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In this paper, the exponentially generated system was used to modify a two-parameter Chen distribution to a four-parameter
distribution with better performance. Te property of complete probability distribution function was used to verify the com-
pleteness of the resulting distribution, which shows that the distribution is a proper probability distribution function. A simulation
study involving varying sample sizes was used to ascertain the asymptotic property of the new distribution. Small and large sample
sizes were considered which shows the closeness of the estimates to the true value as the sample size increases. Lifetime dataset
were used for model comparison which shows the superiority of exponentially generated modify Chen distribution over some
existing distributions. It is therefore recommended to use the four-parameter Chen distribution in place of the well-known two-
parameter Chen distribution.

1. Introduction

Chen distribution is one of the commonly used distribu-
tions in survival analysis and modeling in general. Te
limitation of the distribution can be observed as presented
by researchers who have worked in distribution theory
using either Weibull or Chen distribution. Its limitation
includes inability to capture or model properly some
survival data set especially skewed data set, modeling data
set with heavy or light tail cannot be done using Chen
distribution. Its shortcoming makes it impossible to apply
in the case of some complex models. Due to the short-
comings of the distribution, there is a need for modifcation
to make it more fexible.

Modifcation or generalization of density functions is
necessary in modeling to address some of the challenges that
cannot be captured by the existing density functions. An
example of such is the modifcation of Weibull distribution
from two parameters to three and more parameter Weibull
distributions. Te density function of the two-parameter
Weibull distribution was given as follows:

f(x) � αθx
θ−1

e
−αxθ( ), x> 0. (1)

Te corresponding cumulative density function of the
distribution can be expressed as follows:

F(x) � 1− e
−αxθ( ), x> 0, (2)

where α> 0 and θ> 0 are the scale and shape parameters,
respectively. Te density function was identifed as having
some shortcomings which include the inability to exhibit
nonmonotonic hazard shape. For many years, using dif-
ferent techniques, researchers have developed various
modifed forms of the Weibull distribution to achieve
nonmonotonic shapes. Bebbington et al. [1] proposed
a more fexible two-parameter Weibull extension, having
a hazard function that can be increasing, decreasing, or
bathtub-shaped. In a likely manner, Zhang and Xie [2]
proposed a three-parameter truncated Weibull distribution
which has a bathtub-shaped hazard function. Moreover,
Mudholkar and Srivastave [3] proposed three-parameter
model, called the exponentiated Weibull distribution. An-
other three-parameter model was proposed by Marshall and
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Olkin [4], and this was called extendedWeibull distribution.
Xie et al. [5] proposed a three-parameter modifed Weibull
extension with a bathtub-shaped hazard function to address
the shortcoming of the two-parameter Weibull distribution.
Lai et al. [6] also worked on two-parameter Weibull by
generalizing it to form a more robust three-parameter
Weibull distribution. Tis was later generalized to an
exponentiated forms by Carrasco et al. [7].

Chen [8] proposed a similar distribution with a non-
monotone property and some researchers worked on the
distribution to address its challenges. Abdulzeid et al. [9]
worked on the extension of Chen distribution in a paper
titled “the modifed extended Chen distribution with ap-
plication to rainfall data.” Te Burr–Hatke diferential
equation was used to generate a three-parameter modifed
extended Chen distribution.Te resulting model was used to
model occurrence of rainfall in three locations in Ghana,
a country in Africa.

In a similar manner, Méndez-González et al. [10]
modifed the Chen distribution model using the additive
methodology. Chen distribution served as the baseline
function. According to the researcher, the distribution be-
came excellently fexible in describing failure rates with
nonmonotonic behavior or with the shape of a bathtub curve
concerning other current models. Tarvirdizade and
Ahmadpour [11] proposed a new lifetime distribution with
increasing, decreasing, and bathtub-shaped hazard rate
function, which is constructed by compounding of the
Weibull and Chen distributions and is called Weibull–Chen
(W-C) distribution. Te new distribution according to the
researchers is more fexible to model the bathtub-shaped
hazard rate data, and its hazard rate function is not complex.
Abbas et al. [12] worked on the additive Chen-Weibull
(ACW) distribution with increasing and bathtub-shaped
failure rate function using Bayesian and non-Bayesian ap-
proach. Te researchers obtained Bayes estimator by

assuming half-Cauchy under square error loss function, the
Laplace Approximation.

Tis implies that there are several ways of modifying the
density functions resulting in diferent properties. In this
paper, the exponentially generalized system is used to
modify Chen distribution which was used as the baseline
function.

2. Materials and Methods

In this section, the exponentially generalized system of
Cordeiro et al. [13] was used to derive the cdf of expo-
nentially generated modify Chen (EGMC) distribution,
from which the pdf of the distribution is formulated. Recall
that the derivate of cdf with respect to the random variable of
interest leads to pdf of the distribution.

2.1. Exponentially Generalized Modify Chen Distribution.
Te exponentially generated class has the cumulative density
function (cdf) of the following form:

G(x) � 1− (1−F(x))
k

 
s

k, s, x> 0, (3)

using F(x) of the Chen distribution, the cumulative density
function of the exponentially generated modify Weibull
distribution (EGMC) is defned as follows:

F(x) � 1− 1− 1− e
λ 1−exβ( 

  
k

 

s

,

F(x) � 1− e
kλ 1−exβ( 

  
s

k, λ, β, s> 0, x> 0.

(4)

G(x) is the cdf of the exponentially generated modify
Chen distribution (EGMC). Taking the derivative of the
abovementioned expression, the pdf of the distribution is as
follows:

f(x) � βkλsx
β−1

e
xβ

e
kλ−kλexβ

1− e
kλ−kλexβ

 
s−1

, x> 0, s> 0, k> 0, λ> 0, β> 0. (5)

2.2. Area under Curve. One of the properties of a proper pdf
is as follows:


∞

−∞
f(x)dx � 1. (6)

Ten, it is necessary to show that the pdf is a proper pdf.
Considering the new pdf, the cumulative density function
(cdf) of exponentially generated modify Chen distribution
(EGMC) is given by the following equation:

F(x) � 1− e
kλ 1−exβ( 

 
s

, x> 0, s> 0, k> 0, λ> 0, β> 0.

