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Tis article comprehensively reviews the applications and algorithms used for monitoring the evolution of clustering solutions in
data streams.Te clustering technique is an unsupervised learning problem that involves the identifcation of natural subgroups in
a large dataset. In contrast to supervised learning models, clustering is a data mining technique that retrieves the hidden pattern in
the input dataset. Te clustering solution refects the mechanism that leads to a high level of similarity between the items. A few
applications include pattern recognition, knowledge discovery, and market segmentation. However, many modern-day appli-
cations generate streaming or temporal datasets over time, where the pattern is not stationary and may change over time. In the
context of this article, change detection is the process of identifying diferences in the cluster solutions obtained from streaming
datasets at consecutive time points. In this paper, we briefy review the models/algorithms introduced in the literature to monitor
clusters’ evolution in data streams. Monitoring the changes in clustering solutions in streaming datasets plays a vital role in policy-
making and future prediction. Of course, it has a wide range of applications that cannot be covered in a single study, but some of
the most common are highlighted in this article.

1. Introduction

Clustering is an unsupervised learning problem used as a data
mining technique to identify prominent patterns in the feature
space. It belongs to a family of methods that do not predict the
class of outcome attribute but instead identify the natural
subgroups in a dataset. Unlike supervised algorithms, it only
interprets the interesting pattern and the mechanism that
causes a substantial similarity in the items of the underlying
population [1]. Te clustering analysis helped us gain valuable
insights into our dataset by partitioning it into subgroups
known as clusters. In simple words, the data items belonging to
the same clusters are relatively similar to one another compared
to the items belonging to diferent clusters [2, 3].

Clustering analysis is an efective data mining tool in
many activities to learn about the problem domain known as
a pattern or knowledge discovery. For example, a phyloge-
netic tree that shows the evolutionary relationship among
biological species is a result of manual clustering routines,
where the biological classes are based upon dis(similarities)
in their physical and hereditary characteristics [4]. Also,
cluster analysis is considered one of the most promising
techniques in separating normal data from outliers or
anomalies [5, 6]. Similarly, in the context of market seg-
mentation, clustering of the customer helps in identifying
homogeneous groups with the smallest variation in their
demographics and buying characteristics. Te accurate
segmentation of consumers assists in achieving marketing

Hindawi
Journal of Probability and Statistics
Volume 2023, Article ID 7493623, 15 pages
https://doi.org/10.1155/2023/7493623

https://orcid.org/0000-0002-4139-8292
https://orcid.org/0000-0001-5598-5474
mailto:muhammad96_atif@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7493623


goals by targeting customers according to their needs and
preferences via personalized marketing [7, 8]. In recent
years, machine learning algorithms have played a prominent
role in information discovery on the web. Clustering analysis
provides some powerful modeling in text mining, document
classifcation, web mining, face recognition, speech recog-
nition, and image processing [9, 10]. Undoubtedly, cluster
analysis has a broad range of applications that cannot be
covered in one article; however, some are highlighted here.

Te criterion for producing clusters from the dataset is
not precisely defned, and the standards deviate drastically
from case to case [11]. For example, in some cases, the
algorithm minimizes intracluster variation, whereas others
identify clusters as the dense region in the feature space.
Some algorithms group the objects based on particular
statistical models, whereas others use grids and graphs to
partition the dataset. From the perspective of the cluster
defnition, the traditional algorithms are divided into fve
categories [12, 13]. Tese categories include partitioning,
hierarchical, density-based, grid-based, and model-based
clustering algorithms.

Te problem addressed in this article is the lack of
comprehensive exploration and discussion on the algo-
rithms and applications involved in monitoring changes
within cluster solutions, particularly in the context of
temporal and streaming data. Prior research has not suf-
ciently covered the diferent types of algorithms specifcally
designed to cluster such data, leaving a signifcant gap in
knowledge and understanding in this area. Tis article aims
to fll this gap by providing a detailed examination of the
algorithms and their applications, thereby addressing the
need for a comprehensive understanding of monitoring
changes in cluster solutions for temporal and
streaming data.

Te rest of this article is structured as follows: Section 2
discusses some major types of clustering algorithms, in-
cluding partitioning, hierarchical, density-based, model-
based, and grid-based algorithms whereas Section 3, in
contrast, comprises the algorithms used for clustering
streaming or temporal datasets. Tese algorithms are clas-
sifed into four major types, including evolutionary clus-
tering, self-organizing maps, heuristic algorithms, and
online clustering of streaming data. Figure 1 represents the
nomenclature of these algorithms.

2. Nomenclature of Clustering Algorithms

Perhaps, one of the most famous families of clustering al-
gorithms is the partitioning algorithms. Tis is a class of
algorithms based on the iterative relocation of data items
among clusters until a locally optimal solution of data
segmentation is attained. Generally, this type of algorithm
fails to guarantee a globally optimal solution. Te funda-
mental approach behind partitioning algorithms is identi-
fying a partition of (say k) clusters that optimize a given
clustering criterion. For example, most algorithms minimize
squared-error functions by computing the distance between
the data items and the cluster centroids. Te local optima
problem can be resolved using the exhaustive search method

by enumerating all possible clustering solutions. However,
this approach is NP-hard and is usually avoided in practice
[14, 15]. Te partitioning clustering algorithms carry two
essential characteristics: (1) each data item must belong to
one and only one cluster and (2) each cluster must receive at
least one data item. Tese algorithms converge faster than
others, even in the case of large datasets. However, it sufers
a major criticism; the number of clusters acquired from the
data needs to be prespecifed by the analyst. Several clus-
tering algorithms fall under the umbrella of partitioning
methods, including k-means [16], partitioning around
medoids (PAM) [17], clustering large application (CLARA)
[18], hard competitive learning (HCL) [19], and neural gas
[20, 21].

