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Empirical evidence suggests that the traditional GARCH-type models are unable to accurately estimate the volatility of fnancial
markets. To improve on the accuracy of the traditional GARCH-typemodels, a hybridmodel (BSGARCH (1, 1)) that combines the
fexibility of B-splines with the GARCH (1, 1) model has been proposed in the study. Te lagged residuals from the GARCH (1, 1)
model are ftted with a B-spline estimator and added to the results produced from the GARCH (1, 1) model. Te proposed
BSGARCH (1, 1) model was applied to simulated data and two real fnancial time series data (NASDAQ 100 and S&P 500). Te
outcome was then compared to the outcomes of the GARCH (1, 1), EGARCH (1, 1), GJR-GARCH (1, 1), and APARCH (1, 1) with
diferent error distributions (ED) using the mean absolute percentage error (MAPE), the root mean square error (RMSE), Teil’s
inequality coefcient (TIC) and QLIKE. It was concluded that the proposed BSGARCH (1, 1) model outperforms the traditional
GARCH-type models that were considered in the study based on the performance metrics, and thus, it can be used for estimating
volatility of stock markets.

1. Introduction

Extensive empirical and theoretical research has been
conducted on modelling and forecasting stock market
volatility over the past three decades [1–3]. Tis line of
inquiry is motivated by a number of factors. Arguably,
volatility is one of the most signifcant concepts in the whole
of fnance. Volatility is frequently used as a rough indicator
of the total risk of fnancial assets. Te estimation or forecast
of a volatility parameter is used inmany value-at-risk models
for gauging market risk [4–6].

Economies are changing frequently and are susceptible
to unpredicted economic shocks or changes in economic
policy. It is often difcult to quantify all impacts of the
dynamics that bring about change in an economy and be-
cause of this; economic forecasting is riddled with problems
[7]. It is valuable to be able to consistently identify a fore-
casting model which is superior in terms of predictability to
another model.

One of the most recognised characteristics of fnancial
time series is the presence of nonconstant and time-
dependent volatility in returns, and thus, volatility

estimation has played a signifcant role in the felds of
statistics, economics, and fnance since the seminal work of
Engle [8, 9]. Several diferent techniques attempt to address
the issue of estimating the volatility of a fnancial asset, but
the Generalised Autoregressive Conditional Heteroskedastic
(GARCH) models have often been used in estimating the
volatility of fnancial time series of stock returns [10, 11].
Especially, the GARCH (1, 1) has been proven to be one of
the best predictive models in estimating the volatility of the
stock market.

However, according to [12], some researchers have
found that there is no unique model of GARCH estimation
that consistently gives better results for every stock market.
Another, restriction of the GARCH model is that it enforces
a symmetric response of volatility to positive and negative
shocks [2]. It has been argued that a negative shock to
a fnancial time series is likely to cause volatility to rise by
a margin that is more than a positive shock of the same
magnitude. Tis limitation in the GARCH model has been
somehow managed by the introduction of volatility treat-
ments that accommodate the asymmetric responses of
volatility to positive and negative shocks. Tree simple
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classes of such models that capture the asymmetric nature of
stock returns are the GJR-GARCH by [13], the exponential
GARCH (EGARCH) by [14], and the asymmetric power
ARCH (APARCH) by [15]. Tough, the GJR-GARCH,
EGARCH, and the APARCH models include the asym-
metric response of volatility to positive and negative shocks,
they do not capture stock fuctuations with volatility clus-
tering accurately [6]. Tis fact can lead to errors in volatility
estimation.

