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In the recent era, the introduction of a new family of distributions has gotten great attention due to the curbs of the classical
univariate distributions. Tis study introduces a novel family of distributions called a new type 1 alpha power family of dis-
tributions. Based on the novel family, a special model called a new type 1 alpha powerWeibull model is studied in depth. Te new
model has very interesting patterns and it is very fexible. Tus, it can model the real data with the failure rate patterns of
increasing, decreasing, parabola-down, and bathtub. Its applicability is studied by applying it to the health sector data, and time-
to-recovery of breast cancer patients, and its performance is compared to seven well-known models. Based on the model
comparison, it is the best model to ft the health-related data with no exceptional features. Furthermore, the popular models for the
data with exceptional features such as correlation, overdispersion, and zero-infation in aggregate are explored with applications to
epileptic seizer data. Sometimes, these features are beyond the probability distributionmodels. Hence, this study has implemented
eight possible models separately to these data and they are compared based on the standard techniques. Accordingly, the zero-
infated Poisson-normal-gamma model which includes the random efects in the linear predictor to handle the three features
simultaneously has shown its supremacy over the others and is the best model to ft the health-related data with these features.

1. Introduction

Statistical modeling and predicting real-life events are vital
issues in the training and implementation of the health care
and health sector in general [1]. Although the classical and
modifed statistical models have been applied to the data in
health applications, they do not provide the best ft when the
data show nonmonotonic failure rates. Tis clearly demands
the generalized or extended versions of these classical
models. Tus, it motivated many involved researchers to
propose new fexible extensions of distributions by adding
one or more additional parameters to the baseline
distribution.

Correspondingly, our study acquaints with a more
fexible family of distributions called a new alpha power
type 1 family of distributions by introducing a new

parameter α to the exponential type of family of distri-
butions. It is more suitable for skewed data with non-
monotonic failure rates and it shows novelties in the area of
distribution theory.

Several new developments in the distribution theory are
proposed in the literature. Roozegar and Nadarajah [2]
intended to study the quadratic hazard rate power series
distribution. Te same authors Roozegar and Nadarajah [3]
were also devoted to propose the power series skew normal
class of distributions, by taking power series as a key issue.
Very recently, Chesneau et al. [4] introduced a new extended
family of distributions called an alternative to the Mar-
shall–Olkin family of distributions. Tey used fve diferent
estimation methods to reveal the alternating capacity of the
new family to the existing one and they used the subcases for
the regression purpose. Te other scholars, Elbatal et al. [5],
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also suggested a new class for the generalized distributions,
which they named it the alpha power Weibull G (APW-G)
family.

Shehata et al. [6] introduced a fexible family of distri-
butions for the asymmetric left-skewed bimodal real-life
data with special attention to the fexibility patterns of the
probability density and hazard functions and they called it
a novel two-parameter G family of distributions. Tey used
a copula method to characterize the new family for the
special model, the new extension of the exponential
distribution.

Some researchers used the techniques such as trans-
formation, extension, and compounding to introduce a new
family of distributions. Chesneau et al. [7] proposed a new
family of probability distributions, based on a cosine-sine
transformation by compounding a baseline distribution with
the cosine and sine functions. Te other authors, Ahmad
et al. [8], applied the same approach by adding a parameter
to introduce a new class of probability distributions. Tey
named the newly suggested model as the extended alpha
power transformed family of distributions and the extended
alpha power transformed Weibull distribution is studied as
a special model. A few other scholars who followed this
approach, among many, are Ahmad et al. [8]to propose
a new exponentiated TX class of distributions. Hussein et al.
[9] to introduce a new fexible modifed alpha power (MAP)
family of distributions by adding two parameters to the
baseline model, and El-Sherpieny et al. [10] to suggest a new
generating family of distributions.

In line with the introduction of the new family of
probability distributions, the exploration of the models for
some special features in the data is reasonably needed. Tus,
repeatedly measured count outcomes are characterized by
three special features. Tese are the dependence of the in-
dividual subject-specifc due to the clustering efect or
correlation, extravariability due to the counts (over-
dispersion), and a special case of overdispersion which is
said to be zero-infation [11–15].

One of the motivating gaps this study raises is that
Mekonnen et al. [16] used epilepsy data by allowing both
correlation and zero-infation in the data and they analyzed
the data by using the Poisson (P), negative-binomial (NB),
zero-infated Poisson (ZIP), and zero-infated negative-
binomial (ZINB) models. Teir study has two defects: the
frst one is it could not raise and discuss the issue of
overdispersion while the data are overdispersed and the
second one is that the mentioned count models alone cannot
fully handle the dependence in the data. It is not
a straightforward and easy task to handle the three features
in the same model. Due to this, many authors in the lit-
erature dealt with one or two of these features [12, 16].
Unlike other studies, this study is motivated to model those
three features simultaneously.

Moreover, the repeatedly measured count data such as
epileptic seizure are senseless to be analyzed by using the
distribution models unless they are easy to be expressed in
the exponential form. Hence, the need for an update on this
gap is raised in this study reasonably and convincingly.

Te rest part of the paper is organized as follows:Te frst
part of this study introduces a new family of distributions
called a new type 1 alpha power family of distributions to the
health data. Tis part is presented in Sections (1–6) in detail.
Te second part discusses the models for correlation,
overdispersion, and zero-infation in the data (see Section 7).
Tus, Section 2 introduces a new type 1 alpha power family
of distributions, Section 3 discusses special cases, and Sec-
tion 4 discusses the basic statistical properties of the new
proposed family. Section 5 presents an estimation of the
model parameters of the new subfamily of distributions.
Section 6 illustrates the application of the new family to the
new data set. Section 7 discusses the models for correlation,
overdispersion, and zero-infation, and lastly, Section 8
summarizes the points with concluding remarks.

2. A New Type 1 Alpha Power
Family of Distributions

Alzaatreh et al. [17] introduced a popular T-X approach
which updates the distributional fexibility of the existing
models and it has become a well-known approach in the
literature. Tey proposed the probability density function
(PDF) of it as follows:

F(z;ω) � 􏽚
W[G(z;ω)]

0
r(t)dt, (1)

where the function W[G(z;ω)] fulflls some specifed
conditions; for detail, see Alzaatreh et al. [17]. In equation
(1), G(z;ω) is a baseline cumulative distribution function
(CDF) with parameter vector ω and r(t) is the PDF of the
parent model with parameter vector ω. Corresponding to
(z;ω), the PDF f(z;ω) is given by the following equation:

f(z;ω) �
d
dz

W[G(z;ω)]􏼨 􏼩r W[G(z;ω)]{ }, z,ω ∈ R.