Another most efcient and efective family of clustering
algorithms, from a computation and application point of
view, is the hierarchical clustering algorithms [22]. Despite
being more difcult than partitioning approaches, hierar-
chical procedures are better suited to managing real-world
data since they do not require any predetermined param-
eters [23]. Te hierarchical algorithms produce clusters that
have a predominant hierarchy from top to bottom. Te
family of hierarchical clustering algorithms requires
a proximity matrix that contains the similarities or dis-
similarities between data items or clusters at each layer of the
tree structure. Te primary step towards hierarchical clus-
tering is choosing an appropriate distance metric to compute
the dis(similarity) between the data items. After selecting
a distancemetric, it is required to determine the points in the
clusters from where the distances need to be computed. Tis
phenomenon is known as the linkage criterion in hierar-
chical clustering terminology. For instance, the distance
between two clusters can be fgured as the distance between
their most similar parts (single linkage criterion), most
distant parts (complete linkage criterion), between their
centroids (centroid linkage criterion), average pairwise
distance (average linkage criterion), or some other criterion.
Hierarchical clustering typically works either by sequentially
merging similar clusters or by successively splitting the most
distant ones. Tis is known as agglomerative and divisive
hierarchical clustering, respectively [24]. Some well-known
hierarchical clustering algorithms are CHAMELEON [25],
BIRCH [26], CURE [27], and ROCK [28].

Te density-based family of clustering algorithms adopts
the approach of variations in the density of the feature space.
Te notion of density-based clustering is based on the
concept of the “cluster” region and “noise” region in the
dataset. Tis method discovers clusters in the dataset as
a dense region separated by a lower-density region [29, 30].
A cluster is a highly condensed region of data points,
whereas the noise/outlier is a more diluted region that
separates clusters from each other. Te formalization of this
intuition is based on two main principles: the neighbor-
hood’s maximum radius (Eps) and the neighborhood’s
minimum number of points (MinPts) [31]. Based on these
two principles, the data items can be categorized as a core
point, a border point, or an outlier. A data item is classifed
as a core point if its neighborhood of radius (Eps) contains at
least MinPts. On the other hand, an item is classifed as
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a border point if it is reachable from a core point, and there
are fewer thanMinPtswithin its surrounding area. If an item
is neither a core point nor a border point, it is classifed as an
outlier. Te algorithm starts with a random selection of an
arbitrary point and retrieves all density-reachable points
from it. Te algorithm allocates all neighboring points to
a cluster if this is a core point. On the other hand, if it is
a border point, then no points are density reachable from
this point, and the algorithm selects another data point from
the dataset. Te distance between points can be computed
using distance functions such as Euclidean, Manhattan, and
Chebyshev. Some of the commonly used density-based al-
gorithms include DBSCAN [32], OPTICS [33], DVBSCAN
[34], and ST-DBSCAN [35].

Te model-based clustering is a comprehensive family of
algorithms composed of modeling a dataset from a mixture
of simpler probability distributions. Contrary to the tradi-
tional clustering algorithms, the model-based generates soft
clustering, which assigns probabilities to each data item
belonging to each cluster. Te most common model-based
clustering approach is the Gaussian mixture model [36]. Te
whole dataset is considered a mixture of distributions, where
individual observation is supposed to follow a kmultivariate
Gaussian distribution where k is the number of components
in the mixture model and is referred to the number of
clusters in the datasets. Each component is described by
a mean vector μk and covariance matrix 􏽐K [37]. Te model
parameters can be estimated using the expectation-
maximization (EM) algorithm. Each cluster k is centered
at the means μk, whereas geometric features (shape, volume,
and orientation) of each cluster are determined by the co-
variance matrix 􏽐K. Te model-based clustering algorithm
includes generalized mixture model [36].

Another common approach is grid-based clustering
which difers from traditional algorithms in the sense that it
deals with the value space rather than data items. Te grid-
based clustering approaches utilise a multiresolution grid

data structure. First, it quantifes the data space into a fnite
number of cells that form a grid structure. Ten, the rest of
the operations for generating the cluster solution are applied
to the grid arrangement. Te technique’s main beneft is its
quick processing time, which is often unafected by the
quantity of data items. Grid-based clustering methods
consist of the fve main phases listed as follows [38, 39]:

(1) Formation of grid structure, i.e., dividing the data
space into a fxed number of cells

(2) Compute the density for each partition
(3) Arrange all the partitions according to their densities
(4) Determine the center of each partition
(5) Traversal of neighboring partitions

Some of the common grid-based algorithms includes
WaveCluster [40], STING [41], and BANG [42]. Table 1
represents the summary of various clustering algorithms.

It is important to note that various indices are available
and each may have diferent results for diferent types of
data, and no single index is universally accepted as the best.
Terefore, it is recommended to use a combination of in-
dices to evaluate the performance of grid-based clustering
algorithms.

Conventional clustering algorithms have some limita-
tions and drawbacks that can afect their performance and
accuracy, especially when dealing with complex and high-
dimensional data. To overcome these limitations, the en-
semble clustering algorithms are introduced in the literature.
Ensemble clustering algorithms are a class of machine
learning techniques that combine multiple clustering algo-
rithms to achieve better results. Te basic idea behind en-
semble clustering is to leverage the strengths of diferent
clustering algorithms and use their outputs to build a more
robust and accurate clustering model.

Huang et al. [43] propose an enhanced ensemble clus-
tering approach that uses a fast and efcient propagation

CLUSTERING

assembling items into groups that
are similar

BATCH CLUSTERING

Entire data is available at
single point in time and

clusters are static

STREAM CLUSTERING

Data evolve over time and
entire data is not available to
algorithm at single point in

time

TYPES

Partitioning
Hierarchical
Model based
Grid based
Density based

EVOLUTIONARY SELF-ORGANIZING HEURISTIC EVOLVING DATA

Cluster the data in real time
using density based clustering

algorithm. Change are
monitored online.

Changes in clustering
solutions are detected using

self-organizing maps.

Cluster the temporal data at
discrete points in time. The

windowing approach is
adopted for discretizing the

data stream.

Generate a sequence of
clustering solutions and
trace changes. Optimize
two competing criterion
for obtaining solutions.