Several research studies have proposed new approaches
to respond to some of these inadequacies of the classical
GARCH models. For example, [16] proposed a measure-
ment model that considers the possibility of time-varying
interaction of realized volatility and asset returns according
to a bivariate model to capture major characteristics such as
long-term memory of the volatility process, the heavy-tail of
the distribution of returns, and the negative dependence of
volatility and daily market returns. Yet another way of
dealing with the high persistence in volatility would be to
explicitly assume that the volatility process is “smoothly”
nonstationary and model it accordingly [17]. In view of this,
[18] introduced a time-varying ARCH process for modelling
nonstationary volatility [19] also assumed that the variance
of a fnancial time series can be decomposed into stationary
and nonstationary components. Te stationary component
in their work was assumed to follow the GARCH process,
while the nonstationary component was described using the
exponential quadratic splines.Tis was achieved through the
use of multiplicative decomposition structure [20], though it
did not explicitly mention nonstationarity, used multipli-
cative decomposition structure to correct potential mis-
specifcation due to a “rough” parametric GARCH
specifcation by a smooth nonparametric component [17]
also introduced two nonstationary GARCH models for
situations in which volatility appears to be nonstationary.
Tey proposed an additive time-varying parameter model
and multiplicative decomposition of variance into un-
conditional and conditional components, but focused on the
multiplicative decomposition.

Te proposal of hybrid models is a potential efcient
alternative for modelling and forecasting the volatility of
stock markets because such models can account for
a number of important features of fnancial series [2, 5].
Hybrid models combine frst principle-based models with
data-based models into a joint architecture, supporting
enhanced model qualities, such as robustness and
explainability [21].

In this paper, an efcient hybrid model that combines
the B-spline estimator and the GARCHmodel are proposed.
Te piecewise nature of the B-spline estimator allows it to be
interpreted as a threshold regime function where the regimes
are associated with diferent regions of the predictor.

2. Materials and Methods Used

2.1. Te GARCH Model. Among a number of time series
models, the GARCHmodels proposed by [22] appear to be the
most successful and popular form for modelling and fore-
casting the conditional variance of the return of volatility [14].

Te GARCH (p, q) model considers the current conditional
variance dependent on the p past conditional variances as well
as the q past squared observation of the stochastic process [23].
Let xt denote a real-valued discrete-time stochastic process
and Ft the information set of all information through time t.
Te GARCH (p, q) process is given by

xt Ft− 1 ∼ N 0, ht( 􏼁,
􏼌􏼌􏼌􏼌

ht � α0 + 􏽘

p

i�1
αix

2
t− i + 􏽘

q

j�1
βjht− j.

(1)

Here, p> 0, α0 > 0, βi ≥ 0, q> 0, αi ≥ 0 [22]. In this model,
ht is the conditional variance of xt. In addition to the non-
negativity of the parameters, there is parameter restriction

􏽘

p

i�1
αi + 􏽘

q

j�1
βj < 1, (2)

to ensure the positivity of the conditional variance. Te
simplicity of the GARCH model and its ability to capture
persistence of volatility explains its empirical and theoretical
appeal [11].

2.2. EGARCHModel. Te exponential GARCH (EGARCH)
model provides an alternative asymmetric model by con-
sidering the leverage efects of a price change on the con-
ditional variance [6]. It was frst introduced by [14]. Te
EGARCH (p, q) model can be represented as

xt � εt

��
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􏽱
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􏽰􏼠 􏼡􏼠 􏼡.

(3)

Te use of the log form allows the parameters to be
negative without the conditional variance becoming nega-
tive [2, 5].

2.3. GJR-GARCH Model. [13] also proposed another
asymmetric model, the GJR-GARCH model. Te model is
represented by

ht � α0 + 􏽘

p

i�1
αix

2
t− i + 􏽘

q

j�1
βjht− j + 􏽘

p

k�1
ckx

2
t− kIt− k, (4)

where

It− k �
1, if xt− k < 0,

0, if xt− k > 0.
􏼨 (5)

Te GJR-GARCH is closely related to the threshold
GARCH (TGARCH) model proposed by [24].

2.4. Asymmetric Power ARCH (APARCH) Model. Te gen-
eral structure of the APARCH as introduced by [15] is as
follows:
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xt � εt

��

ht

􏽱

εt ∼ N(0, 1),

σδt � α0 + 􏽘
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δ
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δ
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(6)

where

α0 > 0, δ ≥ 0, αi ≥ 0, i � 1, . . . , p, − 1< ci < 1, βj ≥ 0, j � 1, . . . , q, (7)

and σt �
��
ht

􏽰
. Te model imposes a Box-Cox power

transformation of the conditional standard deviation
process.

