows:

F
− 1

(y) �min x : F(x)≥y􏼈 􏼉, y ∈ [0, 1]. (46)
□

Proposition  . Let F(x), x ∈ R denote any given cumulative
distribution function (cdf ) and let F− 1(y) with y ∈ [0, 1] be
the inverse function defned in 5.4. Let U ∼ U(0, 1). Defne
X � F− 1(U) means X is distributed as F, that is,
F(x) � P(X≤x).

Proof. Let us show that P(F− 1(U)≤x) � F(x) with x ∈ R.
First, we assume F to be continuous. Saying so let us show
that F− 1(U)≤x􏼈 􏼉 � U≤F(x){ }, by taking probabilities (and
letting b � F(x) in P(U≤ b) � b) results in what follows:

P F
− 1

(U)􏼐 􏼑≤x � P(U≤F(x)) � F(x). (47)

Finally, the equation F(F− 1(y)) � y implies (by
monotonicity of F ) that if F− 1(U)≤ x, then
U � F(F− 1(U))≤F(x), or U≤F(x). Likewise, we can ob-
serve F− 1(F(x)) � x, and as a result, when U≤F(x), then
F− 1(U)≤ x. Tis establishes the equality of the two events as
was sought to prove. In the general context, it is straight-
forward to illustrate that

U<F(x){ }⊆ F
− 1

(U)≤ x􏽮 􏽯⊆ U≤F(x){ }. (48)

Tis leads to the same outcome when considering
probabilities (since P(U � F(x)) � 0 due to the continuous
nature of the random variable U).

In this case, we simulate the semi-Poisson process fol-
lowing the scheme outlined.

We frst need to identify the cumulative distribution
function (cdf) for the probability distribution we want to
generate random numbers from, that is, F(x) � P(X≤ x).
Next, we compute the inverse of the cdf as
F− 1(u) � x such thatF(x) � u, which is also referred to as the
quantile function or percent-point function. Tis inverse cdf
takes a probability value as input and outputs the corre-
sponding value from the desired distribution. Once we have
the inverse cdf, we generate a random number using
a uniform distribution that ranges between 0 and 1 such as
x � F− 1(u).
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Te cumulative distribution function of a semi-Poisson
random variable is given as follows:

F(y, λ) � Eλ
Y + 1
Y + 2

􏼒 􏼓 − (λ|D|)
y
E

t!

(Y + t)
􏼠 􏼡

Y + t + 1
Y + t + 2

􏼒 􏼓􏼢 􏼣,

PoseU � F(y, λ),

A � Eλ
Y + 1
Y + 2

􏼒 􏼓,

B � E
t!

Y + t
􏼠 􏼡

Y + t + 1
Y + t + 2

􏼒 􏼓􏼢 􏼣.

(49)

Ten, from a given equation:

U � A − λy
B, (50)

we can manipulate it as follows: A − U � λyB, which leads to

A − U

B
� λy

� e
ylnλ

,

ln
A − U

B
􏼒 􏼓 � y ln λ,

y �
1
ln λ

ln
A − U

B
􏼒 􏼓.

(51)

Tis expression represents the inverse of our cdf and
U, A, B defned above with λ the parameter.

Now, we simulate our models by considering both the
exponential kernel for the short-range dependence and sup-IG
for the long-range dependence.Ten, we estimate the parameter
vectors θ� (λ, μ, σ), θ� (δ, c, μ, σ), θ� (λ, L � λ), and
θ� (δ, c, L � λ), respectively, whereL � λ is the parameter of the
semi-Poisson. We compute the mean, bias, and mean-squared
error (MSE) given by 􏽢θ� 1/N 􏽐

N
i�1

􏽢θi,Bias(􏽢θ) � 1/N􏽐
N
i�1(

􏽢θi −

θ), andMSE (􏽢θ) � 1/N􏽐
N
i�1 (􏽢θi − θ)2where 􏽢θ represents the

parameter vector values that have been estimated from the data
of the ith simulated series. 0⩽ ϑ< 1.