(2)

Recently, Ahmad et al. [18] applied the T-X approach
and proposed an interesting member, which they call the
weighted T-X Weibull distribution family (WT-XW). Tey
introduced this family by using W[G(z;ω)] � − log (1{

− G(z;ω))/eG(z;ω)} in equation (1) with r(t) � ϕφzϕ− 1e− φzϕ ,
where r(t) is the PDF of the two-parameter Weibull model
with the parameters (ϕ andφ). Te CDF of the WT-XW
family is given by the following equation:

F(z;ω) � 1 −
1 − G(z;ω)

e
G(z;ω)

􏼠 􏼡, z,ω ∈ R, (3)

and the corresponding PDF is given by the following
equation:

f(z;ω) �
g(z;ω)

e
G(z;ω)

2 − G(z;ω){ }, z,ω ∈ R. (4)

Te PDF and CDF of exponential type are given by the
following equations:

f(z;ω) � m(z;ω)e
− M(z;ω)

, ω, z ∈ R, (5)

2 Journal of Probability and Statistics



and

F(z;ω) � 1 − e
− M(z;ω)

, ω, z ∈ R, (6)

respectively.
Note that,M(z;ω) must satisfy the following conditions.

(1) M(z;ω) is a non-negative, diferentiable, and in-
creasing function of z.

(2) limz⟶− ∞M(z;ω)⟶ 0 and limz⟶+∞
M(z;ω)⟶ +∞.

Te classical exponential types, Rayleigh, Weibull, and
other extended lifetime distributions belong to the class
defned in equation (6); see Liao et al. [19]. For further
detailed information about similar statistical distributions,
see Mehboob Zaidi et al. [20], Affy et al. [21], Reyad et al.
[22], and Al-Babtain et al. [23].

Herein after, we introduced an additional parameter α in
equation (6), which replaces the exponent term e to propose
a very fexible family whose CDF and PDF are given by the
following equations:

F(z;ω) � 1 − α− M(z;ω)
, α> 1,ω, z ∈ R, (7)

and

f(z;ω) � m(z;ω)α− M(z;ω)
, α> 1,ω, z ∈ R, (8)

respectively, where α≠ e throughout the paper.
If α � e, the CDF in equation (7) becomes similar to

equation (6). Te function M(z;ω) fulflls the conditions
which are given in 1 and 2. It is straightforward that
0≤F(z;ω)≤ 1. To make it more clear, let

lim
z⟶ − ∞

F(z;ω) � lim
z⟶ − ∞

1 − α− M(z;ω)
􏼐 􏼑 � 0, (9)

and

lim
z⟶+∞

F(z;ω) � lim
z⟶+∞

1 − α− M(z;ω)
􏼐 􏼑 � 1. (10)

Terefore, based on the results in equations (9) and (10),
it is observed that the function F(z;ω) written in equation
(7) is a proper CDF. And the expression given in equation
(7) is very helpful and is useful to generate new statistical
models belonging to the T-X family of distributions.

Next, we proposed a new family called a new type 1 alpha
power (NT1AP) family by using W[G(z;ω)] � − log 1{
− G(z;ω)/eG(z;ω)} in equation (7). Te CDF and PDF of the
NT1AP family are given by the following equations:

F(z;ω) � 1 − αlog (1− G(z;ω))/eG(z;ω){ }, α> 1,ω, z ∈ R, (11)

and

f(z;ω) �
log(α)g(z;ω)(2 − G(z;ω))

1 − G(z;ω)
αlog (1− G(z;ω))/eG(z;ω){ }, α> 1,ω, z ∈ R, (12)

respectively.
In addition, the corresponding survival function S(z;ω)

and the hazard function h(z;ω) are given by the following
equation:

S(z;ω) � αlog (1− G(z;ω))/eG(z;ω){ }, α> 1,ω, z ∈ R,

h(z;ω) �
log(α)g(z;ω)(2 − G(z;ω))

1 − G(z;ω)
, α> 1,ω, z ∈ R,

(13)

respectively.

3. A Special Subfamily

In this section, we discuss a special member of the NT1AP
family called a new type 1 alpha power Weibull (NT1AP-W)

model. It is introduced by inserting the CDF and PDF of the
two-parameter Weibull into equations (11) and (12), nec-
essarily. Tus, let a random variable Z have the Weibull
distribution, then its CDF and PDF, respectively, are given
by the following equation:

G(z; λ, β) � 1 − e
− βzλ

, λ, β> 0, z≥ 0,

g(z; λ, β) � λβz
λ− 1

e
− βzλ

, λ, β> 0, z> 0,
(14)

and the resulting CDF and PDF of the NT1AP-W are given
by the following equations:

F(z;ω) � 1 − α e− βzλ − βzλ− 1( 􏼁
, α> 1, λ, β> 0, z≥ 0, (15)

and

f(z;ω) � log(α)λβz
λ− 1 1 + e

− βzλ
􏼒 􏼓α e− βzλ − βzλ− 1( 􏼁

, α> 1, λ, β> 0, z> 0, (16)

respectively, where ω � (λ, β).
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Based on equations (15) and (16), the corresponding
S(z;ω) and h(z;ω) are given by the following equations:

S(z;ω) � α e− βzλ − βzλ− 1( 􏼁
, α> 1, λ, β> 0, z> 0 and

h(z;ω) � log(α)λβz
λ− 1 1 + e

− βzλ
􏼒 􏼓, α> 1, λ, β> 0, z> 0,

(17)

respectively.
Following this, the graphical expression of the NT1AP-

W model for diferent parameter values is displayed as
follows.

Figure 1(a) displays the plot of f(z; α,ω) for the NT1AP-
W for diferent scenarios: (i) α � 2.2, β � 4.1, λ � 0.7 (blue-
line), (ii) α � 5.1, β � 0.7, λ � 1.2 (purple-line), (iii) α � 1.3,

β � 7.1, λ � 3.5 (green-line), (iv) α � 1.6, β � 5, λ � 1.4 (red-
line), and (v) α � 1.01, β � 11, λ � 0.6 (black-line).

Figure 1(b) displays the plot of h(z; α,ω) for the NT1AP-
W for diferent scenarios: (i) α � 6, β � 0.6, λ � 53 (purple-
line), (ii) α � 8, β � 0.7, λ � 0.8 (cyan-line), (iii) α � 8, β �

0.3, λ � 1.1 (green-line), (iv) α � 4.5, β � 0.3, λ � 0.5 (red-
line), and (v) α � 1.5, β � 2.1, λ � 7.2 (black-line).

f(z; α,ω) of the NT1AP-W is elicited in Figure 1(a) and
it has attractive fexible patterns such as (i) decreasing, (ii)

parabola-down, (iii) left-skewed, (iv) right-skewed, and (v)

decreasing-increasing-decreasing-constant (polynomial
type). Figure 1(b) illustrates h(z; α,ω) for diferent pa-
rameter values to show the diferent patterns and how
fexible the distribution is. It has the patterns such as (i)

increasing, (ii) bathtub, (iii) parabola-down, and (iv)

decreasing.