(7)

Its corresponding probability density function (pdf) is as
follows:

f(x) � βkλsx
β−1

e
xβ
  ekλ−kλexβ

1− e
kλ−kλexβ

 
s−1

, x> 0, s> 0, k> 0, λ> 0, β> 0,


∞

−∞
f(x)dx � 1.

(8)
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If f(x) is the pdf of EGMC, then


∞

0
f(x)dx � βkλse

kλ

∞

0
x
β−1

e
xβ

e
−kλexβ

1− e
kλ−kλexβ

 
s−1

.

(9)

Let u � e−kexβ
, exβ

� ln u/− kλ, x � [ln(ln u/−kλ)]1/β and
dx � 1/β[ln(ln u/−kλ)]1/β−11/u ln u du.

By substitution,

� se
kλ


−ekλ

0
1− e

kλ
 

s−1
du. (10)

Let t � ekλu, u � t/ekλ and du � dt/ekλ.
Substituting the abovementioned expressions, we derive

the following expression:

� s 
1

0
(1− t)

s−1dt � [t−1]
s
1

0
� 1.


(11)

Hence, the function is a complete probability density
function.

2.3. Survival and Hazard Functions of Generalized Chen
Distribution. In this section, the probability density func-
tion and the cumulative density function of the newly

derived distribution are used to determine the hazard and
survival functions, which can be used in the survival analysis
distribution for modeling.

To obtain the survival characteristics of the distribution,
let the probability distribution function of a distribution be
f(x) and the corresponding cumulative density function be
F(x). Ten, the survival function S(x) is as follows:

S(x) � (1−F(x)). (12)

Hazard function (h(x)) of the distribution becomes

h(x) �
f(x)

S(x)
, (13)

since S(x) � (1−F(x))

Terefore, the hazard function can be expressed as
follows:

h(x) �
f(x)

S(x)
�

f(x)

(1−F(x))
�

F
|
(x)

(1−F(x))
. (14)

Using the abovementioned expression, the CDF and pdf
of EGMC distribution are

F(x) � 1− e
kλ 1−exβ( 

 
s

, x> 0, s> 0, k> 0, λ> 0, β> 0,

f(x) � βkλsx
β−1

e
xβ
  ekλ−kλexβ

1− e
kλ−kλexβ

 
s−1

, x> 0, s> 0, k> 0, λ> 0, β> 0,

S(x) � 1− F(x),

S(x) � 1− 1− e
kλ 1−exβ( 

 
s

,

h(x) �
βkλsx

β−1
e

xβ
  ekλ−kλexβ

1− e
kλ−kλexβ

 
s−1

1− 1− e
kλ 1−exβ( 

 
s ,

(15)

where S(x) is the survival function and h(x) is the hazard
function of the exponentially generated modify Chen
(EGMC) distribution.

2.4. Properties of Exponentially Generated Modify Chen
(EGMC) Distribution. In this section, some statistical
properties of the newly generated distribution were dis-
cussed. Te properties include moments, moment gener-
ating function, characteristic function, median, mean,
variance, mean deviation, incomplete moment, Lorenz and

Bonferroni curves, conditional moments, and order
statistics.

2.4.1. Moments. Te expression for the pth noncentral
moment of EGMC distribution is given in the following
theorem.

Theorem 1. Suppose that the random variable X follows the
EGMC distribution, then its pth noncentral moment is given
as follows:
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E X
p

  � kλse
kλ



∞

j�0

s−1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(1/β + r+1)

m!r!
, (16)

and its mean is

E[X] � kλse
kλ



∞

j�0

s−1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

1/β+r+1Γ(1/β + r+1)

m!r!
. (17)

Proof. Te pth noncentral moment is defned by the fol-
lowing equation:

E X
p

  � 
∞

0
x

p
f(x)dx. (18)

If f(x) is the pdf of EGMC distribution, then

E X
p

  � βkλse
kλ


∞

0
x

p
x
β−1

e
xβ

e
−kλexβ

1− e
kλ−kλexβ

 
s−1

dx.

(19)

Using the binomial expansion,

1− e
kλ−kλexβ

 
s−1

� 
∞

j�0

s− 1

j
 (−1)

j
e

kλj
e
−kλjexβ

. (20)

Substituting equation (20) into (19), we can obtain

E X
p

  � βkλse
kλ



∞

j�0

s− 1

j
 (−1)

j
e

kλj

∞

0
x

p+β−1
e
−kλ(1+j)exβ

e
xβ
dx. (21)

Applying power series, the exponential function is as
follows:

e
−kλ(1+j)exβ

� 

∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
x
βr

m!r!
. (22)

Substituting (22) into (21), we have

E X
p

  � βkλse
kλ



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
x
βr

m!r!

∞

0
x
βr+p+β−1

e
xβ
dx. (23)

Consider the integrand in (23).
Taking–y� xβ, x� (−y)1/β, and dx�−1/β(−y)1/β−1.

By substitution,


∞

0
x
βr+p+β−1

e
xβ
dx �

1
β

(−1)
p/β+r+1


∞

0
y

p/β+r
e
−ydy. (24)

By gamma function,  yx−1e−ydy �⇌Γ(x); therefore,
the integrand in (24) becomes


∞

0
x
βr+p+β−1

e
xβ
dx �

1
β

(−1)
p/β+r+1Γ

p

β
+ r+1 . (25)

Substituting (25) into (23), we have

E X
p

  � kλse
kλ



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r+1)

m!r!
. (26)
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Temean is obtained by setting p � 1 in (26) as shown in
the following expression:

E[X] � kλse
kλ



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

1/β+r+1Γ(1/β + r+1)

m!r!
. (27)

Te qth central moment is given in the following
theorem. □

Theorem  . Suppose that the random variable X follows the
EGMCdistribution, then its qth centralmoment is given as follows:

E[X− μ]
q

� kλse
kλ



q

p�0

q

p

⎛⎝ ⎞⎠(−μ)
q−p



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj

· 

∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r+1)

m!r!
,

(28)

and its variance is given as follows:

E[X− μ]
2

� kλse
kλ



2

p�0

2

p

⎛⎝ ⎞⎠(−μ)
2−p



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj

· 
∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r+1)

m!r!
.

