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The explosion of time series count data with diverse characteristics and features in recent years has led to a proliferation of new
analysis models and methods. Significant efforts have been devoted to achieving flexibility capable of handling complex de-
pendence structures, capturing multiple distributional characteristics simultaneously, and addressing nonstationary patterns such
as trends, seasonality, or change points. However, it remains a challenge when considering them in the context of long-range
dependence. The Lévy-based modeling framework offers a promising tool to meet the requirements of modern data analysis. It
enables the modeling of both short-range and long-range serial correlation structures by selecting the kernel set accordingly and
accommodates various marginal distributions within the class of infinitely divisible laws. We propose an extension of the basic
stationary framework to capture additional marginal properties, such as heavy-tailedness, in both short-term and long-term
dependencies, as well as overdispersion and zero inflation in simultaneous modeling. Statistical inference is based on composite
pairwise likelihood. The model’s flexibility is illustrated through applications to rainfall data in Guinea from 2008 to 2023, and the
number of NSF funding awarded to academic institutions. The proposed model demonstrates remarkable flexibility and ver-

satility, capable of simultaneously capturing overdispersion, zero inflation, and heavy-tailedness in count time series data.

1. Introduction

Time series of count data arises in different disciplines,
where observed counts are recorded over time, such as
economics, epidemiology, finance, and insurance. Several
aspects of count time data have been the subject of extensive
research as evidenced by the rich literature on this area. A
major issue entails modeling dependence arising from the
observations’ discrete nature, which renders the autore-
gressive structure for continuous data incoherent. The ef-
forts directed towards handling time series of count data are
aimed at ensuring the validity of inference and consequently
data-driven decisions. The challenge of handling serial
correlation in count data continues to attract the attention of
many researchers and scholars, who are inspired by the
difficulties that arise when dealing with these data in various
situations, including the trend of daily COVID-19 deaths in

Ghana [1], stock market trends [2], road accident counts [3],
and crime analysis [4]. Count data exhibit features such as
nonnegativity, integer-valued, and frequently overdispersed
which indicates that the variance is greater than the cor-
responding mean, zero-inflation which is a high occurrence
of zero values in the dataset, and heavy-tailedness which
refers to higher probability relative frequency of having
extremes values or outliers in the dataset. The presence of
zero-inflation, extreme values, or outliers in count data can
have an effect on mean and variance estimations, as well as
the validity of statistical inferences. Consequently, com-
plexities arise in this setting due to the requirement to
provide a modeling strategy capable of capturing the de-
pendence patterns and simultaneous modeling as well as the
marginal features of the observations. There are various
modeling strategies that have been proposed to deal with the
issues arising when handling time series for count data.There
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are two paradigms predominant in the literature for han-
dling serial dependence in count data, the first is the discrete
autoregressive moving-average models introduced by Jacobs
and Lewis [5], and a given ARMA (p, q) model is defined as
follows:

p q
X,=c+ ) X, i+e+ Y 05, (1)
=l =

where, in the given time series model, X, represents the
value at time ¢, with ¢ as the intercept and ¢; and 6; as
coefficients to estimate autoregressive and moving-average
lags. The error term ¢, is a statistically independent random
variable, uncorrelated both with itself over time and with
other random variables in the model. The second is based on
a thinning operator and was introduced by McKenzie [6]
and Al-Osh and Alzaid [7]. The corresponding model used
for modeling the dynamics of an integer-time sequence Y is
defined as follows:

Y,=9eY, +¢, teZ, (2)
where 0<9<1,Y,_, represents the value of the sequence at
the time step preceding t, © is a thinning operator, and
{&,},-, € Z is a sequence of random variables. The advantage
of the first approach is that in such a stationary process, their
marginal distribution can be of any kind shown by
McKenzie [8]. However, count data’s drawback includes
long runs of constant values, making sample paths un-
realistic in many applications. The second provides a diverse
set of models. Sample pathways from thinning models
frequently appear more realistic than those from discrete
autoregressive moving-average processes. Thinned models,
on the other hand, cannot generate an arbitrary marginal
distribution for integer-valued data [9].

Efforts to apply the ARMA framework to continuous
data have emerged despite challenges, yielding promising
results, particularly with Gaussian data. This adaptation
reflects innovative strategies to accommodate continuous
data’s distinct nature while retaining ARMA’s core princi-
ples. Successful application in Gaussian contexts demon-
strates the model’s potential for capturing temporal
dependencies, it has limitations in the count data field, and
Gaussian ARMA-type processes are insuflicient for cap-
turing features of integer-valued time series, such as over-
dispersion and zero inflation [10]. Since this model does not
generate integer predictions, it is prone to approximation
errors when applied to count data. This has led to the
creation of specific data counting approaches, some of which
draw concepts from the autoregressive modeling of con-
tinuous data. Some popular approaches such as the integer
autoregressive modeling framework (INAR) strive to keep
the data’s distinct nature. Several researchers have applied
this technique in both univariate and multivariate contexts.
However, a significant challenge emerges when attempting
to capture higher-order dependencies, especially in the
extension to multivariate cases. This introduces complexities
in implementation within this framework. To tackle this
problem, some authors adopt Markov modeling for example
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[11]. However, Markov models have limited memory and do
not explicitly capture long-term dependencies or past events
beyond the current state. In situations of systems with in-
tricate temporal relationships or require considerable his-
torical data for appropriate modeling and prediction, this
can be an obstacle. Hidden Markov models (HMMSs) reduce
this issue in part by including hidden states that collect more
information [12], but they fail to capture long-term de-
pendencies in some cases. In addition, they work on the
assumption that transitions between states are independent
events which is also not realistic. Another solution would be
to use copula-based modeling, which accounts for de-
pendence in multivariate count data. Although copulas allow
for different kinds of dependence structures, finding para-
metric distributions for high-dimensional random vectors
remains difficult because any type of high-dimensional
multivariate  distribution is limited in covariance
structure [13].