4. Some Basic Statistical Properties of the New
Type 1 Alpha Power Family of Distributions

In this section, we discuss the basic statistical properties of
the NT1AP family of distributions.

4.1. Order Statistics. Order statistics are widely used in
applied statistics such as reliability and lifetime and records.
Suppose that Z1, Z2, . . . , Zn is a random sample of size n

following the NT1AP family of distributions with parame-
ters (α,ω) and Z1: n, Z2: n, . . . , Zn: n are its corresponding
order statistics. Ten, the density function of Zi: n for (i �

1, 2, . . . , n) is given by the following equation:

fi: n(z) �
n!

(i − 1)!(n − i)!
􏽘

n− i

j�0
(− 1)

j
n − i

j

⎛⎝ ⎞⎠fNT1AP(z;ω) FNT1AP(z;ω)􏼂 􏼃
i+j− 1

. (18)

By substituting the CDF and PDF of the NT1AP (see
equations (11) and (12)) intofi: n(z), we obtain the following
equation:

fi: n(z) �
n!

(i − 1)!(n − i)!
􏽘

n− i

j�0
(− 1)

j
n − i

j

⎛⎝ ⎞⎠[log(α)]
i+1

[g(z;ω)]
i− 1

[2 − G(z;ω)]
i− 1

×[G(z;ω)]
− i+1αlog G(z;ω/eG(z;ω􏼂 􏼃

i− 1

1 − αlog G(z;ω/eG(z;ω􏼂 􏼃
􏼔 􏼕

i+j− 1
, α> 1, z,ω ∈ R,

(19)

where G(z;ω) � 1 − G(z;ω).
Te simplifed form of the order statistics density

function is given by the following equation:

fi: n(z) � 􏽘
n− i

j�0
Φjf
∗
NT1AP(z;ω), (20)

where

Φj �
n!

(i − 1)!(n − i)!
(− 1)

j
n − i

j

⎛⎝ ⎞⎠, (21)

and f∗NT1AP(z;ω) is the product of the PDF and the CDF for
the ith order statistics.

Te PDF of the order statistics for the NT1AP can be
obtained from equation (20) and its rth central moments and
moments generating function are given in the next
subsection.
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Figure 1: Continued.
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Figure 1: Plots of f(z; α,ω) and h(z; α,ω) for the NT1AP-W distribution for diferent scenarios. (a) Visual illustration of f(z; α,ω) for the
NT1AP-W. (b) Visual illustration of h(z; α,ω) for the NT1AP-W.
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4.2. Moments and Moment-Generating Functions. Based on
the PDF of the NT1AP family of distributions given above,
its rth central moments, E(zr) � μr

′, is obtained as follows:

μr
′ � 􏽚

+∞

0
z

rlog(α)g(z;ω)(2 − G(z;ω))

(1 − G(z;ω))
αlog

�G(z;ω)/eG(z;ω( )dz, α> 1, z,ω ∈ R

� 􏽚
+∞

0
[log(α)]

i+1
z

ri− 1
[g(z;ω)]

i− 1
[2 − G(z;ω)]

i− 1
[�G(z;ω)]

− i+1αlog
�G(z;ω)/eG(z;ω[ ]

i− 1

dz

� 􏽘
+∞

i�0

log(α)

i!
􏼢 􏼣

i+1

Ψr,i+1,

(22)

where

Ψr,i+1 � 􏽚
+∞

0
z

ri− 1
[g(z;ω)]

i− 1
[2 − G(z;ω)]

i− 1
[G(z;ω)]

− i+1αlog G(z;ω)/eG(z;ω[ ]
i− 1

dz. (23)

Te moment generating function of the NT1AP can be
obtained by using the last result of μr

′ in Mz(t) as follows:

Mz(t) � 􏽘
+∞

b�0

t
b

b!
μr
′. (24)

4.3. Mean Deviation and Bonferroni and Lorenz Curves.
Let Z ∼ NT1AP (α,ω); the mean deviation about the mean
and the median are defned by the following equations:

δ1(Z) � 􏽚
+∞

0
|z − μ|fNT1AP(z)dz and

δ2(Z) � 􏽚
+∞

0
|z − M|fNT1AP(z)dz,

(25)

respectively, where z ∈R, μ � E(Z), and M � Median(Z)

denotes the median.
Tese can further be expressed as follows:

δ1(Z) � 2μFNT1AP(μ) − 2􏽚
μ

0
zfNT1AP(z)dz and

δ2(Z) � μ − 2􏽚
M

0
zfNT1AP(z)dz,

(26)

respectively, where m(x) � 􏽒
x

0 zfNT1AP(z)dz is the frst
incomplete moment. Tese measures have been applied to
a wide variety of felds, such as reliability, demography,
insurance, and medicine [24].

Moreover, let Z ∼ NT1AP (α,ω); the Bonferroni and
Lorenz curves are defned by the following equations:

B(p) �
1

pμ
􏽚

q

0
zfNT1AP(z)dz and

L(p) �
1
μ

􏽚
q

0
zfNT1AP(z)dz,

(27)

respectively, where μ � E(Z) and q � F− 1
NT1AP(p).

Te next section deals with the maximum likelihood
estimation for the model parameters of the NT1AP-
W model.

5. Estimation of the Model Parameters of
the NT1AP-W

Te method of the maximum likelihood estimation for the
model parameters for the NT1AP-W is discussed in this
section.

5.1. Maximum Likelihood Estimation. Tis subsection deals
with the computation of the maximum likelihood estimators
(MLEs) for the model parameters of the NT1AP-W. Let
z1, z2, . . . , zn be n observations of a random sample drawn
from the NT1AP-W with parameters α, λ, and β. By using
the PDF of the NT1AP-W (see equation (16)), the likelihood
function is given by the following equation:
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L z1, z2, . . . , zn |Θ( 􏼁 � (λβ log(α))
n
􏽙

n

i�1
z
λ− 1
i 1n

+ e
− β􏽐

n

i�1zλ
i􏼒 􏼓α􏽐

n

i�1 e
− βzλ

i − βzλ
i
− 1􏼐 􏼑

, (28)

and its corresponding log-likelihood function (log L(z;Θ))

is given as follows:

log L(z;Θ) � n log(log(α)) + n log(λ) + n log(β) +(λ − 1) 􏽘
n

i�1
log zi( 􏼁

+ n log(1) − β􏽘
n

i�1
z
λ
i + log(α) 􏽘

n

i�1
e

− βzλ
i − βz

λ
i − 1􏼒 􏼓,

(29)

where Θ � (α,ω)T. Te model parameters are estimated by
taking the frst partial derivatives of the log L(z;Θ) with
respect to each model parameter and equating them to zero.