Figure 1: Nomenclature of the batch and streaming clustering algorithms.
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algorithm to propagate cluster-wise similarities across dif-
ferent views of the data and generate a consensus clustering
that captures the underlying structure of the data. Te
proposed method achieves high scalability and efectiveness
by exploiting the complementary information across dif-
ferent views of the data and minimizing the redundancy
among the clustering results. Experimental results demon-
strate that the proposed method outperforms state-of-
the-art ensemble clustering methods on several benchmark
datasets. However, the proposed method relies on the as-
sumption that cluster-wise similarities can be accurately
estimated, which may not always be the case in practice, and
the performance of the method could be limited by the
quality and relevance of the cluster-wise similarities used.
Similarly, Huang et al. [44] propose a novel approach that
incorporates several innovative techniques, including sub-
space clustering, metric learning, and diversity maximiza-
tion, to generate clustering that is not only accurate but also
diverse and complementary. Te paper presents a compre-
hensive evaluation of the proposed method on several high-
dimensional datasets and demonstrates its superior per-
formance compared to state-of-the-art ensemble clustering
methods. However, this method is computationally in-
tensive and may not be suitable for very large datasets.
Huang et al. [45] propose a fast and efective ensemble-based
approach for multiview clustering, which combines multiple
views of data to improve clustering performance. Te
proposed approach achieves scalability, superiority, and
simplicity by using an ensemble of clustering generated from
multiple views of the data, each with its own clustering
algorithm. Te ensemble-based approach efectively cap-
tures the complementary information across multiple views
and generates a robust consensus clustering. Tese ap-
proaches rely on the assumption that multiple views of data
are available, which may not always be the case in practice,
and the performance of the method could be limited by the
quality and relevance of the views used.

Enormous volumes of data are generated every minute,
and this rate of data production is increasing exponentially.
To keep up with the present requirements, data analysis
across all felds is transitioning from batch processing to
real-time data processing.Te data streams can be defned as
follows:

(i) “Streaming data is the continuous fow of data
generated by various sources.Te term “streaming” is
used to describe continuous, never-ending data
streams with no beginning or end that provide
a constant feed of data.”

Data streams can be endless, which is why window
models are utilized to manage the portion of the stream that
is analyzed for data mining patterns. Window models
segment the stream into manageable portions to extract
insights from the data. Te three most commonly used
window models are the landmark window, sliding window,
and damped window models. Tese models regulate the
portion of the data stream that is analyzed at any given time
by setting boundaries around a subset of the stream. Te
window moves along the data stream, continually analyzing

new data as it becomes available, and discarding older data
that are no longer relevant to the analysis. Tis allows for the
processing of streaming data in real time while still main-
taining the accuracy and relevance of the analysis. In the
landmark window, all points have a weight w � 1, and in the
sliding window, all points within the window have a weight
w � 1, for the rest w � 0, whereas in the damped window,
each point is assigned a weight that decreases with time.

3. Change Detection in Clustering Solutions

Change detection refers to identifying variations in an ob-
ject’s state by examining it at diferent time points. In the
context of this article, change detection is the technique of
recognising diferences in the cluster solutions generated
from a stream at discrete time points. Tis research paper
presents a comprehensive review of the applications and
models for monitoring and tracking the changes in clus-
tering solutions.

3.1. Evolutionary Clustering. In today’s world, diferent
sources continually generate the bulk of information over
time. Consequently, in clustering applications, the objects to
be clustered also evolve, and the resultant solution is not
stationary. In these applications, diferent clustering solu-
tions need to be generated from a temporal stream at
corresponding time stamps. For this matter, Chakrabarti
et al. [46] introduced a framework known as the evolu-
tionary clustering algorithm. Te evolutionary clustering
algorithm addresses the issue of partitioning time-stamped
datasets by producing a sequence of clustering solutions at
successive time points. Te prime objective behind this
framework is that the clustering solutions at consecutive
time points should be analogous to each other while at the
same time accurately refecting the dataset emerging at the
corresponding time points. A new dataset emerges at the
successive time points andmust be included in the clustering
solution at the corresponding time point. Now, if the new
dataset does not deviate too much from past expectations,
the clustering solution should be similar to the one at the
previous time point. On the other hand, if the dataset de-
viates signifcantly, the clustering solution must be updated
to capture the pattern at the current time point. Tus, the
algorithm must trade-of between having a consistent so-
lution or an accurate representation of the current dataset.

According to this algorithm, the user needs to indicate
a function sq(Ct, Mt), snapshot quality, that refects the
quality of the clustering solution Ct obtained at time point t.
Te Mt in the function is an n∗ n matrix representing the
similarity or distances between objects in the dataset.
Similarly, the user must also defne the history cost function
hc(Ct−1, Ct) that gives you the historical cost of the cluster
solutions at the time point t. Tus, the total quality of the
entire clustering sequence can be computed from the
expression:

􏽘

T

t�1
sq Ct, Mt( 􏼁 − cp 􏽘

T

t�2
hc Ct−1, Ct( 􏼁, (1)
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where cp> 0 is the user-defned change parameter that
trade-of between snapshot quality and history cost function.
Initially, this framework was designed for evolutionary k-
means and agglomerative hierarchical clustering. In this
article, the researchers used the photo-tag datasets at various
time stamps from fickr.com to evaluate the algorithm’s
performance. A bipartite tag-photo diagram is created for
individual weeks, and two tags are considered identical if
they cooccur on the same photo at the same time step.

Chi et al. [47] expanded the idea of evolutionary clus-
tering by introducing two diferent algorithms for evolu-
tionary spectral clustering. Tese algorithms are known as
preserving cluster quality (PCQ) and preserving cluster
membership (PCM). Te modifed cost function, which is
optimized in these two frameworks, is given by the following
expression:

Ctotal � αCtemporal +(1 − α)Csnapshot, (2)

where 0≤ α≤ 1 is a user-defned parameter and refects the
snapshot cost. Tis function computes the quality of clus-
tering solutions obtained from evolving data streams. Te
term Csnapshot only measures the quality of the clustering
solution obtained at current time points concerning the
current dataset. In simple words, it measures the goodness of
cluster solutions at each respective time point whereas
Ctemporal computes the temporal smoothness by measuring
the goodness-of-ft of the current cluster solution con-
cerning historical datasets. Te Csnapshot indicates the
spectral clustering cost, which usually depends on the
variants of spectral clustering such as average association,
ratio cut, or normalized cut. Te evolutionary spectral
clustering provides more steady and uniform clustering
solutions at subsequent time points. Te evolutionary
spectral clustering is less sensitive to short-term noise and
captures the long-term drifts. In this article, the researchers
used synthetic and real-life datasets to show the performance
of the proposed algorithm. In the case of real-life datasets,
the author used real blog datasets from the NEC American
laboratory. Tis NEC blog dataset possesses 148,681 entry-
to-entry links among 407 blogs trudged during 63 successive
weeks, from July 10th 2005 to September 23rd 2006. In
dynamic social networks, social players of diverse types
interact with one another resulting in a multimode network.
In these networks, the nodes represent the community of

social players and tend to evolve gradually. Tang et al. [48]
present an evolutionarymultimode clustering algorithm that
discovers community evolution in multimode networks.Te
framework can identify within modes of interaction, hi-
bernating, and emerging social networks. However, the
framework’s inadequacy lies in its requirement for users to
input weights for various interactions and temporal data,
along with the number of communities in each mode. For
validating the algorithm, two publicly available network data
are utilized: one is the Enron e-mail corpus, and the other is
DBLP data. Te Enron data [49] comprise e-mail records
collected from 150 senior executives in the Enron company.
Tis dataset includes 619,446 messages belonging to 158
users. A three-mode network, i.e., user, words, and e-mail
address, was constructed for each month. Te second data
were extracted fromDBLP, which provides an exhaustive list
of research papers in computer science. Papers published
between 1980 and 2004 were extracted, removing ones
without authors or venue information. Tis network in-
cludes 491,726 papers, 347,013 authors, 2,826 venues, and
9,523 terms.

Zhang et al. [50] extended the idea of evolutionary
clustering to density-based with the DBSCAN algorithm. Let
us suppose that Ct is the evolutionary clustering and Mt is
the static clustering at time stamp t; then, the objective is to
fnd optimal Ct that minimizes the cost function given by the
mathematical expression as follows:

cost ct( 􏼁 � minct
α.snap Ct, Mt( 􏼁 +(1 − α).temp Ct, Ct−1( 􏼁􏼈 􏼉,

(3)

where α is the trade-of parameter between the evolutionary
and static clustering, which is predetermined by the analyst.
Te function snap() indicates the cost between evolutionary
and statistic clustering at the current time point. Accord-
ingly, the temp() function represents the historical cost
between time stamp t and t-1. Tis method requires the
specifcation of several parameters, such as the population
size, mutation rate, and crossover rate, which can be chal-
lenging for users to determine. Te algorithm may not work
well with datasets that have a large number of clusters and
thus restrict to specifc types of applications.

Xu et al. [51] proposed an adaptive evolutionary clus-
tering framework by executing and tracking followed by
static clustering. Te prime objective of the algorithm was to

Table 1: Clustering algorithms and its types.

Class Input parameters Example Performance evaluation

Partitioning Number of clusters (k) k-Means, HCL, CLARA Dunn, Davies-Bouldin, Rand
Distance function k-Mediod, neural gas Calinski-Harabasz, Jaccard

Hierarchical Distance function CURE, BIRCH, ROCK Cophenetic correlation
Linkage function CHAMELEON Dendrogram-based measures

Density-based Epsilon DBSCAN, LDBSCAN, OPTICS Density reachability F, CSI
Minimum points DENCLUE, STDBSCAN Adjusted mutual information

Grid-based No. of grid cells STING, CLIQUE Grid quality index, grid entropy
Te wavelet WaveCluster Grid dispersion, grid purity

Model-based No. of components GMM Akaike information criterion
Model parameters Bayesian information criterion
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trace the proximity matrix at successive time steps. A re-
cursive function updates the weights assigned to the historic
data in the stream. Tis procedure allows the extension of
almost all static clustering algorithms to the evolutionary
approach. Similarly, unlike other existing techniques, it
provides a precise strategy for choosing the forgetting factor.
Nonetheless, the problem is NP-hard and demands sub-
stantial computational resources for processing large data-
sets. Te algorithm was experimented with to test the
algorithm’s performance using the MIT reality mining
dataset [52]. Te data comprise cell phone records of 94
students and staf members at MIT. Te proximity matrix
was computed using nearby Bluetooth devices’ media access
control addresses. Finally, the data were discretized by di-
viding it into one-week time steps between August 2004 and
June 2005.

Te segmentation of relational data has acquired very
nominal attention compared to the clustering of vector data.
Especially, the usage of evolutionary approaches to optimize
clustering parameters is even rare. For this purpose, Banerjee
and Abu-Mahfouz [53] introduce the evolutionary clus-
tering algorithm for the relational dataset. Te particle
swarm optimization, the frefy algorithm, and the composite
diferential evolution techniques were used to optimize the
evolutionary parameters of clustering. Tis algorithm re-
quired fewer parameters to be tuned compared to other
optimization techniques. Additionally, CoDE has been
shown to have good convergence properties, meaning that it
is able to fnd good solutions quickly and reliably. However,
the sensitivity analysis of the algorithm is investigated using
small datasets, which may raise doubts about its applicability
in larger datasets. Table 2 represents the categorization of
evolutionary clustering algorithms and the corresponding
datasets used for its evaluation.

A concise review of these articles demonstrates that the
evolutionary clustering algorithms are particularly useful for
clustering dynamic web streams, blog content, online
marketing, knowledge discovery, phone call records, and
other types of data that change over time. Te main ad-
vantage of evolutionary clustering algorithms is their ability
to adapt changes in the data over time.