Time series of count data recorded in various applica-
tions exhibits diverse characteristics and features such as
overdispersion, zero inflation, heavy-tailedness, volatility,
nonstationarity, and complex dependence structures. In
response to this, numerous models have been introduced to
effectively handle count time series data by accounting for
zero inflation and overdispersion. However, the aspect of
heavy-tailedness has received less attention, as noted by
Qian et al. [10]. However, ignoring the extreme values or
outliers that characterize the feature of the heavy tail may
result in the loss of useful information since it is not feasible
to ignore the tail probability or assume that it decreases very
slowly. Modeling heavy-tailed data present a challenge be-
cause it necessitates identifying distributions that can cap-
ture both the major portion of the data and the extreme
values or outliers [14]. Zhu and Joe [15] introduced a family
of distributions known as the generalized Poisson-inverse
Gaussian distribution. This distribution is constructed to
efficiently capture heavy-tailed count data and provides
a flexible strategy for such scenarios. Building upon this
work, Qian et al. [10] introduced a novel approach called the
GPIG-INAR model of the first order, which involves an
INAR process incorporating innovations from the gener-
alized Poisson-inverse Gaussian distribution. For GPIG-I-
NAR to successfully model time series data with heavy-tailed
count distributions, this methodology was developed.
However, it was considered only in the short-range de-
pendence INAR (1), whereby the motivation of this work
considers both short- and long-range dependence.

Additionally, simultaneous modeling of two or more of
these aspects when present in the data presents challenges in
model specification and estimation. This is further aggra-
vated by the need to specify a modeling strategy that respects
the integer nature of the data when accounting for the serial
correlation over time. Existing frameworks, such as Markov
modeling, INAR strategy, and GLM framework, though
successful in their own right, encounter challenges in ac-
commodating numerous features as well as capturing certain
dependence patterns such as a long-range serial correlation.
The Lévy-based modeling approach was first introduced in
the area of turbulence modeling by Barndorft-Nielsen and
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Schmiegel [16] where they found that the Lévy-based
framework allows very flexible autocorrelation structures
and can produce any kind of marginal distribution within
the class of integer-valued infinitely divisible distributions.
In the context of time series analysis, the Lévy-based
framework has been adopted in modeling time series of
count data in recent years, see Barndorff-Nielsen et al. [9];
Veraart [17]; Bennedsen et al. [18]; Leonte and Veraart [19].
This approach entails modeling serially correlated count and
integer-valued data in continuous time and offers several
advantages including flexibility of the autocorrelation
structure, simplicity, and accommodating short or long
memory processes. This framework due to its simplicity and
dynamical control can be enhanced to accommodate various
features to develop flexible models within the count time
series landscape. Zero inflation and overdispersion are
common aspects in various application areas, and failure to
account for them, if present in the data, may result in
misleading inference.

To the best of our knowledge, there are existing gaps in
the literature. First, how can heavy-tailed count data be
modeled, considering both short-range and long-range
dependence under stationary conditions in the data? In
other words, how can we account for all memory ranges in
count data, given that it exhibits stationarity and heavy-
tailedness? Another question is this how can these features
be handled in a simultaneous modeling framework?

In this work, we consider marginal distributions that can
account for more features in the data such as zero inflation
and overdispersion within the stationary setting and heavy-
tailedness in both short- and long-range dependence. To
achieve this aim, we develop stationary Poisson inverse-
Gaussian Lévy-based models for time series of count data
with heavy-tailed characteristics; and stationary semi-Poisson
Lévy-based models for zero inflation and overdispersion time
series of count data for simultaneous modeling.

The article is structured as follows: Section 2 provides
brief preliminaries and components of the Lévy-based
modeling framework. In Section 3, model specification
consists of choosing the distributions and the kernel set. We
estimate the parameters of our models using moments-
based methods and composite pairwise likelihood in Sec-
tion 4. In Section 5, a simulation study is presented. Real data
applications are considered in Section 6. We give a con-
clusion in Section 7.

2. Lévy Bases

This section briefly introduces the Lévy-based framework.
This framework can accommodate any kind of marginal
distribution within the class of integer-valued infinitely
divisible distributions. Further details are provided in
Barndorff-Nielsen and Schmiegel [16]. A Lévy basis is
a random measure that is infinitely divisible and in-
dependently scattered, meaning it can be decomposed into
an infinite number of smaller independent random mea-
sures. This characteristic is useful for modeling a variety of
phenomena, such as disease spread, traffic movement, and
customer arrivals at stores. Additional information about

independently scattered random measures can be found in
Rajput and Rosinski [20] and Kwapien and Woyczynski [21].

Let (Q,%,P) be probability space, and let (S,S,]-])
denote a Lebesgue-Borel space and |D| denotes the Lebesgue
measure of. We assume that S is a subset of R, i.e., § ¢ R4
with (d € N). The set B, (S) represents the collection of
Borel measurable sets with finite Lebesgue measure con-
tained in S. We can think of S as a collection of events that
have a time and location in space. The measure [ is finite if
I(R) < c0. Lévy measure on R is Borel measure such that
1(0)=0and _[R min (1, y*)I (dy) < co. Finally, %, (S) defines
the bounded Borel sets of S such that:

B, (S)=1{D € S: |D| < co}. (3)

The cumulant transform of a random ‘Zlariable X is given
by C (6, X) =log (E (e%)) [22], denoted XZY, if X and Y are
identically distributed.

2.1. Definition. Lévy basis A on (S,S) is a collection of
random variables A ={A(D): D € B, (S)} such that:

(i) The law of A is infinitely divisible for all
D € B, (S). Thus, for any natural number n e N,
the measure can be expressed as the sum of #n in-
dependent and identically distributed rar}idom
measures A, ;, where k=1,. .., n. Otherwise A=A,
et A

(ii) The random variables A(D;),...,A(D,) are in-
dependent whenever D,,D,,...,D, € % (S) are
disjoint (Independent scattering property).

(iii) For every disjoint sequence D}, D,,...,D, € By,
(S) with bounded union U D; € %, (S) then
we have,

A(UED)E Y A(D)). (4)
=l

(Additivity property).

The Lévy basis controls the marginal distribution of the
resulting stochastic process and is specified by an infinitely
divisible distribution. This is the only restriction to its
marginal distribution. This offers a wide range of stochastic
processes that can be supported on integer and real number
states that have light or heavy tail properties. In addition,
a Lévy basis A on S is homogeneous if it is stationary. Their
statistical properties remain unchanged across different
points in time.