(29)

Proof. Te qth central moment is defned by the following
equation:

E[X− μ]
q

� 

q

p�0

q

p
 (−μ)

q−p
E X

p
 , (30)

where µ� E(X) and E(Xp) are given in equations (27) and
(26), respectively.

By substitution,

E[X− μ]
q

� kλse
kλ



q

p�0

q

p

⎛⎝ ⎞⎠(−μ)
q−p



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj

· 

∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r+1)

m!r!
,

(31)

which is the central moment of EGMC distribution. It
variance is obtained by setting q� 2 in (31) to obtain

E[X− μ]
2

� kλse
kλ



2

p�0

2

p

⎛⎝ ⎞⎠(−μ)
2−p



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj

· 
∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r+1)

m!r!
.

(32)

□
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2.4.2. Moment Generating Function (Mgf). Te moment
generating function of EGMC distribution is given in the
following theorem.

Theorem 3. Let X follow the EGMC distribution, then
moment generating function is as follows:

MX(t) � kλse
kλ



∞

p�0

t
p

p
!


∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r + 1)

m!r!
. (33)

Proof. Te moment generating function of a random var-
iable X is given by the following expression:

MX(t) � E e
tx

  � 

∞

r�0

t
p

p
!
E X

p
 . (34)

If X follows EGMC distribution, then its moment is
given in (26). Putting (26) into (34),

MX(t) � kλse
kλ



∞

p�0

t
p

p
!


∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r + 1)

m!r!
. (35)

□
2.4.3. Characteristic Function. Te characteristic function of
the distribution is given in the following theorem.

Theorem 4. Suppose the random variable X follows EGMC
distribution, then its characteristics function is as follows:

φX(it) � kλse
kλ



∞

p�0

(it)p

p
!



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r + 1)

m!r!
. (36)

Proof. Te characteristic function of a random variable X is
given by the following expression:

φX(it) � E e
itx

  � 
∞

p�0

(it)p

p
!

E X
p

( , (37)

where the noncentral moment is given in (26). By sub-
stitution, the characteristic function gives the following
expression:

φX(it) � kλse
kλ



∞

p�0

(it)p

p
!



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1Γ(p/β + r + 1)

m!r!
. (38)

2.4.4. Re’nyi Entropy. It is defned by IR(δ) � 1/1
− δlog[I(δ)], where I(δ) � 

R
fδ(x)dx, δ > 0 and δ ≠ 1.

If X has the EGMC distribution, then

I(δ) � βkλse
kλ

 
δ


∞

0
x
δ(β−1)

e
δx 1− e

kλexβ

 
δ(s−1)

,

I(δ) � βkλse
kλ

 
δ



∞

j�0

δ(s− 1)

j

⎛⎝ ⎞⎠(−1)
j
e

kλj
e
−kλjexβ


∞

0
x
δ(β−1)

e
−kλ(δ+j)exβ

e
δxβ

dx,

I(δ) � βkλse
kλ

 
δ



∞

j�0

δ(s− 1)

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(δ + j))

m

m!r!
(−1)

r+δ−1/β(δ−1)1
β

1
δ

 
r+(1−1/β)δ+1

Γ r + δ −
1
β

(δ − 1) .

(39)
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Hence, the entropy becomes

IR(δ) �
1

1− δ
log βkλse

kλ
 

δ


∞

j�0

δ(s− 1)

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(δ + j))

m

m!r!
⎡⎢⎢⎢⎣

×(−1)
r+δ−1/β(δ−1)1

β
1
δ

 
r+(1−1/β)δ+1

Γ r + δ −
1
β

(δ − 1) .

(40)

2.4.5. Incomplete Moments. Tis is defned as Vp(z) �


z

0 xpf(x)dx.

Vp(z) � βkλse
kλ



∞

j�0

δ(s− 1)

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


z

0
x

p+β−1
e
−kλ(1+j)exβ

e
xβ
dx,

Vp(z) � βkλse
kλ



∞

j�0

δ(s− 1)

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


z

r�0

m
r
(−kλ(δ + j))

m

m!r!


z

0
x
βr+p+β−1

e
xβ
dx.

(41)

Te integrand in (41) gives the following expression:


z

0
x
βr+p+β−1

e
xβ
dx �

1
β

(−1)
p/β+r+1


zβ

0
y

p/β+r
e
−ydy. (42)

Te integrand in (42) is an incomplete gamma.
Terefore,

Vp(z) � kλse
kλ



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

p/β+r+1
c p/β + r + 1, z

β
 

m!r!
. (43)

Te frst incomplete moment is obtained by setting p� 1
in (43),

V1(z) � kλse
kλ



∞

j�0

s− 1

j

⎛⎝ ⎞⎠(−1)
j
e

kλj


∞

m�0


∞

r�0

m
r
(−kλ(1 + j))

m
(−1)

1/β+r+1
c 1/β + r + 1, z

β
 

m!r!
. (44)

2.4.6. Mean Deviation. Te mean deviation about the mean
of EGMC distribution is given by the following expression:

δ1(x) � 
∞

0
|x− μ|f(x)dx � 2μ1′F μ1′( − 2V1 μ1′( . (45)

Te mean deviation about the median of EGMC dis-
tribution is defned as follows:

δ2(x) � 
∞

0
|x−M|f(x)dx � μ1′ − 2V1 μ1′( , (46)

where μ1′ � E(X) which is the frst noncentral moment of
EGMC distribution. F(μ1′) can be obtained from the cdf of
the EGMC, M is the median of the EGMC distribution, and
V1(μ1′) can be derived from the frst incomplete moment of
EGMC distribution.