2.5. B-Spline. Te term spline is used to refer to a wide class
of functions that are used in applications requiring data
interpolation and or smoothing. Splines may be used for
interpolation and smoothing of either one-dimensional or
multidimensional data [25]. Given a partition or a non-
decreasing knot sequence ti, the B-splines of order 1 for this
knot sequence are the characteristic functions of this par-
tition, and it is given by

Bi1(t) ≔ Xi(t) ≔
1, if ti ≤ t< ti+1,

0, otherwise.
􏼨 (8)

Te only constraint is that these B-splines should form
a partition of unity. Tat is

􏽘
i

Bi1(t) � 1∀t. (9)

In particular, ti � ti+1 implies Bi1 � Xi � 0. From the frst
order B-splines, higher order B-splines can be obtained by
recurrence:

Bik ≔ ωikBi,k− 1 + 1 − ωi+1,k􏼐 􏼑Bi+1,k− 1, (10)

where

ωik(t) ≔

t − ti

ti+k− 1 − ti( 􏼁
, if ti ≠ ti+k− 1,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

After k − 1 steps of the recurrence, Bik is obtained in the
form

Bik � 􏽘
i+k− 1

j�i

bjkXj. (12)

See [26] for details.

2.6. ProposedModel. Let (Ω, F, P) be a probability space and
let Ft− 1 be the information set of all information through
time t − 1 which is generated by the stochastic process Xt

and assume that under the probability measure P, Xt is given
by

Xt � μt +

��

ht

􏽱

et,

ht � f Xt− 1, ht− 1( 􏼁.
(13)

Here, et is a sequence of independent and identically
distributed random variable such that et ∼ N(0, 1), μt � E

(Xt|Ft− 1)and ht � var(Xt|Ft− 1).
Generally, in fnancial applications, there is no need to

allow for a large degree of fexibility in the dynamics of the
conditional means [1]. Tus, it is assumed that the condi-
tional mean is zero. Tat is

μt � 0. (14)

Te main focus will be devoted to the modelling of the
time-varying dynamics of the volatility ht � var(Xt|Ft− 1).

Estimation and prediction of volatility are a central task in
the fnancial feld because of its core importance in many
practical applications.

Finding a methodology that yields accurate volatility
predictions is one of the main goals in both academic re-
search and practice.

Te dynamics of the squared volatility is modelled as an
additive expansion of a simple univariate B-spline basis
function arising from the lagged values of the squared
volatility to help uncover hidden trends in the volatility. In
detail, the volatility is modelled as

ht � g xt− 1, ht− 1( 􏼁 + 􏽘
n

i�1
δiϑi ]t− 1( 􏼁+. (15)

Here, g(., .) is a simple parametric starting function of
the GARCH model in which an attempt is made to improve
using the univariate B-spline basis function 􏽐

n
i�1δiϑi(]t− 1)+.

Where

ϑi ]t− 1( 􏼁+ �
ϑi ]t− 1( 􏼁, if ϑi ]t− 1( 􏼁≥ 0,

0, if ϑi ]t− 1( 􏼁< 0.
􏼨 (16)

Equation (16) is necessary to ensure that equation (15) is
always positive. ϑi(]t− 1) is the basis function.

Suppose that all δi ≡ 0 which is a possibility, then the
classical parametric GARCH (1, 1) model is obtained. ]t− 1 is
the residual at time t − 1 from the classical GARCH (1, 1)
model. In the sequel, equation (15) will be referred to as
BSGARCH (1,1).

B-splines allows for a large fexibility in the shape of the
conditional variance function depending on how the degree
and number of knots of each basis function is chosen. Te
residual lags are allowed to be a quadratic function and thus
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B-spline of degree 3 (that is of order 2) is chosen. Te
number of knots is a measure for the approximation ac-
curacy. Usually, with a larger number of knots, a better
approximation is obtained.