2.2. Definition. A Lévy basis A on (S,S) is said to be sta-
tionary if for any je€S and D e %,(S) such that
j+D={j+x|x € D} then

AD)LA(j+D). (5)

A Lévy basis is considered homogeneous if it exhibits
stationarity, and its characteristic function follows the fol-
lowing form:
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c (0. A D) =(i6e - Pt JR(eiev—l—iGyl 1 (9)1(@9) Leb (D), (6)

where e€ R, u € R,, and [ is a Lévy measure on R. The
condition for a Lévy basis to be homogeneous is that its
characteristic function must be of the form given above
called Lévy-Khinchine. This condition ensures that the
distribution of A (D) is the same for all sets D that have the
same size and shape, regardless of their location in S.

3. Models Specification

Lévy-based framework has two key components which
consist of the choice of the marginal distribution which has
to be infinitely divisible, and the kernel set where we con-
sider shapes able to induce a flexible autocorrelation
structure, which is expected to be a flexible and valid
autocorrection structure, and finally possible to induce both
long-range and short-range dependence. For various choices
of kernel sets, see Barndorff-Nielsen et al. [9] and Veraart
[17]. The criterion for choosing the kernel set in this
framework, firstly, is that it must have a finite Lebesgue
measure, and secondly, as we concentrate on stationary
processes in this context, we make the assumption that the
shape of the kernel set remains constant over time.

The Lévy basis determines the marginal law of the
process with the chosen distribution depending on the
problem at hand. It can handle various marginal distribu-
tions as long as they are infinitely divisible. The semi-Poisson
distribution is effective in addressing overdispersion and
zero-inflation scenarios, while in cases of heavy-tailedness
modeling, we consider the Poisson-inverse Gaussian
distribution.

3.1. Stationary Poisson-Inverse Gaussian Process. Using Lévy
based framework, we define the following observation-
driven model Y, with a Poisson-inverse Gaussian process:

s within the real numbers with D, ¢ R%, and deN is
a kernel set.

More specifically, the Poisson-inverse Gaussian process
is given by

Y, =PIG(D,) ~ Poisson — inverse Gaussian (4|D|, 0),
(8)

with yp e R,

Moreover, a Lévy basis PIG on (S,S) is said to be sta-
tionary if for any je€S and D e %B,(S) such that
j+D={j+x|x € D} then

PIG (D) £ PIG (j + D). (9)

More specifically, the Poisson-inverse Gaussian basis
satisfies PIG (D) ~ Poisson — inverse Gaussian (u|D|, 0),
where probability mass function (pmf) of Poisson-inverse
Gaussian (PIG (g, 0)) distribution is derived from the mixed
Poisson distribution. The proposed PIG(D) model offers
enhanced flexibility in capturing complex autocorrelation
structures through the incorporation of a kernel set D,
potentially providing a better fit for time series data com-
pared to the standard PIG distribution.

3.2. Definition. A discrete random variable X follows
a Poisson-inverse Gaussian (PIG) distribution parameter-
ized by two positive real numbers, ¢ and o. The stochastic
representation of X given Y =y is Poisson with a mean
(4, y), where Y is a random variable with an inverse
Gaussian  distribution with [E[Y]=1. We denote
X ~ PIG (y|D|, 0), and the moment-generating function of
X is given by

Dy (1) = [E[etx] :exp<a<1 - \/1 - 2071[,{(6)? - I)IDI )),

Y, =PIG(D,) =J PIG(s)ds, seR,  (7) (10)
Dt
with t < log (1 + o/2u|D]).
where PIG is a homogeneous Poisson-inverse Gaussian Lévy The probability mass function is given by
basis, PIG(s) is the value of a stochastic process following
a Poisson-inverse Gaussian distribution at a specific location
2 ke ?(ulD)*
pk) = P(PIG:k)=£[0(0+2y|D|)] vz (€ WDV e oo+ 24DD) ), (11)
N k!
. E (PIG(D)) =4IDI. (12)
for k=0,1,... where K,(t)=1/2 JO M exp (~1/2u?) - . i< defined as follows.
u+ 1/udu the altered Bessel function of the third kind is ¢ vanance 1s delined as fotows: 5
a mathematical function that can be calculated using soft- V(PIG(D)) = u|D| + (uIDI) (13)
ware such as Maple and Mathematica. o

The mean is defined as follows:

The heavy tail (HT) is defined as follows:
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_P(PIG(D)=k+1)

0T = piG(D)=k) * %

D 2
p(h)=Cov(Yt,YHh)=|DmDh|<y|D|+@>, (14)
D,ND
r(h)=C0rr(Yt,Yt+h)=|tD;Hh|.

t

In this scenario, the condition 0<|D,ND,,,|<1 in-
dicates that the model cannot exhibit negative correlations.
Additionally, considering the expression, for Y, =PIG(D,),
as the distance dy =t —hl| grows infinitely large, the
overlapping region |D, N D;| tends towards 0. This char-
acteristic guarantees that the process follows an a-mixing
pattern.

3.3. Stationary Semi-Poisson Process. Using the Lévy-based
framework, we define the following observation-driven
model Y, with a semi-Poisson distribution:

and sup-IG.