3.2. Self-Organizing Maps. Change detection through
learned models is an important application of data mining.
Machine learning algorithms and other data mining tech-
niques are used to build models that capture the patterns and
relationships in the data. Transitions in the underlying
datasets can be monitored by tracking the learned model’s
results [54]. Liu et al. [55] provide an overview of techniques
for mining changes in data over time and their real-life
applications. Te article highlights the importance of
identifying and analyzing changes in data for applications
such as customer profling, fraud detection, and network
intrusion detection. Te authors discuss diferent types of
changes that can occur in data, including gradual and abrupt
changes, and propose decision tree models learned with two
related datasets for detecting these changes. Tis article uses
two real-life datasets to discuss its applications. Te frst

application of change mining involved using data from an
educational institution to analyze how the performance of
diferent student groups has changed over time. Te data
included information about the students’ examination re-
sults, family background, and personal particulars. A base
year was selected to build an old decision tree, and sub-
sequent years were compared to it using the program. Te
analysis using this technique revealed interesting trends,
such as the decline in the performance of certain student
groups in a particular subject over time and sudden im-
provements of one group over another in a particular year.
Tis information can help educational institutions to
identify areas where improvements are needed and make
more informed decisions to better support their students.
Te second application of change mining involved analyzing
data from an insurance company to identify patterns in the
number and amount of claims over time. Te user was
unsure whether the increased claims were due to specifc
groups of people or random occurrences. Te system used
data from the past fve years and discovered that certain
groups of insurers were responsible for the majority of
claims, and this trend gradually emerged over time. Addi-
tionally, there was a group of insurers who had stopped
making claims despite having done so in the beginning. Tis
information can help the insurance company to identify and
target specifc groups for risk assessment and implement
appropriate measures to manage claims.

Similarly, Denny and Squire [56] present a novel
method for visualizing changes in clusters of temporal
datasets over time using self-organizing maps. Tis algo-
rithm considered temporal datasets collected at two dif-
ferent time points ti and ti+1. In frst step, both datasets are
normalized using the same parameters. Next, the SOM is
initialised and trained using the dataset that emerged at
time point ti. Ten, a SOM is initialised for the dataset that
emerged at ti+1 using the train frst SOM. Te second SOM
is also trained using the second dataset. From each col-
lected data, data vectors are mapped to the learned map-
pings, and both maps are clustered using the k-means
technique. However, k-means is dependent on the initial
cluster centroids and could get stuck in local minima.
Terefore, several k-means runs are done, and the best
result is picked for each number of clusters. Te
Davies–Bouldin index is used to determine the best clus-
tering outcome for diferent numbers of clusters. However,
this algorithm failed to identify newly emerging clusters
and disappearing clusters at subsequent time point. In this
context, the authors used a real-world dataset from the
World Development Indicators (WDI) database, which is
maintained by the World Bank. Te WDI dataset consists
of multiple variables over time for 205 countries, covering
a time period from 1960 to 2003. Certain indicators were
selected from this dataset that represents diferent aspects
of development, such as economic growth or health out-
comes, and used them to cluster countries into groups.
Ten, they visualized changes in these clusters over time,
from one period to another. Tis allowed them to identify
patterns and trends in how countries are developing over
time, based on the selected indicators.
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Denny et al. [57] present a visualization-based method
known as relative density SOM (ReDSOM). Tis approach
compares the cluster solutions generated at two consecutive
time points from a temporal dataset. ReDSOM is capable to
recognise disappearing, emerging, enlarging, and contract-
ing candidates and detect the shift in cluster centroids,
density, and size. Te abilities of ReDSOM are illustrated by
employing artifcial datasets and two real-life datasets. Te
frst real-life example was the WDI dataset already used in
Denny and Squire [56]. Te second case study investigates
changes in cluster structures of the anonymised taxpayer
from 2003 to 2007 for the Australian Taxation Ofce. Tis
dataset includes information about taxpayers in Australia
and is collected and managed by the Australian Taxation
Ofce (ATO), which comprises almost 2.8 million obser-
vations on 83 variables, such as income, work-related ex-
penditures, and tax deductions. Tis dataset can be used for
various purposes, such as identifying trends and patterns in
tax compliance or evaluating the efectiveness of tax policies.
Table 3 represents the categorization of SOM-based algo-
rithms and the corresponding datasets used for its
evaluation.

According to the literature, utilizing learned models and
self-organizing maps (SOMs) for change detection in cluster
solutions has signifcant implications for various felds.
Specifcally, in fnance, it can be used for fraud detection, risk

management, and investment analysis. By detecting changes
in fnancial data patterns, these methods can identify sus-
picious activity, mitigate risks, and inform investment de-
cisions. In the economy, these methods can be used to
identify changes in consumer behavior, market trends, and
emergingmarkets, providing valuable insights for businesses
and policymakers. In development, these methods can be
used to monitor changes in poverty levels, education levels,
and healthcare outcomes, helping organizations and gov-
ernments track progress, and allocate resources efectively.

3.3.HeuristicAlgorithms. Spiliopoulou et al. [58] present the
MONIC approach, which is used to examine and track
changes in temporal data stream’s clustering solutions across
time. Tis algorithm examines the clustering solutions ac-
quired at two discrete time periods and tracks the diferences
between the new and prior solutions. Te clusters’ structural
changes may be split into two types: internal and external
transitions. Survived, merged, split, disappeared, and
emerging candidates make up the external transition. In-
ternal transitions involve changes in the size, cohesiveness,
and location of the candidates who have survived. Te
MONIC technique is built on a nonsymmetric matrix
known as overlap, which can be computed by the mathe-
matical formula given as follows:

Overlap Xi, Yj􏼐 􏼑 �
Xi ∩Yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, i � 1, 2, 3, . . . , k1, j � 1, 2, 3, . . . , k2, (4)

where Xi is the set of clusters acquired during the frst
clustering and Yj is the set of clusters obtained during the
second clustering. Tis produces a k1xk2 matrix, where k1
and k2 are the numbers of clusters from the frst and second
clustering, respectively. Te value represents the similarity
index between clusters on the matrix’s corresponding ele-
ment, and it acts as an indicator for tracking the external
transition. Te membership of survived clusters is assessed
in order to track the internal transition of the surviving
clusters. Te ACM digital library dataset was used to shed
light on the growth of the clusters and examine the impact of

diferent parameter settings. ACM digital library comprises
publications on data mining, spatial databases, image da-
tabases, statistical databases, and scientifc databases.