2.7. Algorithm for Parameter Estimation. Te parameters in
the frst term of equation (15) are estimated in the same way
the simple parametric GARCH (1, 1) model is estimated.
Tat is using the maximum likelihood estimation method.
Te focus is on estimating the parameters of the second
term. Considering

f � 􏽘
n

i�1
δiϑi vt− 1( 􏼁, (17)

where δi represents control points and ϑi(vt− 1) is the basis
function such that 􏽐

n
i�1ϑi(vt− 1) � 1. Te estimate is found by

minimizing the residual sum of squares. Tat is

S � argmin
f

􏽘

n

t�1
vt − f vt− 1( 􏼁( 􏼁

2
+ λ‖f

″
vt− 1( 􏼁||

2
2

⎛⎝ ⎞⎠. (18)

Tis is an infnite-dimensional optimization problem
over all functions f for which the criterion is fnite, which is
the optimal solution is a continuous quantity. Tis criterion
trades of the least squares error. Here, ‖λf″(vt− 1)||

2
2 is

a roughness penalty which accounts for the fuctuations and
controls the roughness of the function. λ is the tuning pa-
rameter and is such that λ> 0. In vector notation form,
equation (18) is denoted as

􏽢f � δΨ, (19)

with

Ψij � ϑi vt− 1( 􏼁. (20)

Equation (18) can now be written as

S � argmin
f

vt − δΨ( 􏼁(
T

vt − δΨ( 􏼁 + λδTΩδ⎛⎝ ⎞⎠. (21)

Te matrix Ω is a positive semidefnite matrix by con-
struction and it is known as the penalty matrix. It induces
a seminorm on Rn so that the seminorm ‖f″‖2 of f can be
expressed in terms of the parameters in the basis expansion
using ϑj, thus, Ω can be expressed as

Ωij � 􏽚
b

a
ϑi
″ vt− 1( 􏼁ϑj

″ vt− 1( 􏼁dvt− 1, (22)

where a and b are consecutive knots.
Te partial derivative of S with respect to δ is

zS

zδ
� δ ΨΨT

+ λΩ􏼐 􏼑 − ΨT
vt. (23)

Equating (zS/zδ) to 0 and fnding δ, we get

􏽢δ � ΨΨT
+ λΩ􏼐 􏼑

− 1
ΨT

vt. (24)

Terefore, equation (15) now becomes

􏽢f � Ψ ΨΨT
+ λΩ􏼐 􏼑

− 1
ΨT

vt, (25)

where Ω is determined as follows:
Let ϑi
″(vt− 1)ϑj

″(vt− 1) � qij(vt− 1) then, equation (22) can
be written as

Ωij � 􏽚
b

a
qij vt− 1( 􏼁dvt− 1. (26)

In which qij(vt− 1) can be expressed as equation (27)
using Newton’s divided diference polynomial.

qij vt− 1( 􏼁 � b0 + b1 vt− 1 − a( 􏼁 + b2 vt− 1 − a( 􏼁 vt− 1 −
a + b

2
􏼠 􏼡,

(27)

where

b0 � qij(a),

b1 �
qij(a + b/2) − qij(a)

(a + b/2) − a
,

b2 �
qij(b) − qij(a + b/2)􏼐 􏼑 − qij(a + b/2/) − qij(a)(a + b/) − a􏼐 􏼑/b − (a + b/2)b − a(a + b/2) − a/b − (a + b/2) (a + b/2) − a

b − a
.

(28)

Integrating equation (26) by the Simpson’s approxi-
mation rule gives equation (28)

b − a

6
qij(a) + 4qij

a + b

2
􏼠 􏼡 + qij(b)􏼠 􏼡 � Ω. (29)
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Now, that the penalty matrix Ω has been established in
equation (28), it is also important that the optimal tuning
parameter λ be determined. Determination of the optimal
tuning parameter λ is exceptionally critical to derive a good
curve estimator.