More specifically, the semi-Poisson process is given by

Y,=SP(D,) ~ Semi — Poisson(A|D|), AeR,.  (16)

Furthermore, a Lévy basis SP on (S,S) is said to be
stationary if for any a €S and D € %,(S) such that
a+D={a+x|x € D}, then

SP(D)2SP(a+ D). (17)

More specifically, the semi-Poisson basis satisfies
SP(D) ~ Semi — Poisson (A|D|) where probability mass
function (pmf) of semi-Poisson (SP(A)) distribution is
defined by

(k+1)(AID])**?
(k+2)k! ’

where C, =1/((A|D|)* = A|D| + 1)e"P! -1, and A >0.
The cumulative function is given by

P(SP(D)=k)=C, k eR, (18)

oY+ y t! Y+t+1
C()/’SP(D))_E’\(Y+2) DB <(Y+t)>(Y+t+2)]'
Y —SP(D)—J SP(s)ds, s€R (15) (19)
t= t)= > >
Dy The mean is defined as follows:
where SP is a homogeneous semi-Poisson Lévy basis, and
D, ¢ R% d e Nis a kernel set defined by k(.) an exponential
api=2+ 20Dl = (AD)? + (MDY} +2
E(SP(D))=¢ po] >
¢'"P{1 - AID|+(AIDI)*} - 1
(20)
E(sp(D)Y) - MPAD)* +2¢8 (AID))? - 4eMPA| D] + 4eMP - 4
- A|D| 2 _ '
'PI(AID)?* - AD| +1) - 1
Hence, the variance can be obtained as follows:
V(P (D)) = P (AD))? [-2 - 4D| - D)) + €' {2+ 20IDI-2(AID])* + (\ID])’}] o
[¢"'{1 - ADI+ DD} -1]°
The index of dispersion is defined as follows:
v(sp(D)) " AIDN(=2 - 4ADI - (DD’ + P2+ 22IDI-2 (UIDD)’ + (UDD?)) 22

CESP(D) (M(1- DI+ @IDD?) - 1) ("' (<2 + 24D - UIDI)* + (D)) +2)’

We introduce the zero inflation index as follows:

log P(SP (D) =0)

ZI=1+ E(SP(D)

(23)

The zero inflation index (ZI) is a measure of the excess of
zeros in a dataset. A negative ZI indicates that there are more
zeros than expected, a zero ZI indicates no excess zeros, and
a positive ZI indicates fewer zeros than expected.



Let h>0. For each component, the autocovariance and
autocorrelation functions are given by

P (AID)? [-2 - 4MID| - (AIDI)* + '™ {2+ 20IDI-2 (AID])* + (MDD}
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p(h)=Cov(Y,Y,,,)=|DND,|

Hence,

D,nD
r(h):Corr(Yt,YHh):M. (25)
Dt
In this work, for the kernel sets, we consider a parametric
specification of the form:

D:{(s,v): S€E R,OSV<%]{<%)}, (26)

DtZ{(S,V): sSt,OSv<(1 -z

26\ 2t
}/> exp<8y<1— 1—;))}, (28)

for t <0. The autocorrelation function is as follows:

_h>> (29)
Y

Y Y oy (1-n, Yy n
|D|=5,|DtnD|=5e8”(l ”),|Dt\D|—S(1—e8”(1 ’7)),

r(h) =COI‘(Yt,YHh) =exp<8y<1 -

with

(30)

where 7, = +/2t/y? + 1.

The choice of our kernel set is due to both analytical
tractability and modeling flexibility. The exponential kernel
is the simplest, while the super-GIG kernel is flexible,
consistent with data properties, and computationally trac-
table. For the process’s realization, we have the set that is
moving along the time axis via the location parameter y
governing the movement and temporal dependence of the
process with the shape parameter controlling the strength
and pattern of this dependence via the scale parameter ¢.

4. Parameters Estimation

This section looks into the statistical properties of the
moments-based methods and composite likelihood based
on pairs of observations for the estimation of parameters.
We give a thorough overview of moments-based methods.
We also review pairwise likelihood methods and highlight
their advantages over the standard likelihood method.
Indeed, the maximum likelihood becomes impractical
when the number of observations is very large. This is
mainly due to computational challenges that arise with the
increased size of the dataset. Pairwise likelihood can be

[¢"P{1 - ADI+ D)} 1]

(24)

where p and ¢ are location and scale parameters,
respectively.

For a short-range dependence, we consider the expo-
nential shape in the form:

th{(s,v): sSt,0§v<e_Mt_s)}, A>0,t<0, (27)
and the autocorrelation function is given by r (h) = exp (—Ah)
with h>0; consequently, for t>0,
|D|=1/A,|D,nD| =1/ e ™ and |D,/D|=1/A(1 — ™).

For a long-range process dependence, we have

useful in situations with large datasets or complex models
where computing the whole likelihood function is difficult
or when data are sparse or partial.

4.1. Composite Pairwise Likelihood. The introduction of
composite likelihood methods is important because there
are a number of situations, such as time series models, where
the computation of the full likelihood is very difficult and too
time-consuming [23]. The term composite likelihood de-
notes a general class of pseudolikelihoods [24] based on
likelihood-type objects. Consider an m—dimensional vector
random variable Y, with probability density function f (z; 6)
for unknown p-dimensional parameter vector 0 € ©.

Let A}, A,,..., A be a collection of marginal or con-
ditional events, with associated composite likelihoods
L, (0; y) proportional to f(ye€ Ai;6) that is L (6;y)
=L(6; A () with k=1, 2,....

A composite likelihood is defined as follows:

K
CL(6; y) = [ L (6; )™, (31)
k=1

where w, are suitable nonnegative weights that do not depend
on 0. Here, we discuss an alternative strategy based on
a simple pseudolikelihood known as “pairwise likelihood.” Its
advantage is that it reduces the computational burden so that
it is possible to fit highly structured statistical models. The
pairwise likelihood is a statistical technique that breaks down
the joint likelihood function into a product of pairwise
conditional or marginal likelihoods. This simplification allows
for more manageable parameter estimation and inference,
making it particularly useful in situations with complex or
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high-dimensional data where traditional likelihood methods
become computationally infeasible. For more details, we
point to Lindsay [24]; Varin et al. [25]; and Davis and Yau
[26]; since the bivariate distributions are available in closed
form, this technique has also been used in Bennedsen et al.
[27] to make conclusions about related procedures. For the

pairs, (Y;,Y ;i< j) can be decomposed as follows:
Y; 17 vt Yo,
I (32)
Y=Y+ %
min (Yi!yj)
Pr(Yj =Y Y, = yi) =
w=0
- Pr ( NTViT

where Y . ~ Semi — Pois (A|D \D;|), Y,\ ~ Semi — Pois (A
|D; \D D, and Y, ~ Semi — P01s (AD; ﬂD |) are random
Varlables, andY; jand Y, haveY, in common Since the semi-
Poisson Lévy basis is 1ndependently scattered, the sets are
disjoint and independent. The pairwise composite likelihood
function of order k (k=max time lag)

n-k i+k
peL(6:y)= ) Y Pr(Yi=y,Y;=y;36),  (33)
i=1 j=itl
where y is the observed data, 8= (A) is the parameter to be
estimated, and Y; and Y ; represent random variables at time
i and j, respectively.
Pr(Y =y, - w)
)Pr (Y,=w)

min(yi,y]-) (y._w+1 <A'D'\Di|>}’j—w+2

w=0

min (;v,»,yj)