Te monitoring clusters transition (MClusT) algorithm
introduced by Oliveira and Gama [59] visualizes the clusters’
transition on a bipartite graph. Te MClusT algorithm uses
conditional probabilities as the edge weights, which work as
an indicator of monitoring transitions. Tese conditional
probabilities can be computed from the mathematical ex-
pression given as follows:

weight Cu, Cm( 􏼁 � P XϵCu tj􏼐 􏼑 XϵCm ti( 􏼁
􏼌􏼌􏼌􏼌􏼐 􏼑 �

􏽐
p
m�1P XϵCm ti( 􏼁∩Cu tj􏼐 􏼑􏼐 􏼑

􏽐
p
m�1P XϵCm ti( ( 􏼁􏼁

, (5)

where X is the set of data allocated to the cluster Cm(ti)(m �

1, . . . , p) and P(XϵCu(tj)|XϵCm(ti)) is the conditional
probability of X being assigned to Cu at time tj given that X

has been assigned to Cm at times stamp ti. To recognise the
changes, the transition states were defned as a cluster Cϵξi

can encounter, with respect to ξj, (i< j). Te conceptual
framework is based on the external transitions of the
MONIC algorithm. Te Mclust framework was tested using

a benchmark dataset of macroeconomics. Te macroeco-
nomic dataset from the Time Series Data Library is a col-
lection of quarterly economic data for the United Kingdom.
Te dataset contains 42 observations, which represent the
values of various economic indicators over time. Te dataset
was divided into two sets, each comprising seven years.
Ten, changes are tracked in these economic indicators over
time, allowing for analysis of trends and patterns in the data.
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However, two case studies were discussed in this article as
possible applications of the framework. Te frst case study
extracts data from the Portuguese Classifcation of Eco-
nomic Activities. Te data were characterised by ten f-
nancial and economic indicators, including net income,
labour production, and investment rate. Te second case
study extracts datasets from the Portuguese Regional De-
velopment Index. Te dataset comprises 30 observations on
regional development in all aspects for 2004 and 2006. Te
indicators include cohesion, competitiveness, and envi-
ronmental quality.

Oliveira and Gama [60] designed the MEC framework to
monitor the evolution of cluster structures generated at
successive static time points from temporal datasets. Te
approach of detecting and illustrating the changes is based
on the sound notions of conditional probabilities and bi-
partite graphs. To demonstrate the applicability of the al-
gorithm, two real-world case studies were presented. To
begin with, the Banco de Portugal Central Balance-Sheet
Database is utilized as a case study, which encompasses data
related to the assets, liabilities, and capital of banks operating
in Portugal.Te application of this dataset in case studies can
yield valuable information about the fnancial well-being of
Portuguese banks and the ways in which they are infuenced
by diferent economic factors. As the second case study, the
Data Page of New York University–Leonard N. Stern School
of Business is employed, which ofers a diverse collection of
economic and fnancial datasets, such as stock prices, eco-
nomic indicators, and fnancial statements. Tis dataset
facilitates the examination of the correlation between eco-
nomic factors and fnancial performance, along with the
infuence of market trends on specifc stocks and industries.

Pereira and Mendes-Moreira [61] illustrate the MEC
framework in a real-world scenario with a telecom industry
dataset by conducting a detailed analysis. Te dataset
contains information about customers of a Portuguese
telecom company, including demographic information,
such as age, gender, and education, and information about
their service subscriptions and usage patterns, such as the
number of calls, duration of calls, and type of services used.
Atif et al. [62] illustrate the data segmentation of streams and
the applications of the MONIC framework using three real-
life case studies. Te frst case study includes media use and
trust datasets, which contain information on individuals’
media consumption habits and their perceptions of the
trustworthiness of various media sources. Te data include
questions on traditional news media (such as newspapers
and television news), online news sources (such as social
media and news websites), and other types of media (such as
radio and podcasts). Te second case study includes the air
quality of Bowen, Queensland datasets. Air quality datasets
pertaining to Bowen, Queensland, are collections of

information that provide details about the levels of air
pollution in the area. Tese datasets could include mea-
surements of various pollutants such as particulate matter,
nitrogen dioxide, sulfur dioxide, and ozone. Analyzing this
dataset can help identify patterns and trends in air quality
and potential sources of pollution. Te third case study
includes crime against women in India datasets, which in-
clude collections of information about the crimes committed
against women in India. Tese datasets include data on
a range of crimes, including rape, sexual harassment, dowry
deaths, domestic violence, and trafcking of women and
girls. Te datasets typically contain information on the
number and type of crimes reported, the location of the
crimes, the age and gender of the victims, and the outcome
of the cases (such as whether the perpetrator was arrested,
charged, or convicted). Table 4 represents the categorization
of heuristic algorithms and the corresponding datasets used
for its evaluation.

Te heuristic frameworks mentioned here have the
ability to identify diferent categories of changes that occur
in cluster solutions. Tese changes include the survival of
existing clusters, the emergence of new ones, the disap-
pearance of existing clusters, the splitting of larger clusters
into smaller ones, and the enlargement of smaller clusters
into larger ones. Te heuristic frameworks discussed above
have a wide range of applications in various felds such as
database management, household expenditures, fnance and
economy, social behavior, telecommuting industry, and
environmental factors. Tese frameworks can be used to
detect and analyze changes in cluster solutions in diferent
contexts, providing insights into the evolution of data
patterns over time. For example, they can be used to analyze
household spending patterns and identify changes in con-
sumer behavior, or to detect shifts in market trends and
fnancial indicators. Tey can also be used to analyze social
networks and identify changes in the structure of social
interactions or to monitor changes in air quality or other
environmental factors. Overall, these heuristic algorithms
have the potential to enhance our understanding of complex
systems and inform decision-making in a variety of felds.

3.4. Online Algorithms for Evolving Data Streams. It is
usually the case in data streams that they are not stagnant but
rather evolve. Techniques discussed in previous sections are
windowed ofine methods, which generate a sequence of
cluster solutions. Tese techniques fail to capture the
changes in cluster solutions in real time. Aggarwal et al. [63]
introduce the CluStream framework for clustering evolving
data streams in real time, based on a combination of online
and ofine phases. Initially, the algorithm generates q
microclusters as a set of neighboring data items using an

Table 3: Categorization of SOM-based algorithms and corresponding datasets.

