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Te aim of this paper is to obtain a Bayesian estimator of stress-strength reliability based on generalized order statistics for Pareto
distribution.Te dependence of the Pareto distribution support on the parameter complicates the calculations. Hence, in literature, one of
the parameters is assumed to be known. In this paper, for the frst time, two parameters of Pareto distribution are considered unknown. In
computing the Bayesian confdence interval for reliability based on generalized order statistics, the posterior distribution has a complex
form that cannot be sampled by conventional methods. To solve this problem, we propose an acceptance-rejection algorithm to generate
a sample of the posterior distribution.We also propose a particular case of this model and obtain the classical and Bayesian estimators for
this particular case. In this case, to obtain the Bayesian estimator of stress-strength reliability, we propose a variable changemethod.Ten,
these confdence intervals are compared by simulation. Finally, a practical example of this study is provided.

1. Introduction

Tere are at least two factors in a system, one of which puts
stress on the other and the other factor resists. In this case, the
stress-strength parameter is raised. In a system where stress is
applied to its component and members, it resists that stress.
According to this model, the more stress is created on the
system, the more likely the systemwill fail. In other words, the
system continues to operate as long as the system’s strength is
greater than the stress applied to it. Te stress-strength pa-
rameter is defned as a probability R � P(X>Y), in which Y

is the random variable of stress and X is the random variable
of strength based on which the survival of a system can be
controlled.Te term stress-strength model was frst coined by
[1].Ten, many studies were performed on the stress-strength
parameter based on diferent distributions and diferent
conditions governing random variables. Some of the most
recently used distributions include two-parameter bathtub-
shaped lifetime distribution [2], POLO distribution [3],
fnite mixture distributions [4], standard two-sided power
distribution [5], Kumaraswamy distribution [6], and Gom-
pertz distribution [7].

Te Pareto distribution is one of the most important
statistical distributions with heavy and skewed tails that is
used as a model for many socioeconomic phenomena. Te
Pareto distribution is also used to study the lifetime of
organisms and the issue of reliability, as well as many sta-
tistical issues related to fnance, insurance, and hydrology. In
recent years, the study of reliability based on the Pareto
distribution has become an exciting topic. Reference [8]
estimated the reliability of the Pareto distribution in the
presence of outliers using maximum likelihood (ML),
method of moments, least squares, and modifed maximum
likelihood. Reference [9] studied the confdence interval
estimation and approximate hypothesis testing for the re-
liability of the Pareto distribution based on progressively
type-II-censored data with the generalized variable method.
Reference [10] assumed the scale parameter of the Pareto
distribution to be known and obtained the Bayesian re-
liability estimate using conjugate and Jefrey’s priors based
on type-II-censored data. Reference [11], with the gener-
alized variable method, investigated the reliability of the
generalized Pareto distribution. Reference [12] obtained the
ML and Bayesian estimates and also the highest posterior
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density interval for multicomponent stress-strength re-
liability by considering diferent shape parameters and
common scale parameters based on upper record values.

Te generalized order statistics (GOS) model can be
considered as a unifed model for studying ordered random
variables [13].TeGOS includes a wide range of statistics with
a sequential nature, such as ordinary order statistics, pro-
gressively type-II, censored order statistics, type-II-censored
order statistics, and frst n record values as subgroups. Te
theorems expressed and proved for the GOS are also estab-
lished in its subgroups.Te importance of using these models
in terms of reliability cannot be ignored. Recently, the study of
Pareto distribution based on the GOS has attracted the at-
tention of many authors. Reference [14] obtained the ratio
distribution of the GOS from the Pareto distribution. Te
recurrence relations of moments for the Pareto distribution’s
GOS were presented by [15]. Reference [16] estimated the
parameters of the generalized Pareto distribution based on
GOS using ML, bootstrap, and Bayesian under the LSE and
LINEX loss functions. Reference [17] studied the properties,
recurrence relations of moments, and ML estimate of the
parameters for the generalized Pareto distribution based on
the GOS.

Reference [18] studied the analysis of stress-strength
reliability model based on the Pareto distribution using
records, and [10] studied this model based on censored data.
However, an analysis of the stress-strength reliability model
for the Pareto distribution based on GOS is not available in
the statistical literature. On the other hand, because the
support of the Pareto distribution depends on the parameter,
due to the difculty of having two unknown parameters in
articles, one parameter is assumed to be fxed and analyses
are performed. In this paper, for the frst time, we present the
estimation of the stress-strength reliability of the Pareto
distribution using classical and Bayesian inference based on
the GOS, where both parameters are considered unknown.
In the Bayesian method, the posterior distribution is not

a closed form; so, to produce a sample of it, we propose the
acceptance-rejection method. We also introduce a special
case of this model. In estimating the reliability of the special
case by the Bayesian method, we need to solve an integral
that cannot be solved by analytical methods and we propose
a method to solve it using variable change and Monte Carlo.