Tus, having the log L(z;Θ), the partial derivatives of it
with respect to each parameter are given by the following
equation:

zlog L(z;Θ)

zα
� S1 �

n

log(α)α
−
1
α

􏽘

n

i�1
e

− βzλ
i − βz

λ
i − 1􏼒 􏼓,

zlog L(z;Θ)

zλ
� S2 �

n

λ
+ 􏽘

n

i�1
log zi( 􏼁 − β􏽘

n

i�1
z
λ
i log zi( 􏼁 − log(α) 􏽘

n

i�1
βz

λ
i log zi( 􏼁e
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(30)

where Si is the ith score function for i � 1, 2, 3.
Subsequently, the MLEs of the parameters can be ob-

tained by solving the following nonlinear equation:

Un(Θ) �
zlog L(z;Θ)

zα
,
zlog L(z;Θ)

zλ
,
zlog L(z;Θ)

zβ
􏼠 􏼡

T

� 0,

(31)

using numerical methods such as Newton–Raphson or
Broyden’s methods.

Furthermore, the Fisher information matrix is given by
the following equation:

I(Θ) � IΘi ,Θj
􏼔 􏼕3 × 3, (32)

where i, j � 1, 2, 3, and

IΘi ,Θj
� E −

z
2 logL(z;Θ)

zΘizΘj

􏼠 􏼡. (33)

Te total I is given by In(Θ) � nI(Θ), which can be
approximated by the following equation:

In( 􏽢Θ) ≈ −
z
2 log L(z;Θ)

zΘizΘj

|Θ � 􏽢Θ􏼢 􏼣3 × 3. (34)

More analytically,

I(Θ) � EΘ SS
T

􏼐 􏼑 � EΘ

s1

s2

s3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ s1 s2 s3􏼂 􏼃
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � EΘ

s
2
1 s12 s13

s21 s
2
2 s23

s31 s32 s
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (35)

where
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(36)

For an interval estimation of the model parameters, we
need the 3 × 3 observed information matrix I(Θ) � − Irw􏼈 􏼉,
where r, w � α, λ, β. Under the regularity conditions, the
multivariate normal

�
n

√
( 􏽢Θ − Θ) ∼ N3(0, I( 􏽢Θ)

− 1
) distri-

bution is used to construct approximate confdence intervals
for the model parameters. Here, I( 􏽢Θ) is the total observed
information matrix evaluated at Θ. Ten, the 100(1-α∗)%
confdence intervals for α, λ, and β are given by 􏽢α ±

zα∗/2 ×
������
var(􏽢α)

􏽰
, 􏽢λ ± zα∗/2 ×

������

var(􏽢λ)

􏽱

, and 􏽢β ± zα∗/2 ×
������

var(􏽢β)

􏽱

, respectively, where the var(.)′ s denote the di-
agonal elements of the I( 􏽢Θ)− 1 corresponding to the model
parameters, and the zα∗/2 is the quantile (1-α∗/2) of the
standard normal distribution.

6. An Application to Breast Cancer Data

Breast cancer is one of the most severe diseases in the world
and has become the public’s everyday agenda in both de-
veloped and developing countries.Te new data on the time-
to-recovery of 686 breast cancer patients were taken from
a patient’s medical record card that was enrolled from
October 2012 to April 2017 in Nigist Elleni Mohamad
memorial referral comprehensive hospital (NEMMRCH),
Hossana, south Ethiopia; see Figure 2.

We illustrated the ftting capacity of the NT1AP-W
model to the data by comparing it to the three-
parameters exponential fexible Weibull extension
(EFWE) of El-Desouky et al. [25], the three-parameters
Poisson inverse Weibull (PIW) of Joshi and Kumar [26],
the fve-parameters exponentiated Weibull-Weibull (EWW)
of Hassan and Elgarhy [27], the three-parameters Alpha
Power Transformed Weibull (APTW) of Elbatal et al. [28],
the fve-parameters Kumaraswamy Weibull Poisson (KWP)
of Marinho et al. [29], the four-parameters Kumaraswamy
Weibull (KW) of Cordeiro et al. [30], and the three-
parameters New Weighted Weibull (NWW) of Elsher-
pieny et al. [31].

Te competing models with their corresponding CDFs
are given by the following equation.

(1) EFWE:

F(z; α, β, λ) � 1 − e
− λe

eαz−(β/z)( )
, z≥ 0, α, β, λ> 0. (37)

(2) EWW:

F(z; a, α, β, λ, c) � 1 − e
− α eλzc − 1( )

β

􏼔 􏼕
a

, z≥ 0, a, α, β, λ, c> 0.

(38)
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(3) APTW:

F(z; α, θ, c) �
α 1− e− czθ( 􏼁

− 1
α − 1

, z≥ 0, α≠ 1, θ, c> 0.

(39)

(4) KWP:

F(z; a, b, c, β, λ) �
1 − e

− λ 1− 1− 1− e−(βz)c( )
a

( 􏼁
b

􏽨 􏽩

1 − e
− λ , z≥ 0, a, b, c, β, λ> 0. (40)

(5) KW:

F(z; a, b, c, θ) � 1 − 1 − 1 − e
− czθ

􏼒 􏼓
a

􏼒 􏼓
b

, z≥ 0, a, b, c, θ> 0.

(41)

(6) NWW:

F(z; α, θ, c) � 1 − e
− αzθ+α(cz)θ

, α, c, θ> 0, z≥ 0. (42)

(7) PIW:

F(z; α, β, λ) �
1

1 − e
− λ

􏼐 􏼑
1 − e

− λe−(α/z)β

􏼔 􏼕, z≥ 0, α, β, λ> 0.

(43)

Te information criteria (IC) such as (i) AIC [32], (ii)
CAIC [33], (iii) BIC [34], and (iv) HQIC [35] are used to
discriminate the best model. In addition to these criteria, the
log-likelihood (− 2logL) of the ftted models is also calcu-
lated. In all these, the model with the least IC value is taken
to be the best model to ft the data.