Te study investigated the stationarity of data generated
from a Poisson-inverse Gaussian Lévy-based model using an
exponential kernel, as depicted in Figures 1 and 2. Tis in-
vestigation was extended to include a sup-IG kernel, illus-
trated in Figure 3. Stationarity was confrmed through the
observation of exponential decay in the autocorrelation
function. Te study also included graphical summaries of
time series data for parameter estimates, presented in Tables 1
and 2. Tese results indicate that larger sample sizes enhance
the accuracy of parameter estimation. Additionally, Figures 4
and 5 demonstrate the stationarity of data from both the semi-
Poisson Lévy-based model with an exponential kernel and the
sup-IG kernels, respectively. Parameter estimation was also
conducted using the pairwise likelihood estimation method,
which yieldedmore accurate estimates with increasing sample
sizes, as shown in Tables 3 and 4. Finally, the trawl process of
the super-IG model, depicted in Figure 6, exhibits sustained
long-term dependence under the estimated parameters. □

6. Real-Data Applications

Tis section discusses the real-data application of the pro-
posed models: Poisson-inverse Gaussian Lévy-based and
semi-Poisson Lévy-based. Data for the second model were
obtained from the Meteorological Services Department of
Guinea Conakry. For the frst model, we analyzed data
consisting of the numbers of NSF funding awarded to ac-
ademic institutions, which is discussed in Qian et al. [10] and
available at https://www.nsf.gov.

6.1. Dataset 1. Tese authors used the number of NSF award
data, which is presented in Figure 7, for modeling the
GPIG-INAR model. Figure 8 shows that the data are sta-
tionary. Te proposed Poisson-inverse Gaussian Lévy-based
model exhibits fexibility in capturing both short-term (Table
5; Figure 9) and long-term (Table 5; Figure 10) dependencies
within the same dataset. Table 5 shows that the PIG-Lévy-
based model is particularly more suitable for the given data as
it has a lower value of the AIC information criterion. Te
mean predictions from the two models are comparable.

We also ftted the PIG-Lévy-based model to the data
(Tables 6 and 7) using an exponential and sup-IG kernel,
respectively, to capture both short-range and long-range
dependencies nature. Mean estimates from the model were
slightly higher, while variance estimates were slightly lower
(Table 5). Te AIC was found to be slightly high. Despite the
fact that a comparison with existing models could not be
made because they are not constructed within the long-range
framework, the model still provided more precise predictions
for the numbers of NSF award data (Figure 10).Te extension
to long-range dependence is an advantage of our framework.

6.2. Dataset 2. We estimated weekly rainfall frequencies using
daily rainfall data from theN’zerekore region inGuineaConakry
between 2008 and 2023 (Figure 11) and the autocorrelation and
partial autocorrelation functions of the data (Figure 12).

We considered a rainfall amount of at most 2.54mm to
represent a dry day. Tus, the data are zero-infated and
overdispersed. Te parameter estimate showed that L � 1.42
(Table 8), indicating that the semi-Poisson random variable
from this model has the highest probability of yielding many
zeros. Te semi-Poisson Lévy-based model captured this
tendency very well by predicting quantiles with a high degree
of closeness (Table 9; Figures 13 and 14). Additionally, the
predicted values were shown to follow the same probability
distribution as the raw data, as depicted in Figures 15 and 16.

6.3.Goodness ofFit of theModel. To verify the accuracy of the
model, we used the mean absolute error (equation (52)) and
the coefcient of determination (equation (53))

MAE�
1
N

􏽘

N

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (52)

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − yi( 􏼁

2. (53)
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For the semi-Poisson Lévy-based model, the MAE is
0.128, implying that model values are much closer to data
values on average. Te value of R2 is 0.823, indicating that
the model behaves much closer to the data than the center
line of the data.Te confdence interval for R2 was calculated
using the following formula [28]:

CI� R
2 ± Zα/2􏽢σR2 ,

σR2 �

���������������������

4R
2 1 − R

2
􏼐 􏼑

2
(N − p − 1)

2

N
2

− 1􏼐 􏼑(N + 3)

􏽶
􏽴

.