2.8. Determination of Tuning Parameter λ. Tere has been
a number of methods for determining the optimal tuning
parameter λ. Te most commonly used ones are the or-
dinary cross-validation (OCV) and the generalized cross-
validation (GCV). Te leave-(2l + 1)-out model of [27] is
one of the modifcations of the OCV. However, Te GCV
method found in [28] was adopted for the purpose of this
study because it has various advantages over other
methods, which includes being asymptotically optimal
[29]. It is given as

GCVλ �

1
n

􏼒 􏼓􏽐
n
t�1 vt( 􏼁 − F

⌢
vt− 1( 􏼁􏼁(􏼒 􏼓

2

(1 − (df/n))
2 ,

(30)

where

df � trace Ψ ΨΨT
+ λΩ􏼐 􏼑

− 1
ΨT

􏼒 􏼓. (31)

2.9. Performance Metric. Forecasted volatility is usually
compared to an ex-post proxy for volatility because true
volatility is latent [30]. One such ex-post proxy is realized
volatility introduced by [31]. Te realized volatility is the
square root of the realized variance which is the sum of
squared returns [32, 33]. Te realized variance is given as

RVt � 􏽘
n

t�1
r
2
t . (32)

Here,

rt � ln
Pt

Pt− 1
􏼠 􏼡, (33)

and n is the number of observations.
Te ability of the models to accurately forecast realized

volatility is assessed using four diferent loss functions be-
cause it is not obvious which loss function is more appro-
priate for the evaluation of volatility models [34]. Te loss
functions considered were root mean square error (RMSE),
mean absolute percentage error (MAPE), Teil’s inequality
coefcient (TIC), and QLIKE.
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��������������
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QLIKE �
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􏽘
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t�1
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2
t􏼐 􏼑 +

RV
2
t

h
2
t

􏼠 􏼡.

(34)

Te QLIKE function used is the defnition as found
in [34].

3. Results and Discussion

3.1. Simulated Data. Similar to the following equation, the
data generating process was a time series Yt that satisfes
equation (33)

Yt � ϕYt− 1 + εt. (35)

First, εt was assumed to be normal with mean 0 and
conditional variance

ht � α0 + α1ε
2
t− 1. (36)

Te frst 70% of the simulated data was used as an in-
sample period to estimate the model and the successive 30%
as out-of-sample testing period. It should be noted that the
conditional mean for all the models were not estimated. It
was assumed to be zero. Te main focus was on the con-
ditional variance. Te in-sample data was used for esti-
mating all the parameters in themodel that was then used for
the forecasting. Te forecasting performance of the GARCH
(1, 1), EGARCH (1, 1), GJR-GARCH (1, 1), and the proposed
BSGARCH (1, 1) averaged over 1000 repetitions is presented
under 6 diferent scenarios.

3.1.1. Scenario 1. In this scenario, 2000 observations were
generated using the parameters ϕ � 0.1, α0 � 0.1, α1 � 0.3.
Te forecasting performance is presented in Figure 1. From
Figure 1, the proposed BSGARCH (1, 1) model had the
smallest values in all the performance metric used in this

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

NORM GED NORM GED NORM GED NORM GED

RMSE TIC MAPE QLIKE

BSGARCH
GARCH
EGARCH

GJRGARCH
APARCH

Figure 1: Performance evaluation averaged over 1000 independent
simulations for n � 2000 observations with parameters
ϕ � 0.1, α0 � 0.1, α1 � 0.3.
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study.Tismeans that, the proposed BSGARCH (1, 1) model
outperforms the classical GARCH- type models in fore-
casting the volatility of fnancial time series that has low
ARCH parameter.

3.1.2. Scenario 2. In this scenario, 255 observations were
generated using the parameters ϕ � 0.1, α0 � 0.1, α1 � 0.3.
Te forecasting performances are shown in Figure 2. Again,
the proposed BSGARCH (1, 1) outperforms the classical
GARCH-type models in the QLIKE and the RMSE. How-
ever, the TIC and MAPE were very close in all the models.