X

w=0

X
w=0
with
C,= . 1
(<A|Dj\Di|> —Ale\Di' + l)eA|Dj\Di| 1
1
) 2
(</1|D1\D]|> —/1|D1\D]' + 1>e)L|D,\Dj| 1
" 2 1 A>0.
<<A|Dj ”DiD ~AD;nD,|+ 1)6A|Djmpi| .
(35)

nke itk mil’l(}’i'yj) (yj - w+ 1)<A‘DJ\D,-

Gy

)yjfw+2

’ (yi - w+1)()L|D \D; |>

(yj-w+2)(y; - w)! (34)

(yi—w+ 1)()&|D1»\Dj'>yi_wr2
(i —w+2) (y; - w)!

min(y.y;)  (w+ 1)</\|Dj n D,»')w+2

A

>

(w+2)(w)!

Davis and Yau [26] provided evidence that it is not
necessary to use all possible lags.

To find the maximum likelihood estimator (MLE) for the
parameter A based on the pairwise composite likelihood func-
tion, we need to maximize the log-likelihood function at the
form:

w+2

" w+w+n(ip;np|)

log pcL(A; y) =log z Z

i=1 j=irl  w=0

(yj-w+2)(y; - w)!

where C, is the constant defined as follows:

(yi—w+2)(y; —w)! (w+2)!

(36)
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1

C/1=

1
X

((4pAnl) i) )erel

X

1 ((A'Di\Dj')z _A|Di\Dj' + 1)eA|D"\Df| -1

(<A|Dj nDi|>2 -AD;nD,|+ 1>eA|D,-nD,| N

4.2. Method of Moments Estimation. While the pairwise
composite likelihood has proven effective within the uni-
variate context and has demonstrated efficient computa-
tional performance in terms of both time and estimation, its
application encounters challenges when transitioning to the
presence of multiple components. The approach faces
computational challenges of increased magnitude, especially
when closed-form solutions are unavailable due to the
nontrivial interaction of two distributions like in Poisson-
inverse Gaussian. Another approach to bridge this gap is the
method of moments estimation (MME), introduced by Karl
Pearson in 1894. MME provides a flexible framework for
parameter estimation and gives the estimate by comparing
the functions of the sample and their theoretical moments.
MME is a specific case of GMM and is often used to estimate
the parameters of a distribution by equating the sample
moments to the theoretical moments of the distribution.
Given that it is often impractical to gather data from an
entire population, we rely on a sample taken from that
population to estimate its moments. The notion of a moment
is fundamental for describing features of a population.

Suppose an observation X, =X;: i=1,...,n is a sample
from a population with mean g for which we aim to estimate
an unknown parameter vector 6 € ® ¢ R?. This estimation
involves using a vector T,, =T, (X,,). These statistics have an
expected value y (6) = E[T, ] in the theoretical context, where
y(0) represents their theoretical counterparts under the
specific model. The concept of a “moment condition” is
introduced, which involves the expectation of a function
f,(0;X,) and is defined as E[f,(0; X,,)]=0. In this case,
f.(08;X,) is a continuous 1 x k vector function of 8, and
E[f,(0;X,)] is finite and exists for all values of i and 6. In
practical terms, this moment condition is approximated
using its sample equivalent: 1/m) (f,0;X;)=0. This
equation allows us to obtain the estimator 6. For the di-
mension of j=k, we arrive at what is known as the method
of moments (MM) estimator. The MM estimator 0, is ob-
tained by minimizing the expression:

_ 1 C
6, = argmin - Zf,,(e; Xn)TZann (6: X)) (38)
0 i=1 i=1

where Z, represents a symmetric and positive definite
weight matrix of size k x k. It can depend on the data and
should converge in probability to a positive definite
matrix Z.

In our case for the moment conditions, with unknown
parameters 0 = (y, 0), let m; and m, denote the first- and
second-order moments respectively, then

(37)
E(X) =ulD|,
(ulDI)?
V(X)= D] + 12V
o
1st moment:
m=— ) X,
= Zl
_ __ 1 YLX
[E(PIG)=m1=>‘u|D|=m1=>,u=ﬁ>< ri )
ﬁ=2?:1Xi
n|D|’
2nd moment:
1 & 5
m2=—xz (X; —my),
noi3
_ L @Dy’
m, = Var (PIG) = | D| +T
m m 2 1
=—1><|D|+<—1) X —
|D| |D| o
2 2
1 ~ my
= ml +T — 0':2—,
|D|“o ID|* (m, —m,)
_ (g, XY
IDP(1UnYi, (X = UnYi, X,) = Unyi, X;)
(39)

By substituting the first-moment estimator 1, into the
equation of o, we have

my
DI (Unyi (X, —my)* —my)

o= (40)

This equation now expresses the sample variance esti-
mator 0 in terms of the first-moment estimator 1, and the
differences between each data point and the first moment. In
this case, the criterion function seems to relate to the first-
moment estimator m1; and the second-moment estimator ¢
through a formula that involves the differences between each
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data point and the first moment. The purpose of the criterion
function would likely be related to parameter estimation or
evaluating the goodness-of-fit of a distribution to the
given data.