Algorithm Author Category Datasets
FOCUS Ganti et al. [54] Classifcation Student’s records and insurance claims records
Comparing SOMs Denny and Squire [56] SOMs World Development Indicators
ReDSOM Denny et al. [57] SOMs World Development Indicators and Australian Taxation Datasets
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ofine procedure. For this purpose, the standard k-means
algorithm is used to generate microclusters from initial data
items.Te q in k-means algorithms are selected to be as large
as allowed by the algorithm’s computational complexity.
Only the statistical information for each microcluster is
maintained, which includes the number of data items (N) in
each microcluster, the linear sum of each dimension, i.e.,
(LS � 􏽐

N
i�1X

→
i), the squared sum of each dimension, i.e.,

(SS � 􏽐
N
i�1X

→2
i ), and the sum of the squares of the time-

stamps, i.e., Ti1, · · · Tin. Once the microclusters have been
established, the online approach of updating them is acti-
vated. With the arrival of a new data item, the online process
decides to assign it to one of the microclusters, or a com-
pletely new cluster should emerge. Tis is decided by de-
termining whether the new data items fall within the
maximum boundary of the microcluster. A new micro-
cluster is created if the data item does not lie within the
maximum boundary of the neighboring microcluster.
However, with the emergence of a new microcluster, the
number of already existing microcluster should be reduced
by one. Tis is achieved either by deleting one microcluster
or by merging two of the old clusters. An automatic algo-
rithm decides whether it is safe to delete the cluster as an
outlier or merge two old ones.

Cao et al. [64] introduce a density-based approach for
evolving data streams using a damped window model. A
damped window model uses a fading function f(t) � 2− λ.t

that assigns an exponentially decreasing weight to the data
items via time t. Te algorithm is a combination of creating
online microclusters and ofine fnal clustering solution
steps. Initially, the data are divided into p microclusters and
outlier regions. When a new data item arrives, it is assigned
to one of the microcluster or outliers based on the new
radius of clusters. If the outlier region satisfes the threshold,
it is converted into a newly emerged microcluster. Tis
means that the newly evolved data item either belongs to
a microcluster, an outlier, or the seed of a new microcluster.
If the new data item does not merge with a particular
microcluster, its weight declines gradually, and ultimately,
the microcluster disappears. Finally, a variant of the
DBSCAN algorithm is applied to get the clustering solution
by combining all microclusters that are density-connected.

Hyde et al. [65] present an entirely online approach for
clustering evolving data streams into arbitrary-shaped
clusters (CEDAS). Tis algorithm is based on two distinc-
tive phases. In the frst stage, the newly emerged data items
are assigned to one of the existing microclusters. New
microclusters are created if the data items appear in an
unclustered region. All the microclusters are updated, and
a small radius r0 is fxed for them. At this stage, a linear
ageing function is assigned to each microcluster which
decides the survival and death of these clusters. Tis ageing
function restores the energy of each microcluster every time
the new data items evolve. A microcluster loses some of its
energy if it does not receive new data items. If the cluster
acquires no data for a long time, its energy reaches zero and
disappears. In the second stage, the algorithm hunts for
overlapping microclusters by connecting microclusters that

are overlapping and determined as edge microclusters.
Clusters that fail to attain the user-defned local density are
identifed as outlier microclusters. Tis graph generates the
cluster solutions of evolving data streams in real time.

Tese articles employed two authentic datasets to assess
the accuracy of the models and to assess the evolution of
clusters in response to newly arrived data items. One of the
datasets used was the KDD CUP’99 network intrusion
dataset, which is utilized in identifying cybercrimes in real
time. Te KDD CUP’99 network intrusion dataset is a well-
known dataset used in the feld of cyber security to detect
network intrusions in real time. Tis dataset is often used as
a benchmark to evaluate the performance of intrusion de-
tection systems. Furthermore, the KDD CUP’98 charitable
donations dataset was also utilized to track the alteration in
the donation behavior of donors. Tis dataset is used to
analyze and understand the factors that infuence the do-
nation behavior of donors and to predict their future be-
havior in real time. Te dataset contains information about
donors who responded to direct emails, and it is often used
in the feld of fundraising to identify potential donors and to
develop targeted fundraising campaigns.

Fahy et al. [66] introduce the ant colony stream clus-
tering (ACSC), which is a fast density-based clustering al-
gorithm for dynamic streams. Te ACSC algorithm allows
the microclusters to either absorb the new data items or
merge with other microclusters. A microcluster (c) will
absorb a new data item Xp, if radius(c)< ϵ after updating the
triplet. Similarly, two neighboring microcluster c1 and c2 will
merge together if radius(mk)< ϵ, where mk � (N1 + N2,

LS
�→

1 + LS
�→

2, SS
�→

1 + SS
�→

2). Te algorithm was validated by
comparing it with other algorithms using Iris, Wine, and
Zoo datasets available on the UCL machine learning re-
pository. Te Wine dataset contains information about
diferent types of wines and their chemical characteristics.
Specifcally, it includes the results of the chemical analysis of
178 samples of three diferent types of wines. Tere are 13
attributes in the dataset, which include variables such as
alcohol content, malic acid concentration, and ash content.
Te ZOO dataset is another popular dataset available on the
UCI machine learning repository. It contains information
about diferent animals and their classifcation into seven
diferent categories based on their attributes such as hair,
feathers, eggs, milk, airborne, aquatic, predator, toothed,
backbone, breathes, venomous, fns, legs, tail, domestic, and
catsize. Te dataset contains a total of 101 instances, each
with 17 attributes. Te frst 16 attributes correspond to the
presence or absence of certain animal features, while the last
attribute represents the animal’s class. Te seven classes are
mammal, bird, reptile, fsh, amphibian, insect, and in-
vertebrate. Tese datasets are commonly used for classif-
cation tasks, such as predicting the class of an animal based
on its attributes and predicting the type of wine based on its
chemical properties. It has been used in various machine
learning studies and has become a standard benchmark for
comparing the performance of diferent algorithms. Fahy
and Yang [67] present a multidensity stream clustering
(MDSC) algorithm, to handle the problem of monitoring
and tracking the changes in density-based clusters online.
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Tis algorithm is capable of detecting the formation of new
clusters in the bufer and the death of older ones. To handle
the problem of tracking change, the algorithm initially
discovers microclusters and labels each of them. An ageing
function assigns certain weights to these clusters that decay
over time.Te newly emerging data item is either assigned to
one of the clusters or the outlier bufer. New clusters are
periodically discovered among the outliers. Te existing
microcluster is deleted if it does not absorb new data for
a sufciently long time. Te performance of MDSC is
compared to the algorithms using the keystroke dataset. Te
keystroke dataset is a collection of data that record the
timing and sequence of keystrokes made by a user while
typing on a keyboard. Tis type of dataset can be used for
various purposes, such as developing algorithms for key-
stroke dynamics-based user authentication systems or
studying human-computer interaction.