(54)
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Figure 2: Time series and autocorrelation function plots of simulated data from Poisson-inverse Gaussian Lévy-based with an exponential
kernel (N � 1000, λ� 0.3, μ� 9, σ � 0.7). (a) Time series. (b) ACF.
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Figure 3: Time series and autocorrelation function plots of simulated data from Poisson-inverse Gaussian Lévy-based with a long memory
process (N � 500, δ � 0.62, c � 0.95, μ� 2.26, σ � 0.25). (a) Time series. (b) ACF.
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Figure 1: Time series and autocorrelation function plots of simulated data from Poisson-inverse Gaussian Lévy-based with an exponential
kernel for the short memory process (N � 1000, λ� 0.6, μ� 5, σ � 0.5). (a) Time series. (b) ACF.
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Table 1: Summary statistics for the MM estimator for diferent parameter values θ� (λ, μ, σ), using an exponential kernel (representing
short-range dependence) at diferent sample lengths of the series N for a Poisson-inverse Gaussian Lévy-based process.

N True
value

λ μ σ λ μ σ λ μ σ
1.9 5.5 0.03 2 9 0.04 9 0.8 6.7

30
Mean 1.8666 5.4666 0.0288 1.9666 8.9666 0.0388 8.9666 0.7666 6.6988
Bias 0.0022 − 0.0004 − 0.0000 0.0055 − 0.0011 − 0.0153 − 0.0011 − 0.1744 0.2066
MSE 0.0001 0.0000 0.0000 0.0009 0.0000 0.0070 0.0000 0.9129 1.2808

100
Mean 1.8900 5.4900 0.0299 1.9900 8.9900 0.0399 8.9900 0.7900 6.6999
Bias 0.0009 − 0.0001 − 0.0000 0.0019 − 0.0001 − 0.0046 − 0.0001 − 0.0521 0.0619
MSE 0.0000 0.0000 0.0000 0.0003 0.0000 0.0021 0.0000 0.2714 0.3843

400
Mean 1.8975 5.4975 0.0300 1.9975 8.9975 0.0399 8.9975 0.7975 6.6999
Bias 0.0002 − 0.0000 0.0000 0.0004 − 0.0000 − 0.0011 − 0.0000 − 0.0130 0.0154
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0676 0.0960

N True value 7 0.4 0.05 10 0.7 3 3 6 9

100
Mean 6.9900 0.3900 0.0499 9.9900 0.6900 2.9999 2.9900 5.9900 8.9999
Bias 0.0519 − 0.0561 − 0.0045 0.0819 − 0.0531 0.0249 0.0119 − 0.0001 0.0849
MSE 0.2693 0.3147 0.0020 0.6707 0.2819 0.0624 0.0141 0.0000 0.7224

200
Mean 6.9950 0.3950 0.0499 9.9950 0.6950 2.9999 2.9950 5.9950 8.9999
Bias 0.0259 − 0.0280 − 0.0022 0.0409 − 0.0265 0.0124 0.0059 − 0.0000 0.0424
MSE 0.1349 0.1570 0.0010 0.3357 0.1407 0.0312 0.0071 0.0000 0.3612

400
Mean 6.9975 0.3975 0.0499 9.9975 0.6975 2.9999 2.9975 5.9975 8.9999
Bias 0.0129 − 0.0140 − 0.0011 0.0204 − 0.0132 0.0062 0.0029 − 0.0000 0.0212
MSE 0.0675 0.0784 0.0005 0.1679 0.0702 0.0156 0.0035 0.0000 0.1806

Table 2: Summary statistics for the MM estimator for diferent parameter values θ� (δ, c, μ, σ) with diferent N for a Poisson-inverse
Gaussian Lévy-based process with long-range dependence.

N True
value

δ c μ σ δ c μ σ
5 2 4 0.7 7 0.3 1.9 0.05

100
Mean 4.9962 1.9962 3.9962 0.6999 7.0003 0.3004 1.9004 0.0500
Bias 0.0099 0.0196 − 0.0200 0.0019 0.0300 0.0027 − 0.0409 − 0.0044
MSE 0.0099 0.0386 0.0401 0.0003 0.0900 0.0007 0.1680 0.0020

N True value 5 2 4 0.7 7 0.3 1.9 0.05

500
Mean 5.0002 2.0002 4.0002 0.7000 7.0004 0.3004 1.9004 0.0500
Bias 0.0020 0.0039 − 0.0039 0.0004 0.0060 0.0005 − 0.0081 − 0.0008
MSE 0.0020 0.0077 0.0079 0.0000 0.0180 0.0001 0.0336 0.0004