2.4.7. Bonferroni and Lorenz Curves. Bonferroni curve of the
EGMC distribution is defned as follows:
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(47)

By substitution,
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(48)

where q� W(π) can be calculated from the quintile function,
V1(q) can be obtained from the frst incomplete moment,
and μ1′ is the frst central nonmoment.

Lorenz curve of the EGMC distribution is defned as
follows:

L(π) �
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2.4.8. Conditional Moments. Te pth conditional moment of
EGMC distribution is given in the following theorem.

Theorem 5. Suppose the random variable X follows the
EGMC distribution, then its pth conditional moment is given
by the following expression:

E
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(50)
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Proof. Te pth conditional moment is defned by the fol-
lowing expression:

E
X

p

X
> t  �

1
F(t)


∞

t
x

p
f(x)dx, (51)

where F(t) � 1−F(t). If f(x) is the pdf of EGMC distri-
bution, then
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(52)

Considering the integrand in (52), by taking–y� xβ,
x� (−y)1/β, and dx� 1/β(−y)1/β−1.

By substitution,
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Te integrand in (53) can be expressed as follows:
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Tefrst integrand is a complete gamma function and the
second integrand is an incomplete gamma function.
Terefore,
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By substitution,
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(56)

□
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2.4.9. Te Order Statistics. Te pdf of the order statistics of
EGMC distribution is defned as follows:

fXp:n
(x) �

n!

(p− 1)!(n−p)!
fx(x) Fx(x)( 

p−1

· 1−Fx(x)( 
n−p

.

(57)

Substituting the pdf and cdf of the EGMC distribution
into (57) gives the following expression:
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(58)

where p � 1, 2, . . . n. Te probability density function of the maximum order
statistic when p � n is given by the following expression:
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Te probability density function of the minimum order
statistic when p � 1 is given by the following expression:
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2.4.10. Estimation of the Parameters. Te maximum likeli-
hood method of parameter estimation was adopted to es-
timate the parameters of the proposed distribution. Te
maximum likelihood function is given by the following
expression:

L(n, θ, β) � 
n

i�1
FX xi ( . (61)

Taking the partial derivative of the equation and
equating it to zero will yield a nonlinear system of equations.
Te solution to the nonlinear system of equations will yield
ML estimation of the parameters of the new distribution.

Suppose X1,....Xn are independent random variables with
sample size n from exponentially generated modifed Chen
class of distribution, and its likelihood function is given by
the following expression:
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(62)

Its log-likelihood function is given by the following
expression:
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( 
 . (63)

Te estimates of parameters β, k, λ, and s are obtained by
taking the derivative of the log-likelihood function in (63)

with respect to each parameter and equating to zero. Te
following equations were obtained:
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(64)

Te abovementioned equations are nonlinear in pa-
rameters and a numerical optimization method was used to
obtain inherent parameters.

2.5. Graphs of Exponentially GeneratedModify Chen (EGMC)
Distribution. Figures 1 and 2 show the probability density
function of the distribution as parameter value changes. It
can be observed that change in parameter values lead to
change in the position of the line for the probability density
function. Figures 1 and 2 are also an indication of the
fexibility of the distribution. Irrespective of the parameter
values, the distribution has proper shape of probability
density of a distribution. Figure 1 shows the fexibility of the
distribution and its ability to capture or be used for skewed
data especially positively skewed data. Tis implies the
modifcation of the baseline distribution made it more
fexible and suitable for skewed data.

Figures 3 and 4 are cumulative density function graph of
the distribution. Diferent patterns of graphs of cumulative
density function were derived as a result of varying pa-
rameter values. It can be observed that the graphs show
a typical structure of a proper cumulative density function.
Tis implies the resulting cumulative function is ideal and
can be applied in the related studies. Te monotonic
property of a distribution can be detected using the graph of
cumulative density function as persistent increase or de-
crease in cumulative density curve implies monotone.
Terefore, the modifed distribution can be said to have
monotonic property.

Figures 5 and 6 show the graph of survival function of
the distribution. Parameter values were varied in order to get
diferent shapes from the function. It can be observed that
irrespective of the parameter values used on the function, the
shape of a typical survival function is maintained which
converged at zero. Tis shows the suitability of the new
distribution in studying survival function or attributes of
a variable. (See Figures 7 and 8).

Te pattern of the graphs of hazard function of the
exponentially generated modify Chen (EGMC) distribution
shows the function can be used to model diferent categories
of hazard functions which shows its superiority over some of
the existing hazard functions.

3. Results

Te Monte Carlo simulation approach was used for the
study of homogenous properties of the distribution with the
aid of R software (see appendix for the code). Small and large
sample sizes were considered (5, 10, 15, . . ., 100, 200, 500,
and 1000). Te simulation was repeated with varying pa-
rameter values. Te result is as shown as follows.

From Table 1, it can be observed that the parameters ap-
proach the true value as the sample size increases with signif-
icant reduction in the variance and MSE of model. Tis shows
the stability of the model. For better understanding of the
abovementioned table, Minitab software was used for the
presentation of accuracy of parameter values with respect to
sample sizes.

Figures 9–16 display the line charts of the accuracy of the
estimates in the model. Te charts present a clearer picture of
the values in the table for the simulation study.Te charts are in
two categories. Te frst category is labeled 9, 11, 13, and 15
which shows the observations for all sample sizes considered
and the second category is labeled 10, 12, 14, and 16 which
shows better picture of the observations without extremely
large sample sizes (200, 500, and 1000). Te graphs were
constructed with respect to the parameters in the model. Te
stability of each parameter can be seen vividly in the graph of
variance and MSE. Te “biasness” shows the closeness of es-
timates to the true value used in the simulation. Figure 9 shows
the accuracy of the parameter β with consideration of ex-
tremely large sample sizes and Figure 10 shows the accuracy of
the parameter β without extremely large sample sizes. In like
manner, Figure 11 shows the accuracy of the parameter “K”
with consideration of extremely large sample sizes and Fig-
ure 12 shows the accuracy of the parameter “K” without ex-
tremely large sample sizes. Similar charts were constructed for
parameters λ and S as shown in Figures 13–16. From the charts,
it can be observed that the parameters in the distribution
attained stability as sample size increases which shows the
asymptotic property of the parameters.