Te MLE of the parameters with their corresponding
standard errors and the model adequacy measures for the
ftted models are given in Tables 1 and 2, respectively.

Te MLEs and standard errors of the NT1AP-W model
along with the seven competing models (EFWE, EWW,
PIW, KWP, KW, NWW, and APTW) are displayed in
Table 1. Table 2 gives the model comparison result (model
adequacymeasures) for all models considered in this section.
Te new proposed model NT1AP-W, based on the fve

criteria, is shown to be the best-performing model among
the seven competing models. Tis shows the new proposed
model outperforms the set of similar competing models.

Te mathematical expressions of the F(z; 􏽢α, 􏽢ω) and
S(z; 􏽢α, 􏽢ω) of the NT1AP-W are given by the following
equation:

F(z; 􏽢α, 􏽢ω) � 1 − 1.002 e− 1.018z3.191
− 1.018z3.191− 1( 􏼁

, z⩾ 0 and

S(z; 􏽢α, 􏽢ω) � 1.002 e− 1.018z3.191
− 1.018z3.191− 1( 􏼁

, z> 0,

(44)

respectively.
Te quantile-quantile (Q-Q) plots of the estimated CDF

and S(z; 􏽢α, 􏽢ω) including the total time on test (TTT) plot, see
e.g., Aarset [36], for the estimated CDF, are given in Figure 3.

From Figure 3, it is observed that there is no potential
infuential observation and the data is linear and normal
enough. In addition, the TTT plot shows the model has an
increasing shape in this data set.

Furthermore, the semivariogram for the exponential and
Gaussian serial correlations for the estimated CDF and
S(z; 􏽢α, 􏽢ω) for the NT1AP-W distribution using an epileptic
data set (another public health data set) is plotted as follows.

Figure 4 depicts a decreasing (in CDF) and a constant (in
(z; 􏽢α, 􏽢ω)) correlation patterns for the clustered data set. An
epileptic seizure data set, which will be discussed below,
owns some special features such as correlation, over-
dispersion, and zero-infation. Hence, it needs further in-
vestigation using models discussed in Section 7.

Figure 2: Breast cancer patients’ data.
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7. Combined Models for Data with
Overdispersion, Correlation, and Zero-
Inflation

Many authors in the literature could not model the three
special features such as correlation, overdispersion, and
zero-infation in the repeatedly measured count data si-
multaneously in the same model, for instance, see
Mekonnen et al. [16]. Another possible reason for this
section is that data such as epileptic seizures are meaningless
to be analyzed by using the distribution models unless they
are easily able to be expressed in the exponential form (see
Section 7.1) to ft the regression models. Even so, some extra
parameters to handle some special characteristics in the data
should be able to be imposed on the distribution model.
Tus, it is a good opportunity for this study to implement the
appropriate models for the data with special characteristics,
as discussed in the next subsections.

7.1. Combined Models for Correlation and Overdispersion.
To handle those features mentioned in the above subsection
simultaneously in the same model, we need to follow some
procedures as follows. Tus, let Yij be the outcome with jth

observation for ith subject, where i � 1, 2, . . . , N and j �

1, 2, . . . , ni and which be with the group of ni measurements
into a vector of Yi. Conditionally upon q-dimensional
random efects bi ∼ N(0,D), as an assumption, the out-
comes Yij are independent with the density given by the
following equation:

fij yij ∣ bi, ζ, ϕ􏼐 􏼑 � e
ϕ− 1 yijλij− ψ λij( 􏼁􏼂 􏼃+c yij,ϕ( 􏼁

, (45)

where

η ψT λij􏼐 􏼑􏽨 􏽩 � η μij􏼐 􏼑 � η E Yij ∣ bi, ζ􏼐 􏼑􏽨 􏽩 � x
T
ijζ + z

T
ijbi,

(46)

where η(.) is a known link function, xij and zij are a p and q-
dimensional vectors of covariates for fxed and random
efects, respectively, ζ is a p-dimensional vector of unknown
regression coefcients for fxed efect, and ϕ is a scale pa-
rameter for overdispersion. Let further f(bi | D) be the
probability density function of the N(0,D) distributed
random efects bi. Ten, the Poisson-normal (PN) distri-
bution model is given by the following equation:

Yij ∼ Poi λij􏼐 􏼑, (47)

where

λij � e
xT

ij
ζ+zT

ij
bi . (48)

It is clear that equation (47) treats the feature de-
pendence in the data (correlation) by imposing the normal
random efect in the Poisson model. According to Molen-
berghs et al. [11] andMolenberghs et al. [13], adding another
random efect-gamma gives the following equation:

Yij ∼ Poi θijκij􏼐 􏼑, (49)

where κij is given in equation (46) and θij ∼ Gamma(αj, βj)

in which αj and βj are shape and scale parameters, re-
spectively and βj � 1/αj. According to Molenberghs et al.
[13]; the combined model which incorporates the normal
and gamma random efects, bi and θi, respectively, is
expressed in the form:

fi yij bi
􏼌􏼌􏼌􏼌 ,ϕ􏼐 􏼑 � exp ϕ− 1

yijθij − ψ θij􏼐 􏼑􏽨 􏽩 + c yij, ϕ􏼐 􏼑􏽮 􏽯.

(50)

Table 1: MLEs of the parameters and the corresponding standard errors (SE. in the parentheses) for the ftted models.

Dist. 􏽢a

(SE.)
􏽢b

(SE.)
􏽢c

(SE.)
􏽢α

(SE.)
􏽢β

(SE.)
􏽢c

(SE.)
􏽢θ

(SE.)
􏽢λ

(SE.)
NT1AP-W 1.002 (0.001) 1.018 (0.013) 3.191 (0.212)
EFWE 0.258 (0.004) 0.269 (0.056) 0.028 (0.004)
EWW 1.201 (0.224) 0.384 (0.028) 8.749 (1.127) 1.523 (0.066) 0.002 (0.002)
PIW 0.658 (0.013) 1.841 (0.050) 1.837 (0.147)
KWP 59.176 (8.219) 5.452 (0.633) 1.334 (0.048) 0.064 (0.002) 52.925 (12.167)
KW 73.846 (6.725) 24.751 (1.404) 0.007 (0.009) 1.576 (0.008)
NWW 62.866 (5.195) 0.005 (0.001) 1.731 (0.009)
APTW 63.012 (8.126) 0.003 (0.001) 1.711 (0.013)

Table 2: Model adequacy measures for the ftted models.