3.1.3. Scenario 3. In this scenario, 2000 observations were
generated using the parameters ϕ � 0.6, α0 � 0.4, α1 � 0.6.
Te forecasting performance is presented in Figure 3. Te
proposed BSGARCH (1, 1) model had the smallest values in
all the performance metric under this scenario also. Tis
means that, the proposed BSGARCH (1, 1) model out-
performs the classical GARCH- type models in forecasting
the volatility of fnancial time series that has medium ARCH
parameter.

3.1.4. Scenario 4. In this scenario, 255 observations were
generated using the parameters ϕ � 0.6, α0 � 0.4, α1 � 0.6.
Te forecasting performances are shown in Figure 4. In this
scenario the forecasting performance of all the models were
almost the same. Tat is the diference was insignifcant.

3.1.5. Scenario 5. In this scenario, 2000 observations were
generated using the parameters ϕ � 0.8, α0 � 0.6, α1 � 0.9.
Te forecasting performance is presented in Figure 5. Te
proposed BSGARCH (1, 1) model had the smallest values in
all the performance metric under this scenario also. Tis
means that, the proposed BSGARCH (1, 1) model out-
performs the classical GARCH- type models in forecasting
the volatility of fnancial time series that have a high ARCH
parameter.

3.1.6. Scenario 6. In this scenario, 255 observations were
generated using the parameters ϕ � 0.8, α0 � 0.6, α1 � 0.9.
Te forecasting performances are shown in Figure 6. In this
scenario, the proposed BSGARCH (1, 1) model outperforms
the classical GARCH-type models.

After considering all the 6 Scenarios using the condi-
tional variance in equation (34), another simulation was
performed where εt was assumed to be normal with mean
0 and conditional variance with an additive component
given in equation (35)

ht � α0 + α1ε
2
t− 1 + gt, (37)

where gt is a time-varying persistent deterministic volatility
component which was set to be

gt � sin
2πt

n
􏼒 􏼓, (38)

0

0.05

0.1

0.15

0.2

NORM GED NORM GED NORM GED NORM GED

RMSE TIC MAPE QLIKE

BSGARCH
GARCH
EGARCH

GJRGARCH
APARCH

Figure 3: Performance evaluation averaged over 1000 independent
simulations for n � 2000 observations with parameters
ϕ � 0.6, α0 � 0.4, α1 � 0.6.
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NORM GED NORM GED NORM GED NORM GED

RMSE TIC MAPE QLIKE

BSGARCH
GARCH
EGARCH

GJRGARCH
APARCH

Figure 2: Performance evaluation averaged over 1000 independent
simulations for n � 255 observations with parameters
ϕ � 0.1, α0 � 0.1, α1 � 0.3.
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RMSE TIC MAPE QLIKE

BSGARCH
GARCH
EGARCH
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Figure 4: Performance evaluation averaged over 1000 independent
simulations for n � 255 observations with parameters
ϕ � 0.6, α0 � 0.4, α1 � 0.6.
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and the parameters ϕ � 0.8, α0 � 0.6, α1 � 0.9 was used. Te
results averaged over 1000 replications with length of ob-
servation 2000 and 255 are presented in Figures 7 and 8,
respectively.

It can be observed from Figure 7 that the proposed
BSGARCH (1, 1) model outperforms the traditional
GARCH-type models. However, in Figure 8, it can be ob-
served that the forecasting performance of all the models
were close except the QLIKE where the BSGARCH (1, 1)
model outperforms the other models.

3.2. Real Data. Te proposed BSGARCH (1, 1) model was
again applied on two diferent datasets, namely; Nasdaq 100
(NASDAQ100) and Standard and Poor 500 (S&P 500). Te
data consist of 2403 observations that span from 5thDecember,
2011 to 30th June, 2021 and were obtained from the Federal
Reserve Economic Data (FRED). Te frst 70% of the data was
used as in-sample estimation period and the successive
remaining 30% of the data as out-of-sample test data. Since
volatility is itself latent, the annualized realized volatility was
used as a highly accurate measure for the latent true volatility.