5. Simulation Studies

5.1. Slice Partition. This section presents the simulation
approach based on slice partition, let us start by decom-
posing the sets A,, ..., Ay, into distinct slices denoted as §
collected in S. This allows for simulating the values of the
Poisson-inverse Gaussian Lévy basis A over each slice, and
the process leads to the formulation of the computation for
X, as the sum of A(S) across slices contained within Ay

Xl,= Y A(S). (41)

ScAy,

14

Exploiting the independent-scattered nature of the Lévy
basis, we can independently sample L (S)gcg. This allows us to
utilize the additivity property of the Lévy basis [19]. As
a result, we can reconstruct the value of the trawl qu/ by
summing the values derived from the Lévy basis simulations
over slices contained by A,

For instance, if there exists a T < 0 such that {(T) =0, let
I=[-T/y], using the ceiling function [-], and this conse-
quently defines the slice partition as follows:

A

Sa={t<yin (Am)’

j—1)-y<t<j-yinNA, .

s U-Dy<tsjyinag,)

tj A . ]
t+j

(42)

Consequently, I consecutive trawl sets share nonempty
intersections, with each A, containing exactly I slices,
culminating in a total of kI slices. Defining s ; = Leb (S;;), the
translational invarjance of the Lebesgue measure establishes
s;j=s,; for j, j =2. This simplifies the process of de-
termining the slice areas §;; by computing s,; for
te{l,...,k} and j € {1, 2}. The calculation is defined as
follows:

(te1)y
1= J iy ¢(ode, (43)

St2 = St1 St

in which we set s, =0.
The equations given above completely explain the values
of the areas s,.

5.2. Inverse Transform Method. For the semi-Poisson Lévy
basis, we generate random variables using the inverse
transform method.

Theorem 1. Let X be a random variable with cumulative
distribution function (cdf) F(x),x € R (continuous or not).

Then,
F(X)~U(0,1). (44)

Proof. Let Y=F(X) and suppose that Y has cumulative
distribution function (cdf) K (y). Then,

K(y)=P(Y<y)=P(F(X)<y)
=P(X<F () (45)
=F(F'(»)=y.

From the above, the inverse c.d.f. can be defined as
follows:

F! (y)=min{x: F(x)>y}, ye[0,1]. (46D)

Proposition 2. Let F (x), x € R denote any given cumulative
distribution function (cdf) and let F~1 (y) with y € [0, 1] be
the inverse function defined in 5.4. Let U ~ U (0, 1). Define
X=F Y (U) means X is distributed as F, that is,
F(x)=P(X<x).

Proof. Let us show that P(F~!(U) <x)=F(x) with x€ R.
First, we assume F to be continuous. Saying so let us show
that {F~! (U) <x} ={U < F(x)}, by taking probabilities (and
letting b= F (x) in P(U <b) =b) results in what follows:

P(F ' (U))<x=P(U<F(x))=F(x). (47)

Finally, the equation F(F !(y))=y implies (by
monotonicity of F) that if F1(U)<x, then
U=F(F ' (U))<F(x), or U<F(x). Likewise, we can ob-
serve F~1(F(x))=x, and as a result, when U < F(x), then
F~1(U) < x. This establishes the equality of the two events as
was sought to prove. In the general context, it is straight-
forward to illustrate that

{U<FI{F ' (U)<x}c{U<F(x)}.  (48)

This leads to the same outcome when considering
probabilities (since P(U =F (x)) =0 due to the continuous
nature of the random variable U).

In this case, we simulate the semi-Poisson process fol-
lowing the scheme outlined.

We first need to identify the cumulative distribution
function (cdf) for the probability distribution we want to
generate random numbers from, that is, F(x)=P (X <x).
Next, we compute the inverse of the cdf as
F~!(u) = x such that F (x) = u, which is also referred to as the
quantile function or percent-point function. This inverse cdf
takes a probability value as input and outputs the corre-
sponding value from the desired distribution. Once we have
the inverse cdf, we generate a random number using
a uniform distribution that ranges between 0 and 1 such as
x=F 1 (u).
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The cumulative distribution function of a semi-Poisson
random variable is given as follows:

Y+1 t! Y+t+1
F(y,)t)=E,1<m> —(AlDI)yE[((y+t))<Y+t+2>]’

PoseU=F(y,1),

Y+1>
Y+2/

| (7))

Then, from a given equation:

U=A-VB, (50)

A=EA<
(49)

we can manipulate it as follows: A — U = A” B, which leads to

A-U _

B

ln(A;U>:ylnA, (51)

1 1 A-U
(75 )

This expression represents the inverse of our cdf and
U, A, B defined above with A the parameter.

Now, we simulate our models by considering both the
exponential kernel for the short-range dependence and sup-1G
for the long-range dependence. Then, we estimate the parameter
vectors 0= (A, u,0), 0=(8,y,4,0), 0=(,L=71), and
0= (8,9, L=A), respectively, where L = A is the parameter of the
semi-Poisson. We compute the mean, bias, and mean-squared
error (MSE) given by 8=1/N Zf\il@i, Bias (6) = 1/NYY, 6, -
6),and MSE (6) = 1/N Zfi 1 (@i — 0)*>where 0 represents the
parameter vector values that have been estimated from the data
of the i simulated series. 0 <9< 1.

The study investigated the stationarity of data generated
from a Poisson-inverse Gaussian Lévy-based model using an
exponential kernel, as depicted in Figures 1 and 2. This in-
vestigation was extended to include a sup-IG kernel, illus-
trated in Figure 3. Stationarity was confirmed through the
observation of exponential decay in the autocorrelation
function. The study also included graphical summaries of
time series data for parameter estimates, presented in Tables 1
and 2. These results indicate that larger sample sizes enhance
the accuracy of parameter estimation. Additionally, Figures 4
and 5 demonstrate the stationarity of data from both the semi-
Poisson Lévy-based model with an exponential kernel and the
sup-IG kernels, respectively. Parameter estimation was also
conducted using the pairwise likelihood estimation method,
which yielded more accurate estimates with increasing sample
sizes, as shown in Tables 3 and 4. Finally, the trawl process of
the super-IG model, depicted in Figure 6, exhibits sustained
long-term dependence under the estimated parameters. [

W zeylnk,
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6. Real-Data Applications

This section discusses the real-data application of the pro-
posed models: Poisson-inverse Gaussian Lévy-based and
semi-Poisson Lévy-based. Data for the second model were
obtained from the Meteorological Services Department of
Guinea Conakry. For the first model, we analyzed data
consisting of the numbers of NSF funding awarded to ac-
ademic institutions, which is discussed in Qian et al. [10] and
available at https://www.nsf.gov.