In Table 1, 0.5 was used as the parameter value for all the
parameters. For the determination of behavior of the distri-
bution when parameter values change, diferent (varying)
parameter values were used. In Table 2, parameter values were
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changed to β� 0.2, K� 0.3, λ� 0.4, and S� 0.5. Using R
software with the aid ofMaxlik (Henningsen and Toomet [15]),
the outcome of the simulation is shown follows.
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Figure 3: Cumulative density function of EGMC for parameter
values λ� 2, k� 1.5, β� 0.5, 0.8, 1.5, 2.5, and 2; S� 3, 2, and 1.5.
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Figure 5: Survival function graph of EGMC distribution for λ� 2,
k� 1.5, and varying values of β and S parameters.
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Figure 6: Survival function graph of EGMC distribution for
β� 2.5, S� 2.5, and varying values of λ and k parameters.
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Figure 7: Hazard function graph of EGMC distribution for λ� 2, k� 1.5, and varying values of β and S parameters. Source: R-software,
version 4.2.2 [14].
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Figure 8: Hazard function graph of EGMC distribution for β� 2.5, S� 2.5, and varying values of λ and k parameters. Source: R-software,
version 4.2.2 [14].

Table 1: Simulation study for the EGMC distribution.

Sample size Parameters Estimates Biasness Variance MSE

5

β 0.6767 0.1767 0.20 0.23
K 1.1759 0.6759 2.89 3.35
λ 0.4292 −0.0708 0.17 0.18
S 26.6930 26.1930 2734.96 3421.03

10

β 0.860023 0.360023 0.0134272 0.143043
K 0.215724 −0.284276 0.0222105 0.103024
λ 0.298949 −0.201051 0.0783470 0.118769
S 0.298392 −0.201608 0.0182780 0.058924

15

β 0.592134 0.0921336 0.0319309 0.0404195
K 0.480335 −0.0196649 0.0771938 0.0775805
λ 0.593313 0.0933125 0.0331190 0.0418262
S 0.640158 0.1401576 0.1001277 0.1197719

20

β 0.583264 0.0832640 0.0218930 0.0288259
K 0.467710 −0.0322904 0.0108118 0.0118545
λ 0.513104 0.0131039 0.0712279 0.0713996
S 0.560411 0.0604114 0.0334183 0.0370678

25

β 0.536804 0.0368039 0.0077052 0.0090597
K 0.501933 0.0019330 0.0044649 0.0044686
λ 0.489043 −0.0109572 0.0130077 0.0131277
S 0.538829 0.0388294 0.0164299 0.0179376
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Table 1: Continued.

Sample size Parameters Estimates Biasness Variance MSE

30

β 0.529510 0.0295101 0.0177079 0.0185787
K 0.475855 −0.0241445 0.0244566 0.0250395
λ 0.542904 0.0429037 0.0115442 0.0133849
S 0.566043 0.0660429 0.0234503 0.0278120

35

β 0.537156 0.0371558 0.0034353 0.0048159
K 0.520556 0.0205564 0.0108832 0.0113058
λ 0.460324 −0.0396758 0.0072226 0.0087968
S 0.501010 0.0010104 0.0091000 0.0091010

40

β 0.520807 0.0208066 0.0023282 0.0027611
K 0.475722 −0.0242781 0.0087483 0.0093377
λ 0.550854 0.0508535 0.0045059 0.0070920
S 0.519870 0.0198697 0.0035521 0.0039469

45

β 0.538171 0.0381715 0.0005072 0.0019643
K 0.491005 −0.0089945 0.0115582 0.0116391
λ 0.481646 −0.0183539 0.0035376 0.0038744
S 0.506524 0.0065238 0.0052825 0.0053251

50

β 0.567139 0.0671389 0.0003978 0.0049055
K 0.431462 −0.0685376 0.0067192 0.0114167
λ 0.471225 −0.0287750 0.0049601 0.0057881
S 0.465457 −0.0345433 0.0023555 0.0035487

55

β 0.551303 0.0513027 0.0065554 0.0091874
K 0.449172 −0.0508282 0.0166361 0.0192196
λ 0.456964 −0.0430357 0.0335600 0.0354120
S 0.496700 −0.0033005 0.0229119 0.0229228

60

β 0.526591 0.0265911 0.0065541 0.0072612
K 0.479260 −0.0207400 0.0263108 0.0267409
λ 0.492259 −0.0077412 0.0237598 0.0238197
S 0.532581 0.0325812 0.0256740 0.0267355

65

β 0.538517 0.0385171 0.0048136 0.0062972
K 0.516116 0.0161156 0.0215632 0.0218229
λ 0.447913 −0.0520869 0.0285807 0.0312938
S 0.501517 0.0015166 0.0115791 0.0115814

70

β 0.548071 0.0480707 0.0038407 0.0061515
K 0.456693 −0.0433071 0.0192083 0.0210838
λ 0.459096 −0.0409037 0.0243834 0.0260565
S 0.487784 −0.0122158 0.0117084 0.0118576

75

β 0.548961 0.0489606 0.0026224 0.0050195
K 0.426153 −0.0738469 0.0131622 0.0186156
λ 0.475248 −0.0247522 0.0139003 0.0145130
S 0.484497 −0.0155032 0.0108139 0.0110542

80

β 0.551148 0.0511482 0.0018515 0.0044677
K 0.438722 −0.0612779 0.0092576 0.0130126
λ 0.454927 −0.0450735 0.0116320 0.0136636
S 0.482163 −0.0178373 0.0079547 0.0082729