Dist. AIC CAIC BIC HQIC − 2 log L

NT1AP-W 745.11 745.08 731.52 739.85 375.56
EFWE 1306.48 1306.54 1324.60 1313.49 686.99
EWW 1365.99 1366.10 1388.64 1374.75 715.74
PIW 1515.96 1515.99 1529.55 1521.22 792.73
KWP 1986.40 1986.53 2007.14 1994.56 988.20
KW 2115.38 2115.47 2131.96 2121.91 1053.69
NWW 2740.02 2740.07 2752.46 2744.91 1367.01
APTW 3548.01 3548.07 3560.45 3552.91 1771.01
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Te expression for its expectation is given by
E(Yij | bi) � μij � θijκij, where θij ∼ wij(]ij, σ2ij) and ]ij and
σ2ij are the mean and the variance of the θij, respectively. Te

likelihood contribution of the combined model for subject i

is given by the following equation:

fi yij | ],D, ]i,Δi􏼐 􏼑 � 􏽚􏽙

ni

j�1
fij yij | ], bi, θi􏼐 􏼑fij bi |D( 􏼁fij θi ∣ ]i,Δi( 􏼁dbidθi, (51)

and its total likelihood is further given by the following
equation:
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Figure 3: Plot of the Q-Q and TTT for the estimated CDF and S(z; 􏽢α, 􏽢ω) for the NT1AP-W distribution.

12 Journal of Probability and Statistics



L(],D, ],Δ) � 􏽙
N

i�1
fi yij | ],D, ]i,Δi􏼐 􏼑

� 􏽙

N

i�1
􏽚 􏽙

ni

j�1
fij yij | ], bi, θi􏼐 􏼑fij bi |D( 􏼁fij θi ]i

􏼌􏼌􏼌􏼌 ,Δi􏼐 􏼑dbidθi.

(52)

Tus, equation (49) shows the addition of gamma
random efect in the PN-mixture model to handle the
overdispersion feature and to form the combined model
called Poisson-normal-gamma (PNG), which further han-
dles both correlation and overdispersion simultaneously.

7.2.CombinedModels forZero-Infation. Te next concern is
zero-infation or excess zeroes which may be beyond the P
model. It is assumed that there are two processes of zeroes in
zero-infated count models.Te frst one is where zeroes may
arise from point mass (process 1) and as the second one, they
may come from the conventional count component (process
2). Now assume that for measurement i, process 1 takes the

probability of πi and 1 − πi for process 2, due to Kassahun
et al. [37]. We note that process 1 generates only zeroes,
whereas process 2 with a designation fi(yij | b1i, ζ, θij)

generates counts from a P model, an NBmodel, a PNmodel,
a generalized linear mixed model (GLMM), or a PNG
combined model [37, 38]. Te general form of the zero-
infated PN model in mixture is given by the following
equation:

Yij ∼
0, with πi,

fi yij ∣ b1i, ζ, θij􏼐 􏼑, with 1 − πi.

⎧⎨

⎩ (53)

Tus,

P Yij � yij b1i
􏼌􏼌􏼌􏼌 , ζ, θij, πij􏼐 􏼑 �

πij + 1 − πij􏼐 􏼑fi 0 ∣ b1i, ζ, θij􏼐 􏼑, for yij � 0,

1 − πij􏼐 􏼑fi yij ∣ b1i, ζ, θij􏼐 􏼑, for yij > 0.

⎧⎪⎨

⎪⎩
(54)
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Figure 4: Semivariogram for the exponential and Gaussian serial correlations for the estimated CDF and S(z; 􏽢α, 􏽢ω) for the NT1AP-W
distribution.
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Te Bernoulli model is employed to represent the
presence of additional zeros or a zero-infated element
πij � π(xT

2ijc + zT
2ijb2i). Tis is done for the simplest sce-

nario that includes just an intercept, along with the in-
corporated predictors xT

2ijandzT
2ij for both fxed and random

efects. In addition, the model involves a vector of coefcient
c dedicated to estimate excess zero occurrences, as well as
the inclusion of random efects b1i. For this case, the
common link functions for the count and or binary out-
comes such as the logit or probit can be used. Note that xT

ij,
zT

ij, and b1i in equation (46) are now replaced by xT
1ij, zT

1ij,
and b1i, respectively, for the nonzero count part. Te pre-
dictors in the count and excess-zero component can either
be overlapping, a subset of the predictors can be used for
excess-zeroes, or diferent predictors for the two parts that
can be used.

By taking the assumption that the random efects are
normally distributed and possibly correlated with the cor-
relation parameter ρ, the variance-covariance matrix D is
given by the following equation:

D �
d1 ρ

��
d1

􏽰 ��
d2

􏽰

ρ
��
d1

􏽰 ��
d2

􏽰
d2

⎛⎝ ⎞⎠. (55)

Te conditional mean and variance of the zero-infated
PNG (ZIPNG) are given as follows:

E Yij ∣ b1i, ζ, θij􏼐 􏼑 � θijκij 1 − πij􏼐 􏼑, and

Var Yij ∣ b1i, ζ, θij􏼐 􏼑 � θijκij 1 − πij􏼐 􏼑 1 + θijκij πij +
1
α

􏼒 􏼓􏼔 􏼕,

(56)

respectively.
Generally, the theoretical discussion of this section helps

us to understand how the count outcomes (P model) with
some special features, mentioned above, are dealt with by
integrating the combined models over the respective ran-
dom efects to describe the three features simultaneously.

7.3. Estimation of the Model Parameters for the Combined
Models. Te full likelihood for PNG is given in Section 7.1.
Corresponding to this contribution, the estimation is per-
formed by integrating over the respective random efects,
accumulating the marginal likelihood, and maximizing it
analytically, which can also be seen from Molenberghs et al.
[11], Molenberghs et al. [13], and Kassahun et al. [37]. Based
on Section 7.1, the partially marginalized PNG model is
expressed as follows:

f yij ∣ b1i, ζ􏼐 􏼑 � 􏽚 f yij ∣ b1i, ζ, θij􏼐 􏼑f θij ∣ αj, βj􏼐 􏼑dθij

�

αj + yij − 1

αj − 1
⎛⎜⎝ ⎞⎟⎠

βj

1 + κijβj

􏼠 􏼡

yij 1
1 + κijβj

􏼠 􏼡

αj

κyij

ij .

(57)

A similar expression for ZIPNG is given by the following
equation:

f yij ∣ b1i, b2i, ζ, c􏼐 􏼑 � I yij � 0􏼐 􏼑πij + 1 − πij􏼐 􏼑

αj + yij − 1

αj − 1
⎛⎜⎝ ⎞⎟⎠

βj

1 + κijβj

􏼠 􏼡

yij 1
1 + κijβj

􏼠 􏼡

αj

κyij

ij . (58)

Te numerical estimation is performed by using a fex-
ible normal random efects tool, the SAS procedure
NLMIXED.