6.1. Dataset 1. 'These authors used the number of NSF award
data, which is presented in Figure 7, for modeling the
GPIG-INAR model. Figure 8 shows that the data are sta-
tionary. The proposed Poisson-inverse Gaussian Lévy-based
model exhibits flexibility in capturing both short-term (Table
5; Figure 9) and long-term (Table 5; Figure 10) dependencies
within the same dataset. Table 5 shows that the PIG-Lévy-
based model is particularly more suitable for the given data as
it has a lower value of the AIC information criterion. The
mean predictions from the two models are comparable.
We also fitted the PIG-Lévy-based model to the data
(Tables 6 and 7) using an exponential and sup-IG kernel,
respectively, to capture both short-range and long-range
dependencies nature. Mean estimates from the model were
slightly higher, while variance estimates were slightly lower
(Table 5). The AIC was found to be slightly high. Despite the
fact that a comparison with existing models could not be
made because they are not constructed within the long-range
framework, the model still provided more precise predictions
for the numbers of NSF award data (Figure 10). The extension
to long-range dependence is an advantage of our framework.

6.2. Dataset 2. We estimated weekly rainfall frequencies using
daily rainfall data from the N’zerekore region in Guinea Conakry
between 2008 and 2023 (Figure 11) and the autocorrelation and
partial autocorrelation functions of the data (Figure 12).

We considered a rainfall amount of at most 2.54 mm to
represent a dry day. Thus, the data are zero-inflated and
overdispersed. The parameter estimate showed that L =1.42
(Table 8), indicating that the semi-Poisson random variable
from this model has the highest probability of yielding many
zeros. The semi-Poisson Lévy-based model captured this
tendency very well by predicting quantiles with a high degree
of closeness (Table 9; Figures 13 and 14). Additionally, the
predicted values were shown to follow the same probability
distribution as the raw data, as depicted in Figures 15 and 16.

6.3. Goodness of Fit of the Model. To verify the accuracy of the
model, we used the mean absolute error (equation (52)) and
the coeflicient of determination (equation (53))

1 Y ~
MAE = M lyi= il (52)
i=1
o S i)
RP=1-4&=10 2 (53)

Z?; - 7))
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FIGURE 1: Time series and autocorrelation function plots of simulated data from Poisson-inverse Gaussian Lévy-based with an exponential
kernel for the short memory process (N =1000,1=0.6,4=5,0=0.5). (a) Time series. (b) ACF.
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FIGURE 2: Time series and autocorrelation function plots of simulated data from Poisson-inverse Gaussian Lévy-based with an exponential

kernel (N =1000,1=0.3,4=9,0=0.7). (a) Time series. (b) ACF.
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FIGURE 3: Time series and autocorrelation function plots of simulated data from Poisson-inverse Gaussian Lévy-based with a long memory
process (N =500,0=0.62,y=0.95, u=2.26,0=0.25). (a) Time series. (b) ACF.

For the semi-Poisson Lévy-based model, the MAE is
0.128, implying that model values are much closer to data
values on average. The value of R? is 0.823, indicating that
the model behaves much closer to the data than the center
line of the data. The confidence interval for R was calculated
using the following formula [28]:

2 ~
CI=R*+ Z,,5p,

aR(1-R) (N -p-1) (54)

(N*-1)(N+3)

URZ:
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TaBLE 1: Summary statistics for the MM estimator for different parameter values 8= (A, y, 0), using an exponential kernel (representing
short-range dependence) at different sample lengths of the series N for a Poisson-inverse Gaussian Lévy-based process.

N True A U o A U I A U I
value 1.9 55 0.03 2 9 0.04 9 0.8 6.7
Mean 1.8666 5.4666 0.0288 1.9666 8.9666 0.0388 8.9666 0.7666 6.6988
30 Bias 0.0022 —0.0004 —0.0000 0.0055 -0.0011 -0.0153 -0.0011 —-0.1744 0.2066
MSE 0.0001 0.0000 0.0000 0.0009 0.0000 0.0070 0.0000 0.9129 1.2808
Mean 1.8900 5.4900 0.0299 1.9900 8.9900 0.0399 8.9900 0.7900 6.6999
100 Bias 0.0009 -0.0001 —-0.0000 0.0019 —-0.0001 —-0.0046 —-0.0001 -0.0521 0.0619
MSE 0.0000 0.0000 0.0000 0.0003 0.0000 0.0021 0.0000 0.2714 0.3843
Mean 1.8975 5.4975 0.0300 1.9975 8.9975 0.0399 8.9975 0.7975 6.6999
400 Bias 0.0002 —-0.0000 0.0000 0.0004 —-0.0000 —-0.0011 —-0.0000 -0.0130 0.0154
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0676 0.0960
N True value 7 0.4 0.05 10 0.7 3 3 6 9
Mean 6.9900 0.3900 0.0499 9.9900 0.6900 2.9999 2.9900 5.9900 8.9999
100 Bias 0.0519 -0.0561 —-0.0045 0.0819 -0.0531 0.0249 0.0119 —-0.0001 0.0849
MSE 0.2693 0.3147 0.0020 0.6707 0.2819 0.0624 0.0141 0.0000 0.7224
Mean 6.9950 0.3950 0.0499 9.9950 0.6950 2.9999 2.9950 5.9950 8.9999
200 Bias 0.0259 —-0.0280 —-0.0022 0.0409 —-0.0265 0.0124 0.0059 —-0.0000 0.0424
MSE 0.1349 0.1570 0.0010 0.3357 0.1407 0.0312 0.0071 0.0000 0.3612
Mean 6.9975 0.3975 0.0499 9.9975 0.6975 2.9999 2.9975 5.9975 8.9999
400 Bias 0.0129 -0.0140 —-0.0011 0.0204 -0.0132 0.0062 0.0029 —0.0000 0.0212
MSE 0.0675 0.0784 0.0005 0.1679 0.0702 0.0156 0.0035 0.0000 0.1806

TABLE 2: Summary statistics for the MM estimator for different parameter values 6= (9, y, 4, 0) with different N for a Poisson-inverse
Gaussian Lévy-based process with long-range dependence.