85

β 0.559469 0.0594688 0.0018985 0.0054351
K 0.396534 −0.1034659 0.0155387 0.0262439
λ 0.483670 −0.0163304 0.0039485 0.0042151
S 0.472042 −0.0279576 0.0085035 0.0092851

90

β 0.565155 0.0651552 0.0020697 0.0063149
K 0.464896 −0.0351035 0.0120228 0.0132550
λ 0.391887 −0.1081130 0.0101104 0.0217988
S 0.458074 −0.0419260 0.0084377 0.0101955

95

β 0.557711 0.0577108 0.0008321 0.0041626
K 0.463745 −0.0362547 0.0125396 0.0138540
λ 0.403962 −0.0960380 0.0011227 0.0103460
S 0.457842 −0.0421576 0.0040510 0.0058283
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Despite varying parameter values, the results obtained
are similar to that of Table 1, as the estimates approach true
values as sample sizes increase with a decrease in variance
and MSE. Tis shows the stability of the model. For better
understanding of Table 2, see the fgures below.

Similar to the case of frst group (shown in Table 1), the
charts present clearer pictures of the parameter values in Table 2.
Te charts can be classifed into two. Te frst category labeled
17, 19, 21, and 23 show the observations for all sample sizes
considered and second category labeled 18, 20, 22, and 24 show
better picture of the observationswithout extremely large sample
sizes (200, 500, and 1000). Te graphs were constructed with
respect to the parameters in the model. Te stability of each
parameter can be seen vividly in the graph of variance andMSE.
Te “biasness” shows the closeness of estimates to the true value
used in the simulation. Figure 17 shows the accuracy of the
parameter β with consideration of extremely large sample sizes

and Figure 18 shows the accuracy of the parameter β without
extremely large sample sizes. In likemanner, Figure 19 shows the
accuracy of the parameter “K” with consideration of extremely
large sample sizes and Figure 20 shows the accuracy of the
parameter “K” without extremely large sample sizes. Similar
charts were constructed for parameters λ and S in Figures 21–24.
From the charts, it can be observed that the parameters in the
distribution attained stability as sample size increases which
shows the asymptotic property of the parameters.

3.1. Model Comparison. As part of performance test, there
is need to compare the distribution with existing ones in
the same category using secondary data. Some cases were
used, having data from published research of other re-
searchers. Te comparison was made using Akaike in-
formation criterion (AIC).

Table 1: Continued.

Sample size Parameters Estimates Biasness Variance MSE

100

β 0.545665 0.0456645 0.0009652 0.0030504
K 0.488159 −0.0118409 0.0015978 0.0017381
λ 0.422859 −0.0771412 0.0093100 0.0152607
S 0.474627 −0.0253733 0.0039089 0.0045527

200

β 0.520441 0.0204407 0.0005537 0.0009716
K 0.504617 0.0046170 0.0019462 0.0019676
λ 0.487193 −0.0128068 0.0041899 0.0043539
S 0.516876 0.0168757 0.0061796 0.0064644

500

β 0.499557 −0.0004432 0.0009495 0.0009497
K 0.450622 −0.0493783 0.0025090 0.0049472
λ 0.549669 0.0496685 0.0037656 0.0062326
S 0.503851 0.0038511 0.0057207 0.0057356

1000

β 0.506285 0.0062851 0.0008078 0.0008473
K 0.469542 −0.0304584 0.0018271 0.0027548
λ 0.512220 0.0122200 0.0049380 0.0050874
S 0.486622 −0.0133776 0.0022385 0.0024174

β� 0.5; K� 0.5; λ� 0.5; S� 0.5.
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Figure 9: Graphs of the parameters with respect to measures of accuracy. Te plot of the accuracy of the parameter β with respect to sample size.
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3.1.1. Case I. Te data set is extracted from a research work
where exponential distribution was modifed to generate
Weibull exponential distribution. In the research, it was
concluded that Weibull exponential distribution is better
than the exponential distribution using AIC and Log-
likelihood values on the data in Table 3. In this study, the
Weibull-exponential distribution proposed by the re-
searcher is compared with the newly generated distribution.
Te rating is based on AIC and Log-likelihood values. Te
data are on the breaking stress of carbon fbers of 50mm
length (GPa).Te data have been previously used by Nichols
and Padgett [16], Cordeiro and Lemonte [17], Al-Aqtash
et al. [18], and Oguntunde et al. [19]. Te data are as follows
(See Table 4).

From Table 5, the distribution, EGMC, has higher log-
likelihood value and lower AIC value compare with Weibull-
exponential distribution. Terefore, it can be concluded that
EGMC modeled the data better than the distribution
compared with.

3.1.2. Case II. As part of performance test, there is need to
compare the distribution with existing ones in the same cat-
egory using secondary data. Using a data set previously used by
Ahmed et al. [20] on length of 10mm from Kandu and Raqab
[21], the data set consists of 63 observations (See Table 6).

Te data were previously used to show the suitability
and superiority of transmitted Weibull–Pareto (TWPa)
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Figure 10: Plot of the accuracy of the parameter β with respect to sample size.
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Figure 11: Plot of the accuracy of the parameter K with respect to sample size.
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distribution over Weibull pareto (WPa), transmuted Wei-
bull–Lonax (TWL), transmuted complimentary Weibull
(TCW), and McDonald–Lomax (McL) distributions. Using
the data for modeling and comparison of the distributions
with EGMC, the output is as shown as follows.

Table 7 shows the superiority of EGMC distribution over
fve other existing distributions. It can be deduced that in
modeling the data extracted from the work of Ahmed et al. [20]
on length of 10mm, the most appropriate model is EGMC
distribution as it has the lowest AIC value among the AIC
values for the distributions compared with.

3.1.3. Case III. Tis data consist of the life time (in years)
of a 40 blood cancer (leukemia) patients from one of
Ministry of Health Hospitals in Saudi Arabia reported in
[22]. T actual data are as follows (See Tables 8 and 9).