7.4. An Application to Epilepsy Data. Epilepsy is a non-
communicable neurological and human brain disorder. It is
treated medically in a psychiatric clinic in a hospital. Te
data on this issue is collected from Felege Hiwot Referral
Hospital (FHRH) which is located in Bahir Dar city, the
capital city of Amhara regional state, Ethiopia; see Figure 5.
It is 565 km far from the capital city of Ethiopia, Addis
Ababa. In this clinical trial study, ffty-three subjects were
followed for seven months (not equally for all) and the
number of epileptic seizures was collected on a week basis.
Furthermore, data on socio-economic, behavioral, and

demographic information are collected to determine asso-
ciated risk factors. Mekonnen et al. [16] used similar data for
their analysis with all factors. However, in our study, we only
focused on time-related factors for the modeling easiness.

7.4.1. Description of the Data. Te numerical and graphical
visualizations of the three features are presented here.

Te numerical presentation in Table 3 shows 276 (30.2%)
of the measurements among the total number of mea-
surements were zero or the number of times that the patients
have not shown seizures in their follow-up. Tis indicates
that there are excess zeros in the data. And it is seen that the
observed standard deviation (st. deviation, 5.5) is greater
than the observed mean (3.1), which further shows the
presence of overdispersion in the data. Te graphical
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illustration via histogram in Figure 6 also shows that most of
the observations are right skewed to zero and it indicates that
most of the observations are oriented to the left of the
average of the data.

In Figure 6, the frst picture supports Table 3 (illustration
of zero-infation) and the second one shows the individual
profle plot or presence of correlation in the data.

7.4.2. Test Result for Overdispersion and Zero-Infation.
Te presence of overdispersion was tested by using the
function

dispersiontest(Epilepsy1, trafo � 1), (59)

of the R package AER and it is distributed asymptotically
normal with mean zero and variance 1. Te input “Epi-
lepsy1” of the function represents the response variable and

trafo � 1, (60)

represents the linear transformation. Te test statistic with
the p value and the alpha

z � 5.725, p − value � 5.17e − 09, and alpha � 1.434( 􏼁,

(61)

confrms that the data are overdispersed due to the known
feature in the data. Tis feature as shown next is due to the
excess structural zeros in the data. Tus, since the p value is
much smaller than the z value and the alpha is greater than 1,
overdispersion in the data is confrmed.

Te test for excess zeros with the test statistic distributed
as Chi-square with 1 df

Chi − square � 1649.742, df � 1, andp − value � 2.22e − 16( 􏼁,

(62)

shows that there is zero-infation in the data.Te presence of
correlation is frst detected from the longitudinal nature of
the data in which the individuals are exposed for the re-
petitive measurements and second it is easily visualized from
the individual profle plot in Figure 6, the second picture.

For a further analytical description of the data, let Yij

stand for the number of epileptic seizures for the ith

patient for the jth week of the follow-up period and let tij

be the corresponding time-period for the occurrence of
the Yij. For the characterization of the data based on the
zero-infation process, let us assume that the PN gen-
erates the counts with the mean λij which is given by
equation (48) as follows:

ln λij � ζ0 + b1i( 􏼁 + ζ1tij, (63)

when the counting process is generated from the PNG with
the mean λij � θijκij, it takes the following form:

ln κij � ζ0 + b1i( 􏼁 + ζ1tij. (64)

Te probability of zero-infation is given by
logit(π) � c0 + b2i + c1tij, see Subsection 7.2 for the ana-
lytical expression.

Figure 5: Epileptic seizure patients’ data.

Table 3: Numerical visualization of zero-infation and
overdispersion.

Zero-infation Overdispersion
#Seizures Frequency Percent Mean St. deviation
0 276 30.2
1 190 13.4
2 128 9.0
3 85 6.0
4 49 3.5
5 41 2.9
. . .
. . .
. . .
61 1 0.1
Total 915 100.0 3.1 5.5
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Histogram of the epileptic siezer data set
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Figure 6: Plot of the histogram and individual profle plot of the epileptic seizure data set.

Table 4: Comparison of the P, ZIP, PN, ZIPN, PG, ZIPG, PNG, and ZIPNG models.

Efect Parameter P ZIP PN
Estimate (SE.) Estimate (SE.) Estimate (SE.)

Intercept ζ0 1.840 (0.066)∗ 2.179 (0.069)∗ 1.238 (0.282)∗
Slope ζ1 − 0.094 (0.008)∗ − 0.089 (0.009)∗ − 0.072 (0.009)∗
Infation intercept c0 − 1.468 (0.163)∗
Infation slope c1 0.059 (0.015)∗
St. dev. RE σ 1.004 (0.100)∗
Ratio slopes ζ1/ζ0 7.046 (2.362)∗ − 14.362 (10.644) 4.996 (1.654)∗

− 2logL 6710.6 5815.1 4058.4
AIC 6718.6 5827.1 4068.4
BIC 6737.9 5856.0 4078.8

Efect Parameter ZIPN PG ZIPG
Estimate (SE.) Estimate (SE.) Estimate (SE.)

Intercept ζ0 1.447 (0.271) 1.859 (0.177)∗ 1.801 (0.179)∗
Slope ζ1 − 0.076 (0.056)∗ − 0.096 (0.017)∗ − 0.086 (0.018)∗
NB parameter α1 0.648 (0.040)∗ 1.479 (0.106)∗
St. dev. nonzero RE

��
d1

􏽰
0.944 (0.436)∗

Correlation RE ρ − 0.055 (0.217)
St. dev. zero part RE

��
d2

􏽰
2.012 (1.321)∗

Infation intercept c0 − 3.922 (0.663)∗ − 7.691 (2.138)∗
Infation slope c1 0.091 (0.035)∗ 0.317 (0.113)∗
Ratio slopes ζ1/ζ0 16.795 (17.459) 7.663 (6.334) 11.501 (16.602)
Inverse NB parameter β � 1/α 1.543 (0.096)∗ 0.676 (0.048)∗

− 2logL 3742.2 4072.8 4070.8
AIC 3760.2 4082.8 4084.8
BIC 3778.9 4106.9 4118.5

Efect Parameter PNG ZIPNG
Estimate (SE.) Estimate (SE.)
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7.5. Comparison of Models for Overdispersion, Correlation,
and Zero-Infation. In this subsection, the known features
(separately and jointly) in the repeatedly measured count
data, correlation, overdispersion, and zero-infation are
discussed by using the eight models. More importantly, the
ZIP, ZIPN, ZIPG, and ZIPNG models are compared by
using the epileptic seizure data, and also their immediate
counterparts P, PN, PG, and PNG models are used for the
respective comparison. In the zero-infation version as
compared to the nonzero version models, there is a sub-
stantial improvement based on the -2logL, AIC, and BIC
comparison techniques.