N True value 5 2 4 0.7 7 0.3 1.9 0.05

1000
Mean 4.9997 1.9997 3.9997 0.6999 7.0003 0.3003 1.9003 0.0500
Bias 0.0009 0.0019 − 0.0020 0.0001 0.0030 0.0002 − 0.0040 − 0.0004
MSE 0.0009 0.0038 0.0040 0.0000 0.0090 0.0000 0.0168 0.0002
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Figure 4: Semi-Poisson Lévy-based time series and autocorrelation function plots of simulated data with an exponential shape for the short
memory process (N � 500, λ� 1.5, L � 2). (a) Time series. (b) ACF.
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Figure 5: Autocorrelation and partial autocorrelation function plots of simulated data from semi-Poisson Lévy-based with a long memory
process where (N � 1000, L � 2, δ � 0.6, c � 1). (a) ACF. (b) PACF.

Table 3: Summary statistics for the PL estimator for diferent parameter values θ� (λ, L), using an exponential kernel (representing
short-range dependence) at various sample lengths of the series N for a semi-Poisson Lévy-based process.

N True
value

λ L λ L λ L λ L

5 2 4 0.7 9 0.3 15 0.05

200
Mean 4.9292 1.9996 3.9292 0.6996 8.9292 0.2996 14.9292 0.0496
Bias 0.0151 0.0097 0.0101 0.0032 0.0356 − 0.0010 0.0656 − 0.0097
MSE 0.0458 0.0190 0.0205 0.0021 0.2541 0.0002 0.8618 0.0190

N True value 5 2 4 0.7 9 0.3 15 0.05

500
Mean 4.9552 1.9251 3.9552 0.6999 8.9552 0.2999 14.9552 0.0499
Bias 0.0061 0.0038 0.0041 0.0012 0.0143 − 0.0004 0.0261 − 0.0019
MSE 0.0186 0.0076 0.0084 0.0008 0.1023 0.0000 0.3408 0.0018

N True value 5 2 4 0.7 9 0.3 15 0.05

1000
Mean 4.9683 1.9999 3.9683 0.6999 8.9983 0.2999 14.9683 0.0499
Bias 0.0030 0.0019 0.0021 0.0001 0.0071 − 0.0002 0.0131 − 0.0004
MSE 0.0094 0.0038 0.0047 0.0000 0.0513 0.0000 0.1734 0.0002

Table 4: Summary statistics for the PL estimator for diferent parameter values θ� (δ, c, L) and diferent sample lengths of the series N with
long-range dependence semi-Poisson Lévy-based process.

N True
value

L δ c L δ c L δ c

2 0.8 0.2 3 1.6 0.6 1.3 3 0.3

100
Mean 1.8161 0.8414 0.1329 3.1862 1.2904 0.6178 1.3012 2.8738 0.2210
Bias 0.1838 − 0.0414 0.0671 − 0.1862 0.3096 − 0.0178 − 0.0012 0.1261 0.3
MSE 0.0654 0.0209 0.0574 0.0346 0.0958 0.0003 0.0280 0.0359 0.09

250
Mean 1.9398 0.8203 0.2081 3.0856 1.2957 0.5884 1.2911 2.973 0.3410
Bias 0.0601 − 0.0203 − 0.0081 − 0.0855 0.3043 0.0115 − 0.0000 0.0269 0.0003
MSE 0.0077 0.0140 0.0044 0.0283 0.0104 0.0077 0.0000 0.0209 0.0000

500
Mean 2.0032 0.8111 0.2029 3.0065 1.5594 0.6222 1.3001 3.0001 0.3041
Bias 0.0223 0.0102 0.0011 − 0.0064 0.0004 0.0081 0.0000 0.0000 0.0000
MSE 0.0049 0.0079 0.0021 0.0038 0.0058 0.0031 0.0000 0.0000 0.0000

N True value 1.5 1 0.6 1 0.4 0.2 3 0.6 0.9

30
Mean 1.6158 0.8636 0.4518 0.9091 0.6454 0.1524 3.3537 0.5939 0.7143
Bias − 0.1158 0.1363 0.1482 0.0908 − 0.2454 0.0475 − 0.3536 0.0060 0.1856
MSE 0.0383 0.0478 0.0541 0.0354 0.0751 0.0448 0.1274 0.0072 0.0561