3.3. Residual Analysis. After the proposed model was
applied to the two datasets, the McLeod and Li test for
autocorrelation and the ACF plot of the standardized
residuals were done to check for the validity of the
proposed model. Figures 9 and 10 show the ACF plot of
standardized residuals from BSGARCH (1, 1) applied to
NASDAQ100 and S&P 500, respectively. It was revealed
that the BSGARCH (1, 1) method produced forecast that
accounted for all available information. Te mean of the
standardized residual was close to zero and there was no
signifcant correlation in the standardized residual
series.

Again, the McLeod-Li test was performed to check for
autocorrelations in the standardized residuals. Te number
of lags considered was 10, 15, 20, 25, and 30. Te automatic
portmanteau version of [36] can also be used. Te null
hypothesis for the McLeod-Li test is that, the residuals of the
model are independent and identically distributed (i.i.d.)
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Figure 7: Performance evaluation averaged over 1000 independent
simulations for n � 2000 observations with parameters
ϕ � 0.8, α0 � 0.6, α1 � 0.9 and ht � α0 + α1ε2t− 1 + gt.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NORM GED NORM GED NORM GED NORM GED

RMSE TIC MAPE QLIKE

BSGARCH
GARCH
EGARCH

GJRGARCH
APARCH

Figure 8: Performance evaluation averaged over 1000 independent
simulations for n � 255 observations with parameters ϕ � 0.8, α0 �

0.6, α1 � 0.9 and ht � α0 + α1ε2t− 1 + gt.

0

0.1

0.2

0.3

0.4

0.5

NORM GED NORM GED NORM GED NORM GED

RMSE TIC MAPE QLIKE

BSGARCH
GARCH
EGARCH

GJRGARCH
APARCH

Figure 5: Performance evaluation averaged over 1000 independent
simulations for n � 2000 observations with parameters
ϕ � 0.8, α0 � 0.6, α1 � 0.9.
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Figure 6: Performance evaluation averaged over 1000 independent
simulations for n � 255 observations with parameters
ϕ � 0.8, α0 � 0.6, α1 � 0.9.
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and the alternative that they are not. Tis is usually referred
to as an ARCH test [37].

From Table 1, the null hypothesis of the McLeod and Li
test for both S&P 500 and NASDAQ100 was not rejected at
lags 10, 15, 20, 25, and 30 because the p values were greater
than the 5% signifcance level. Tis implies that there is no
sufcient evidence to suggest that the residuals of the
BSGARCH (1, 1) model are not independent and identically
distributed (i.i.d.). In practical terms, not rejecting the null
hypothesis indicates that the BSGARCH (1, 1) model is
appropriate for the data, and the estimated coefcients and
predicted values are unbiased and efcient.

3.4. Performance Evaluation. Figures 11 and 12 present the
performance of the classical GARCH (1, 1), EGARCH (1, 1),
GJR-GARCH (1, 1), and APARCH with diferent error
distributions and the BSGARCH (1, 1) model in terms of
volatility estimates and forecasts for NASDAQ100 and S&P
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Figure 9: ACF of standardized residuals from BSGARCH (1, 1) applied to NASDAQ100.
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Figure 10: ACF of standardized residuals from BSGARCH (1, 1) applied to S&P 500.

Table 1: Te McLeod-Li test for ARCH efect in standardized
residuals.

Number of lags Test statistic P

values

S&P 500

10 11.387 0.328
15 19.975 0.173
20 22.809 0.298
25 23.282 0.561
30 25.494 0.701

NASDAQ100

10 3.981 0.948
15 15.021 0.450
20 16.440 0.689
25 19.325 0.781
30 21.347 0.877
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Figure 11: Performance evaluation for NASDAQ100.
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500, respectively. For both datasets, the BSGARCH (1, 1)
model consistently beat all the classical methods that were
considered in the study. Tis was because the BSGARCH (1,
1) model had the least RMSE, MAPE, TIC, and QLIKE
values both. Tis indicated that the proposed model is

a major improvement over the classical methods considered
in estimating and forecasting volatility. Tis means that the
proposed model has a higher forecasting ability especially
when the sample size is large.