Te ZIPG model has shown an improvement relative to
the ZIP. Te ZIPN is an improvement when it is compared
to the ZIP and ZIPG. And the ZIPNG has further shown the
best improvement relative to the ZIP, ZIPG, and ZIPN,
which shows that it is the best-ftting model for the data. In
the absence or when the extrazeroes in the data are ignored,
the improvement in the model goes from the P to the PNG,
and the PNG is the best-ftting model for the nonzero-
infated data. Generally, the trend of improvement in the
models goes from the P to the ZIPNG.

Te standard deviation of the random efect (St. dev.
RE, represented by σ in Table 4) is signifcant in the
models PN and PNG. Tis shows the normal random
efect is important to add in the P model to handle the
correlation in the data and it is more pronounced in the
PN and PNG than in other models. Te NB parameter α1
and the inverse NB parameter (β) are signifcant in the
models PG, ZIPG, PNG, and ZIPNG.Tis implies that it is
customary to include the gamma random efect in the P
model to deal with the overdispersion in the data and
these models are capable of handling overdispersion in the
data. Te zero-infation parameter (ci), where i � 0, 1, is
signifcant in the models ZIP, ZIPN, and ZIPNG, which
indicates the excess zeroes in the data should not be ig-
nored in the analysis and these models are appropriate for
its analysis.

Te feature correlation in the repeatedly measured data
is common and needs to be handled correctly during the
data analysis. As it is displayed in Table 4, it is treated by
adding the normal random efect (bi) in the P model. Te
overdispersion is another unavoidable feature and it is dealt
with by including the gamma-distributed random efect in
the log-linear predictor forming the combined model (PNG)
by aggregating the other induced features. Furthermore, the
zero-infation is modeled simultaneously by considering the
two processes in the PNG model.

8. Discussion and Conclusion

In this study, the NT1AP family of distributions was in-
troduced. Based on the new family, the new NT1AP-W
model was discussed in detail. Te need for introducing
the new model is due to the reason that the classical and
modifed statistical models, which have been applied to
health applications, do not provide the best ft when the data
show nonmonotonic failure rates. Te mathematical logic
behind the new method for deriving new distributions is to
introduce an extraparameter α which gives extrafexibility to
the new family and to introduce the new family which is
capable of handling diferent patterns in the data. A new data
set (breast cancer) is considered and the proposed model is
compared to the recent models.

Te NT1AP-W, EFWE, EWW, PIW, KWP, KW, NWW,
and APTWmodels were applied to the abovementioned public
health data. Te NT1AP-W model has shown its supremacy
based on the fve adequacy measures. Te newly proposed
family has several advantages such as (i) the addition of an extra
parameter gives great fexibility, (ii) the added extra parameter
makes the approach simple tomodify the existing distributions,
(iii) it is useful to introduce new distributions in the domain of
T-X family, and (iv) it is useful to extend the existing distri-
butions with a closed CDF. Based on the fndings, the NT1AP-
W model is an appropriate model for dealing with the data in
health science and other related sciences.

Table 4: Continued.

Efect Parameter P ZIP PN
Estimate (SE.) Estimate (SE.) Estimate (SE.)

Intercept ζ0 1.096 (0.295)∗ 1.294 (0.287)∗
Slope ζ1 − 0.050 (0.013)∗ − 0.058 (0.031)∗
NB parameter α1 2.648 (0.282)∗ 0.208 (0.028)∗
St. dev. nonzero RE

��
d1

􏽰
0.967 (0.441)∗

Correlation RE ρ 0.088 (0.149)
St. dev. zero part RE

��
d2

􏽰
2.364 (1.658)∗

Infation intercept c0 − 4.744 (0.691)
Infation slope c1 0.072 (0.034)∗
St. dev. RE σ 0.991 (0.102)∗
Ratio slopes ζ1/ζ0 2.016 (0.822)∗ 3.433 (1.650)∗
Inverse NB parameter β � 1/α 0.378 (0.377)∗ 4.820 (0.641)∗

− 2logL 3550.2 3487.3
AIC 3562.2 3507.3
BIC 3574.6 3528.1
Te table summarizes the parameter estimates and standard errors (SE.) together with model comparison criteria results. Te signifcant parameters are
identifed by ∗ and the slope is for covariate time.

Journal of Probability and Statistics 17



Mekonnen et al. [16] used epilepsy data by allowing both
correlation and zero-infation in the data and they analyzed
the data by using the P, NB, ZIP, and ZINB models. Te
second part of this study is motivated by two gaps: the frst
one is these authors could not raise and discuss the issue of
overdispersion while the data are overdispersed and the
second one is the mentioned count models which alone
cannot fully handle the dependence in the data. Hence, the
need for an update on this gap is raised reasonably. It is also
misused to analyze epileptic seizure data by using linear
mixed models due to the special features present in the data.

Except Molenberghs et al. [11], Kassahun et al. [37], and
Molenberghs et al. [13], none of the scholars tried to discuss
the issue of the three special features in the data in the
aggregate. For instance, Mekonnen et al. [16] discussed only
the two features (correlation with less focus and zero-in-
fation). And the other scholars Hinde and Demétrio [39],
Workie and Lakew [40], Dare et al. [41], and Adesina et al.
[42] discussed only the count models for the nonclustered
data with a lack of attention to the aggregate features.
Contrary to these studies, this study has implemented and
explored the appropriate models for the data with the three
features simultaneously.

Te slope ratio ζ1/ζ0 is signifcant in the three nonzero
version models P, PN, and PNG, while it is insignifcant in
the zero version models except in the ZIPNG model. Other
studies could show this relationship except the result of
Kassahun et al. [37]. Like in the result of Kassahun et al. [37];
the correlation of the random efects (correlation RE, ρ) is
unrealistically signifcant in none of the models. Tis result
contradicts the longitudinal nature of the data that the re-
sponse variable (number of epileptic seizures) is recorded
repeatedly over time and this needs further investigation.

Based on the analysis results, it is noted that the special
features such as correlation, overdispersion, and zero-
infation cannot be ignored from the repeatedly measured
count data and need to be modeled simultaneously by using
the appropriate combined models.

Appendix

Sample Data

Te sample of two real datasets (breast cancer patients’ data
and epileptic seizure patients’ data) is displayed under these
subsections, respectively.
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