Huang et al. [68] have presented a framework known as
MVStream for clustering multiview data streams.Te goal is
achieved by designing the multiview support vector domain
description (MVSVDD) model, where the resulting SV’s
laying is utilized to maintain the summary statistics of the
MVStream.Te main idea of the MVSVDDmodel is to map
the data items from multiple representation views
χp, p � 1, 2, . . . , ]􏼈 􏼉 to ordinary high-dimensional kernel
space κ. Tereafter, a minimal sphere possessing the mapped
multiview data items in the kernel space is generated,
represented by ⊙ . Te resulting SV’s laying provides
a precise description of multiview data on the sphere’s
surface. Along with this, a novel multiview cluster labeling
(MVCL) model was designed that identifes clusters of ar-
bitrary shapes. Te cluster’s transition can be traced for each
view, classifed as new appearing, merging, splitting, and old
disappearing candidates. Te frst dataset used for validating
the model parameters was the prawn pond (PrawnPond)
data stream acquired from the prawn pond of Zhoushan,
China. Each entry includes three views, water conditions in
monitor points I, point II, and weather conditions from
a climate station. Te water condition includes water
template, dissolved oxygen, pH level, and conductivity.
Weather conditions include atmospheric pressure, rainfall,
wind speed, wind direction, solar radiation, air temperature,
and humidity. Te second dataset is the famous Forest
CoverType data from the UCI machine learning repository.
Te Forest CoverType dataset possesses 581 012 records
collected from seven forest cover types. Te largest clusters

include 283301 and 211 840 observations, collectively oc-
cupying 85% of all the data. Te smallest cluster maintains
only 2747 observations. Each data item comprises three
views describing the environment in which trees are ob-
served (10 quantitative and 44 binary) variables. Tese are
widely used datasets for classifcation tasks and are often
used to train and test machine learning models. Table 5
represents the categorization of density-based algorithms
and the corresponding datasets used for its evaluation.

Online change detection algorithms are commonly used in
applications where changes need to be detected in real time,
such as in fraud detection, environmental hazards, and f-
nancial markets. Te ability to make accurate predictions in
real time is critical for many applications and can lead to
signifcant cost savings, improved efciency, and better out-
comes. For example, credit card companies use real-time
prediction to identify and prevent fraudulent transactions
from being processed. Similarly, predicting donations in real
time can help nonproft organizations to better allocate their
resources and tailor their fundraising eforts. By using real-time
data and machine learning algorithms, organizations can
predict the likelihood of donors making a donation and adjust
their fundraising strategies accordingly. On the other hand,
online change detection algorithms can also be used for
classifcation problems in addition to detecting changes in real
time. In text classifcation tasks, online change detection al-
gorithms can be used to detect changes in the features of text as
it is being processed. By analyzing the changing features of the
text in real time, these algorithms can identify the category to
which the text belongs and assigns a label accordingly.

4. Discussion and Conclusion

In most real-life clustering applications, the variables to be
clustered evolve continually or in chunks at discrete time
points. In such applications, a series of cluster solutions need
to be generated, i.e., one solution at each time step. Spe-
cialized algorithms have been introduced in the literature to
cluster evolving data streams that generally outperform
traditional static clustering algorithms. For example, several
variants of evolutionary clustering algorithms have been
presented that add a temporal smoothness penalty to the
cost function of a static clustering method. Similarly, al-
gorithms cluster evolving data streams online and
visualization-based methods that trace changes in cluster
solutions, and some heuristic algorithms are proposed.

Table 5: Categorization of density-based algorithms and corresponding datasets.

Algorithm Author Category Datasets
CluStream
DenStream
CEDAS

Aggarwal et al. [63]
Cao et al. [64]
Hyde et al. [65]

Density-based KDD CUP’99 network intrusion
KDD CUP’98 charitable donations

ASCS Fahy et al. [66] Density-based
Iris datasets
Wine datasets
Zoo datasets

MDSC Fahy and Yang [67] Density-based Keystroke dataset

MVSVDD Huang et al. [68] Density-based Prawn pond datasets forest
CoverType datasets

12 Journal of Probability and Statistics



A concise review of the literature suggests that evolu-
tionary algorithms, heuristic frameworks, and visualization-
based methods have applications in temporal datasets. Tese
applications are capable of tracing the taxonomy of changes
in cluster solutions. Tey compare cluster solutions at two
successive time points and identify surviving, emerging,
disappearing, splitting, and enlarging clusters. Tey have
substantial applications in dynamic Web streams, blog
content, online marketing, knowledge discovery, phone call
records, development, database management, household
expenditures, fnance and economy, social behavior, telecom
industry, and environmental factors.

On the other hand, there are situations where the data
items evolve continually. In these applications, the stream
needs to be clustered in real time. Te windowed models or
ofine clustering algorithms do not fulfl the objective in
such cases. As a result, certain models have been introduced
in the literature that combines online and ofine methods to
detect the changes in real time. Tese models have sub-
stantial applications in fraud detection, changes in behavior,
marketing, forestry, and the environment.

Tis paper presents a comprehensive review of the ap-
plications and algorithms used for monitoring the evolution of
clustering solutions in data streams. Monitoring the changes in
clustering solutions in streaming datasets plays a vital role in
policy-making and future prediction. Undoubtedly, clustering
of evolving data streams and monitoring changes in the so-
lutions has a wide range of applications that cannot be covered
in a single study. However, some of the most common are
highlighted in this article.
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