N True 1) y o ) y 7 o
value 5 2 0.7 7 0.3 1.9 0.05
Mean 4.9962 1.9962 3.9962 0.6999 7.0003 0.3004 1.9004 0.0500
100 Bias 0.0099 0.0196 —0.0200 0.0019 0.0300 0.0027 —0.0409 —0.0044
MSE 0.0099 0.0386 0.0401 0.0003 0.0900 0.0007 0.1680 0.0020
N True value 5 2 0.7 7 0.3 1.9 0.05
Mean 5.0002 2.0002 4.0002 0.7000 7.0004 0.3004 1.9004 0.0500
500 Bias 0.0020 0.0039 —-0.0039 0.0004 0.0060 0.0005 —0.0081 —0.0008
MSE 0.0020 0.0077 0.0079 0.0000 0.0180 0.0001 0.0336 0.0004
N True value 5 2 0.7 7 0.3 1.9 0.05
Mean 4.9997 1.9997 3.9997 0.6999 7.0003 0.3003 1.9003 0.0500
1000 Bias 0.0009 0.0019 -0.0020 0.0001 0.0030 0.0002 —-0.0040 —0.0004
MSE 0.0009 0.0038 0.0040 0.0000 0.0090 0.0000 0.0168 0.0002
6
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FIGURE 4: Semi-Poisson Lévy-based time series and autocorrelation function plots of simulated data with an exponential shape for the short
memory process (N =500,1=1.5,L=2). (a) Time series. (b) ACF.
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FIGURE 5: Autocorrelation and partial autocorrelation function plots of simulated data from semi-Poisson Lévy-based with a long memory
process where (N =1000,L=2,6=0.6,y=1). (a) ACF. (b) PACF.

TABLE 3: Summary statistics for the PL estimator for different parameter values 6= (A, L), using an exponential kernel (representing
short-range dependence) at various sample lengths of the series N for a semi-Poisson Lévy-based process.

N True A L A L L A L
value 5 2 4 0.7 9 0.3 15 0.05
Mean 4.9292 1.9996 3.9292 0.6996 8.9292 0.2996 14.9292 0.0496
200 Bias 0.0151 0.0097 0.0101 0.0032 0.0356 —-0.0010 0.0656 —-0.0097
MSE 0.0458 0.0190 0.0205 0.0021 0.2541 0.0002 0.8618 0.0190
N True value 5 2 4 0.7 9 0.3 15 0.05
Mean 4.9552 1.9251 3.9552 0.6999 8.9552 0.2999 14.9552 0.0499
500 Bias 0.0061 0.0038 0.0041 0.0012 0.0143 —-0.0004 0.0261 -0.0019
MSE 0.0186 0.0076 0.0084 0.0008 0.1023 0.0000 0.3408 0.0018
N True value 5 2 4 0.7 9 0.3 15 0.05
Mean 4.9683 1.9999 3.9683 0.6999 8.9983 0.2999 14.9683 0.0499
1000 Bias 0.0030 0.0019 0.0021 0.0001 0.0071 —-0.0002 0.0131 —-0.0004
MSE 0.0094 0.0038 0.0047 0.0000 0.0513 0.0000 0.1734 0.0002

TaBLE 4: Summary statistics for the PL estimator for different parameter values 8 = (8, y, L) and different sample lengths of the series N with
long-range dependence semi-Poisson Lévy-based process.

6

N True L y L ) y L ) y
value 2 0.8 0.2 3 1.6 0.6 1.3 3 0.3
Mean 1.8161 0.8414 0.1329 3.1862 1.2904 0.6178 1.3012 2.8738 0.2210
100 Bias 0.1838 -0.0414 0.0671 —-0.1862 0.3096 -0.0178 —-0.0012 0.1261 0.3
MSE 0.0654 0.0209 0.0574 0.0346 0.0958 0.0003 0.0280 0.0359 0.09
Mean 1.9398 0.8203 0.2081 3.0856 1.2957 0.5884 1.2911 2.973 0.3410
250 Bias 0.0601 —-0.0203 —-0.0081 —-0.0855 0.3043 0.0115 —0.0000 0.0269 0.0003
MSE 0.0077 0.0140 0.0044 0.0283 0.0104 0.0077 0.0000 0.0209 0.0000
Mean 2.0032 0.8111 0.2029 3.0065 1.5594 0.6222 1.3001 3.0001 0.3041
500 Bias 0.0223 0.0102 0.0011 —-0.0064 0.0004 0.0081 0.0000 0.0000 0.0000
MSE 0.0049 0.0079 0.0021 0.0038 0.0058 0.0031 0.0000 0.0000 0.0000
N True value 1.5 1 0.6 1 0.4 0.2 3 0.6 0.9
Mean 1.6158 0.8636 0.4518 0.9091 0.6454 0.1524 3.3537 0.5939 0.7143
30 Bias —-0.1158 0.1363 0.1482 0.0908 —-0.2454 0.0475 —-0.3536 0.0060 0.1856
MSE 0.0383 0.0478 0.0541 0.0354 0.0751 0.0448 0.1274 0.0072 0.0561
Mean 1.5808 0.8860 0.6172 0.9671 0.3774 0.1899 3.0793 0.6211 0.8059
500 Bias —-0.0807 0.1139 —-0.0172 0.0328 0.0225 —-0.0022 -0.0792 —-0.0211 0.0740
MSE 0.0065 0.0380 0.0241 0.0010 0.0005 0.0000 0.0064 0.0124 0.0160
Mean 1.5025 0.9933 0.6002 0.9953 0.4029 0.2001 3.0431 0.6065 0.9026
1000 Bias —-0.0025 0.0766 0.0053 —-0.0000 0.0000 0.0000 —-0.0431 —-0.0056 0.0167
MSE 0.0000 0.0058 0.0000 0.0000 0.0000 0.0000 0.0027 0.0021 0.0042
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FIGURE 6: Semi-Poisson Lévy basis and semi-Poisson Lévy-based time series plots of simulated data with a long memory process where

(N =1000,L=2,6=0.6,9=1). (a) Hlustration of the semi-Poisson processes. (b) Time series plot.
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