APKumW is Alpha Power KumaraswamyWeibull, EGW is
exponentiated generalizedWeibull, and EKumW is exponential
Kumaraswamy–Weibull. Considering the distributions with
EGMC as shown in Table 10, Akaike information criterion of
EGMC has the lowest value when compared with APKumW,
EGW, and EKumW. Terefore, in modeling the data on blood
cancer patients, EGMC is better used.
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Figure 13: Plot of the accuracy of the parameter λ with respect to sample size.
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Figure 12: Plot of the accuracy of the parameter K with respect to sample size.
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Figure 16: Plot of the accuracy of the parameter S with respect to sample size.
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Figure 15: Plot of the accuracy of the parameter S with respect to sample size.
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Figure 14: Plot of the accuracy of the parameter λ with respect to sample size.
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Table 2: Simulation study for EGMC distribution.

Sample size Parameters Estimates Biasness Variance MSE

5

β 0.1713 −0.0287 0.012 0.013
K 0.6237 0.3237 0.141 0.246
λ 1.1954 0.7954 1.992 2.625
S 12.5394 12.0394 533.144 678.092

10

β 0.280894 0.0808945 0.0007150 0.0072589
K 0.068114 −0.2318858 0.0017425 0.0555135
λ 0.522747 0.1227474 0.1423641 0.1574310
S 0.362870 −0.1371298 0.0219349 0.0407395

15

β 0.214346 0.0143457 0.0021792 0.0023850
K 0.287914 −0.0120858 0.0390955 0.0392416
λ 0.672829 0.2728287 0.1852556 0.2596911
S 0.679318 0.1793182 0.0864240 0.1185790

20

β 0.214598 0.0145978 0.0019183 0.0021314
K 0.268409 −0.0315908 0.0184668 0.0194647
λ 0.460113 0.0601127 0.0239420 0.0275556
S 0.611566 0.1115664 0.0374533 0.0499004

25

β 0.199559 −0.0004415 0.0007246 0.0007248
K 0.304595 0.0045946 0.0269611 0.0269822
λ 0.547158 0.1471579 0.0126824 0.0343378
S 0.599002 0.0990020 0.0208870 0.0306884

30

β 0.199638 −0.0003624 0.0016594 0.0016596
K 0.354166 0.0541655 0.0365586 0.0394925
λ 0.450366 0.0503662 0.0071476 0.0096844
S 0.611024 0.1110236 0.0281597 0.0404859

35

β 0.203445 0.0034447 0.0002338 0.0002456
K 0.285176 −0.0148241 0.0141166 0.0143364
λ 0.487202 0.0872016 0.0151478 0.0227519
S 0.531373 0.0313731 0.0046727 0.0056570

40

β 0.201502 0.0015015 0.0001629 0.0001651
K 0.335847 0.0358470 0.0187665 0.0200515
λ 0.444857 0.0448573 0.0103847 0.0123969
S 0.541332 0.0413316 0.0028457 0.0045540

45

β 0.205167 0.0051670 0.0000495 0.0000762
K 0.312382 0.0123821 0.0127784 0.0129317
λ 0.428793 0.0287925 0.0068836 0.0077126
S 0.538143 0.0381428 0.0041191 0.0055740

50

β 0.214585 0.0145849 0.0000446 0.0002573
K 0.274680 −0.0253198 0.0207559 0.0213970
λ 0.431196 0.0311963 0.0091943 0.0101675
S 0.495276 −0.0047244 0.0019541 0.0019764

55

β 0.211972 0.0119724 0.0005555 0.0006988
K 0.242762 −0.0572375 0.0197700 0.0230462
λ 0.457445 0.0574451 0.0110922 0.0143921
S 0.508782 0.0087824 0.0181023 0.0181794

60

β 0.205369 0.0053689 0.0006813 0.0007101
K 0.291756 −0.0082437 0.0228865 0.0229545
λ 0.449340 0.0493396 0.0180440 0.0204783
S 0.542706 0.0427059 0.0213443 0.0231681

65

β 0.209262 0.0092617 0.0005194 0.0006052
K 0.239025 −0.0609746 0.0187766 0.0224945
λ 0.502227 0.1022273 0.0037510 0.0142015
S 0.514289 0.0142891 0.0109054 0.0111095

70

β 0.211547 0.0115467 0.0003807 0.0005140
K 0.227124 −0.0728760 0.0209029 0.0262138
λ 0.507838 0.1078379 0.0063921 0.0180211
S 0.503045 0.0030448 0.0099347 0.0099439
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Table 2: Continued.

Sample size Parameters Estimates Biasness Variance MSE

75

β 0.211490 0.0114898 0.0002288 0.0003609
K 0.246249 −0.0537507 0.0147249 0.0176140
λ 0.430925 0.0309247 0.0034540 0.0044104
S 0.501292 0.0012920 0.0089441 0.0089458

80

β 0.212430 0.0124304 0.0001578 0.0003123
K 0.229270 −0.0707295 0.0124339 0.0174365
λ 0.464509 0.0645094 0.0071615 0.0113230
S 0.499626 −0.0003744 0.0067773 0.0067774

85

β 0.214901 0.0149014 0.0001533 0.0003753
K 0.251061 −0.0489395 0.0136089 0.0160040
λ 0.395856 −0.0041445 0.0015089 0.0015261
S 0.489312 −0.0106877 0.0067650 0.0068792

90

β 0.216428 0.0164283 0.0001707 0.0004406
K 0.227604 −0.0723962 0.0148859 0.0201271
λ 0.431185 0.0311850 0.0062951 0.0072676
S 0.476394 −0.0236059 0.0071911 0.0077483

95

β 0.213985 0.0139850 0.0000657 0.0002613
K 0.227602 −0.0723978 0.0127325 0.0179739
λ 0.464126 0.0641258 0.0127330 0.0168452
S 0.478173 −0.0218267 0.0031903 0.0036667