500
Mean 1.5808 0.8860 0.6172 0.9671 0.3774 0.1899 3.0793 0.6211 0.8059
Bias − 0.0807 0.1139 − 0.0172 0.0328 0.0225 − 0.0022 − 0.0792 − 0.0211 0.0740
MSE 0.0065 0.0380 0.0241 0.0010 0.0005 0.0000 0.0064 0.0124 0.0160

1000
Mean 1.5025 0.9933 0.6002 0.9953 0.4029 0.2001 3.0431 0.6065 0.9026
Bias − 0.0025 0.0766 0.0053 − 0.0000 0.0000 0.0000 − 0.0431 − 0.0056 0.0167
MSE 0.0000 0.0058 0.0000 0.0000 0.0000 0.0000 0.0027 0.0021 0.0042
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Figure 6: Semi-Poisson Lévy basis and semi-Poisson Lévy-based time series plots of simulated data with a long memory process where
(N � 1000, L � 2, δ � 0.6, c � 1). (a) Illustration of the semi-Poisson processes. (b) Time series plot.
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Figure 8: Autocorrelation and partial autocorrelation functions of the data.

Table 5: Comparison of Lévy-based models with GPIG-INAR (1).

Model Mean Variance AIC RMSE
Empirical 14.5208 251.1662 — —
GPIG-INAR (1) 14.5383 292.5875 1033.1376 1.6462
PIG-Lévy-based with an exponential kernel 14.5634 149.8246 616.9301 1.2065
PIG-Lévy-based with sup-IG kernel 15.1953 168.0466 1038.2727 1.7370
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Figure 9: Prediction of the numbers of NSF fundings under the PIG-Lévy-based model with an exponential kernel.
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Figure 10: Prediction of the numbers of NSF fundings under the PIG-Lévy-based model with a sup-IG kernel set.

Table 6: Parameter estimates for the PIG-Lévy-based model with an exponential kernel after ftting to NSF data.

Parameters λ μ σ
Estimate values 0.6219 1.0351 2.5396
Standard error 0.0037 0.0147 0.0840

Table 7: Parameter estimates for the PIG-Lévy-based model with a sup-IG kernel.

Parameters c μ σ δ
Estimate values 0.6503 0.7863 0.8848 0.7225
Standard error 0.0502 0.0806 0.0734 0.0550
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Figure 11: Weekly rainfall frequencies for N’zerekore region.
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Figure 12: Autocorrelation and partial autocorrelation functions of the data.

Table 8: Parameter estimates for the semi-Poisson Lévy-based model.

Parameters L λ
Estimate values 1.4254 0.0231
Standard error 0.00016 0.00019

Table 9: Data statistics.

Min 1st Qu. Median 3rd Qu. Max Var Mean
Model 0 0 0.318 1.431 6.711 1.869 0.925
Actual data 0 0 0 1 7 1.958 0.896
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Figure 13: Residuals of the model.
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Te 90%, 95%, and 99% confdence intervals were found
as R2 ± 0.038, R2 ± 0.045, and R2 ± 0.046, meaning that R2

is much closer to the value of 82.3%.

7. Summary and Conclusions

In conclusion, our exploration of the Lévy-based modeling
framework for time series analysis of count data has revealed
its remarkable fexibility and versatility. Te developing time
series model ofers a powerful tool for simultaneously
capturing diverse characteristics and features in count time
series, including complex dependence structures, and critical
aspects such as heavy-tailedness, overdispersion, and zero
infation. Our study has also emphasized the importance of
achieving realism in modeling by incorporating Lévy basis
which is infnitely divisible marginal distributions and the
kernel set for dependence modeling. Moreover, we have
underscored the signifcance of stationary and homogeneous
Lévy bases to ensure statistical consistency across time and
space. Our simulations and real-data applications have
demonstrated this approach’s practical relevance and po-
tential advantages and fexibility. Tere are potential di-
rections for future research. One compelling direction is the
extension of Lévy-based models to multivariate settings,
where higher-order dependencies can be efectively
addressed. Tis can allow for comprehensive modeling of
both short-term and long-term serial correlation structures.
Finally, theoretical advances in comprehending these
models’ features and limitations will contribute to a better
understanding of their applicability and resilience. In con-
clusion, our fndings highlight the promise of the Lévy-based
paradigm and motivate further research into its application
to count data analysis.
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