3.5. Average Superior Predictive Ability (aSPA) Test. Te
average Superior Predictive Ability (aSPA) test introduced
by [38] was used to assess the predictive ability of themodels.
Positive test values are in favour of the BSGARCH (1, 1)
model. From Table 2, the aSPA test indicated that indeed the
BSGARCH (1, 1) has a superior prediction ability for the
dataset under consideration.

3.6. Comparison of BSGARCH (1, 1) with the Spline-GARCH
Model. After comparison with the classical GARCH-type
models, the forecasting ability of the proposed BSGARCH
(1, 1) model was again compared with the spline-GARCH
model of [19] which used the exponential quadratic spline to
model the nonstationary part of volatility. Te data used for
this comparison is the data found in [19]. Te performance
metric used for this comparison were, RMSE, MAPE, TIC,
and QLIKE and the results shown in Figure 13. In the out-of-
sample data prediction which represents the ability of the
models to predict unknown values, the spline-GARCH
model of [19] slightly outperformed the proposed
BSGARCH (1, 1) model. In fact, the percentage gains of the
spline-GARCH model of [19] over the proposed model in
RMSE are approximately 0.6% which is negligible. Tis
means that the proposed BSGARCH (1, 1) model can be
a good alternative to the spline-GARCH model of [19].

4. Conclusions

A fexible BSGARCH (1, 1) hybrid model has been proposed
to estimate the volatility of a fnancial time series.Tis model
combines the GARCH (1, 1) model and the B-spline method.
Te proposed hybrid model is able to ft well in both
simulated and real data. Te results showed that the pro-
posed BSGARCH (1, 1) model outperforms the traditional
GARCH-type models that were considered in the study
especially when the long-term volatility is of interest.
However, within a short period, the performance of the
proposed model is no diferent from the classical GARCH-
type models. Again, the proposed BSGARCH (1, 1) can be
a good alternative to the spline-GARCH model of [19], and
thus, it can be used for estimating the volatility of stock
markets.

Data Availability

Te data used for the study can be obtained from FRED
using the R code “getSymbols (“SP500,” src� “FRED,”
auto.assign� FALSE)” and getSymbols (“NASDAQ100,”
src� “FRED,” auto.assign� FALSE).
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Figure 12: Performance evaluation for S&P 500.

Table 2: Test for superior predictive ability.

Models ED Test values P values
NASDAQ100

BSGARCH vs. GARCH NORM 203.97 <0.001
GED 175.63 <0.001

BSGARCH vs. EGARCH NORM 263.94 <0.001
GED 276.30 <0.001

BSGARCH vs. GJR-GARCH NORM 197.29 <0.001
GED 208.64 <0.001

BSGARCH vs. APARCH NORM 225.05 <0.001
GED 152.52 <0.001

S&P 500

BSGARCH vs. GARCH NORM 678.79 <0.001
GED 646.22 <0.001

BSGARCH vs. EGARCH NORM 706.79 <0.001
GED 721.72 <0.001

BSGARCH vs. GJR-GARCH NORM 661.22 <0.001
GED 647.70 <0.001

BSGARCH vs. APARCH NORM 312.95 <0.001
GED 392.86 <0.001
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Figure 13: Comparison of BSGARCH (1,1) and Spline-GARCH
(1,1) models.
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linearity against smooth transition autoregressive models,”
Biometrika, vol. 75, no. 3, pp. 491–499, 1988.

[38] R. Quaedvlieg, “Multi-Horizon Forecast Comparison,”
Journal of Business and Economic Statistics, vol. 39, pp. 40–53,
2021.

10 Journal of Probability and Statistics

https://ukzn-dspace.ukzn.ac.za/handle/10413/8504?show=full
https://ukzn-dspace.ukzn.ac.za/handle/10413/8504?show=full
http://www.lib.ncsu.edu/resolver/1840.16/6015
http://www.lib.ncsu.edu/resolver/1840.16/6015