100

β 0.210518 0.0105181 0.0001064 0.0002170
K 0.282820 −0.0171799 0.0179628 0.0182580
λ 0.418992 0.0189918 0.0127201 0.0130808
S 0.493453 −0.0065473 0.0033437 0.0033865

200

β 0.202282 0.0022815 0.0000349 0.0000401
K 0.277753 −0.0222475 0.0089753 0.0094703
λ 0.478029 0.0780293 0.0063246 0.0124131
S 0.535234 0.0352336 0.0044893 0.0057307

500

β 0.198131 −0.0018686 0.0000873 0.0000908
K 0.344009 0.0440091 0.0025124 0.0044492
λ 0.368620 −0.0313799 0.0091554 0.0101401
S 0.509545 0.0095452 0.0048733 0.0049645

1000

β 0.201294 0.0012945 0.0000722 0.0000739
K 0.330686 0.0306855 0.0055191 0.0064607
λ 0.360292 −0.0397083 0.0027592 0.0043359
S 0.488960 −0.0110397 0.0018084 0.0019302

β� 0.2; K� 0.3; λ� 0.4; S� 0.5.
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Figure 17: Plot of the accuracy of the parameter β with respect to sample size.
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Figure 20: Plot of the accuracy of the parameter K with respect to sample size.
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Figure 19: Plot of the accuracy of the parameter K with respect to sample size.
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Figure 18: Plot of the accuracy of the parameter β with respect to sample size.
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Figure 23: Plot of the accuracy of the parameter S with respect to sample size.
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Figure 22: Plot of the accuracy of the parameter λ with respect to sample size.
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Figure 21: Plot of the accuracy of the parameter λ with respect to sample size.
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Scatterplot of Biasness, Variance, MSE vs sample size
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Figure 24: Plot of the accuracy of the parameter S with respect to sample size.

Table 5: Output of the data on existing and newly modifed distribution.

Distributions Parameter estimates Log-likelihood AIC
Weibull-exponential α � 5.25929β � 2.80643λ � 0.14236 −85.7833 171.5667
Exponentially generated modifed chen (EGMC) β� 0.84425, λ� 0.13170, S� 2.32073 and K� 1.05669 −85.59085 171.1817

Table 3: Breaking strength of carbon fbers of 50mm length (GPa).

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.8
1.84 1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43
2.48 2.5 2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74
2.79 2.81 2.82 2.85 2.87 2.88 2.93 2.95 2.96 2.97
3.09 3.11 3.11 3.15 3.15 3.19 3.22 3.22 3.27 3.28
3.31 3.31 3.33 3.39 3.39 3.56 3.6 3.65 3.68 3.7
3.75 4.2 4.38 4.42 4.7 4.9
Source: Nichols and Padgett [16].

Table 4: Descriptive statistics of data on breaking strength of carbon fbers of 50mm.

Mean Median Minimum Maximum Variance Skewness Kurtosis
2.760 2.835 0.390 4.900 0.795 −0.128487 3.223049
Source: Henningsen and Toomet [15].

Table 7: Output of the analysis of 10mm data modeling.

Models Estimates AIC
EGMC β� 0.47713, λ� 0.46675, K � 2.78844 and S� 209.80893 124.971
TWPa a� 0.1885, b� 0.0909, c� 14.4535 and d� 0.7280 127.282
Wpa a� 0.1834, b� 0.0755 and c� 13.9522 127.790
TWL a� 0.3922, b� 0.6603, c� 0.5287, d� 8.4451 and e� 0.7364 129.688
McL a� 45.9249, b� 48.3024, c� 18.1192, d� 195.4633 and e� 353.1435 140.597
TCW a� 0.2022, b� 3.3482, c� 0.3076 and d�−0.0001 134.895

Table 6: Length of 10mm extracted from work of Kanda and Raqab [21].

1.901 2.132 2.203 2.228 2.257 2.35 2.361 2.396 2.397 2.445
2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618
2.624 2.659 2.675 2.738 2.74 2.856 2.917 2.928 2.937 2.937
2.977 2.996 3.03 3.125 3.139 3.145 3.22 3.223 3.235 3.243
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501
3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 5.395 5.02
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4. Summary and Conclusions

In this paper, the exponentially generated system was used
as a method of modifcation of Chen distribution. Two-
parameter Chen was used as the baseline function which
results to a four-parameter Chen distribution. Te newly
generated distribution, EGMC, was tested for complete-
ness using one of the properties of a proper probability
density function. Te test of completeness was done using
the property called area under curve. Statistical properties
of the EGMC were studied which include moment, mo-
ment generating function, characteristic function, me-
dian, mean, variance, mean deviation, incomplete
moment, Lorenz and Bonferroni curves, conditional
moments, and order statistics. Parameters in the for-
mulated model were estimated using the maximum
likelihood method.

Graph of probability density function, cumulative
density function, survival function, and hazard function of
the distribution were plot using diferent parameter values.
Also, the Monte Carlo simulation approach was used for
the study of stability (homogeneity) of the distribution. In
the simulation, three replicates were used at varying pa-
rameter values and diferent sample sizes of 50, 100, 200,
and 500. Biasness and mean square error (MSE) were used
for the appropriateness of the estimates. It was observed
that the estimates approach true values of the parameters as
sample size increases which lead to signifcant reduction in
the biasness and MSE. Based on these facts, it was con-
cluded that the resulting distribution is stable and can be
used for modeling.

For more fact fndings, the newly modifed distribution
was showed to have the tendency to model some data better
than some of the existing distributions. Te EGMC was also
compared with existing distributions in its category using
lifetime dataset such as data on length of 10mm rod pre-
viously used by Kandu and Raqab and Ahmed et al. In the

ranking of the distributions using AIC, it was observed that
EGMC performed better than the distributions compared
with. Also, in the comparison of EGMC with alpha power
Kumaraswamy–Weibull, exponentiated generalized Wei-
bull, and exponential Kumaraswamy–Weibull, EGMC had
the lowest AIC value which shows its superiority in mod-
eling the data used.
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