Te structure of the article includes seven sections. In
Section 2, the generalized, bootstrap percentile, and bootstrap-t
confdence intervals of stress-strength reliability (R) for the
Pareto distribution are calculated, which we denote these
confdence intervals by GCI, BPCI, and BTCI, respectively. In
Section 3,R estimation based on GOS is obtained using theML
method. In Section 4, Bayesian inference is provided for this
model by using the squared error-loss function. Section 5
obtains ML and Bayesian estimation for the specifc model of
the Pareto distribution based on GOS. Te Monte Carlo
simulation for comparing estimators and confdence intervals
obtained byML and Bayesianmethods are presented in Section
6. Finally, in Section 7, thesemethods are applied to real data to
demonstrate the application of the proposed methods.

2. The GCI, BPCI, and BTCI of R for
Pareto Distribution

Te random variable X has a Pareto distribution with the
shape parameter δ and scale parameter c when its cumu-
lative distribution function (CDF) and probability density
functions (PDFs) are as follows:

G(x) � 1 −
c

x
􏼒 􏼓

δ
, x> c,

g(x) � δc
δ
x

− (δ+1)
, x> c.

(1)

We denote it by X ∼ Pareto(δ, c).
To obtain R for Pareto distribution, let X ∼ Pareto(δ1, c1)

and Y ∼ Pareto(δ2, c2) be independent. Tus,

R � P(X>Y) � 􏽚
+∞

− ∞
GY(ω)gX(ω)dω

� 􏽚
+∞

max c1 ,c2( )
1 −

c2

ω
􏼒 􏼓

δ2
􏼢 􏼣δ1c

δ1
1 ω

− δ1+1( )dω

� 􏽚
+∞

max c1 ,c2( )
δ1c

δ1
1 ω

− δ1+1( )dω − 􏽚
+∞

max c1 ,c2( )
δ1c

δ1
1 c

δ2
2 ω

− δ1+δ2+1( )dω

�
c1

max c1, c2( 􏼁
􏼠 􏼡

δ1
1 −

δ1
δ1 + δ2

􏼠 􏼡
c2

max c1, c2( 􏼁
􏼠 􏼡

δ2
⎡⎣ ⎤⎦

� R δ1, δ2, c1, c2( 􏼁.

(2)
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Te above relation can be restated as follows:

R � 1 −
δ1

δ1 + δ2
􏼠 􏼡

c2

c1
􏼠 􏼡

δ2
⎡⎣ ⎤⎦I c1 > c2( 􏼁 +

δ2
δ1 + δ2

􏼠 􏼡
c1

c2
􏼠 􏼡

δ1
⎡⎣ ⎤⎦I c1 < c2( 􏼁

+
δ2

δ1 + δ2
􏼠 􏼡I c1 � c2( 􏼁.

(3)

Let X1, . . . , Xι1∼Pareto(δ1, c1) and Y1, . . . , Yι2 ∼ Pareto
(δ2, c2). Ten, the ML estimator of R is 􏽢Rml � R(􏽢δ1ml

, 􏽢δ2ml
,

􏽢c1ml
, 􏽢c2ml

), where 􏽢c1ml
� X(1), 􏽢c2ml

� Y(1) and

􏽢δ1ml
�

1
ι1

􏽘

ι1

i�1
log

Xi

X(1)

􏼠 􏼡⎡⎣ ⎤⎦
− 1

, 􏽢δ2ml
�

1
ι2

􏽘

ι2

i�1
log

Yi

Y(1)

􏼠 􏼡⎡⎣ ⎤⎦
− 1

.

(4)

We construct GCI, BPCI, and BTCI for R of the Pareto
distribution.

2.1. GCI. Te GCI and generalized pivotal quantity (GPQ)
were defned by [19]. We propose a GPQ in the following
theorem.

Theorem 1. Let (􏽢δ, 􏽢c) be the ML estimation of (δ, c) for
Pareto(δ, c). Ten,

(i) 􏽢δ and 􏽢c are independent.
(ii) W � 2nδ log(􏽢c/c) ∼ χ2(2).
(iii) Q � 2nδ/􏽢δ ∼ χ2(2n− 2).

Where 􏽢c � X(1) and 􏽢δ � [1/n􏽐
n
i�1log(Xi/X(1))]

− 1.

Proof. Te proof is similar to [9, 20].
Let X1, . . . , Xn ∼ Pareto(δ1, c1) and Y1, . . . , Yn′ ∼ Pareto

(δ2, c2) be independent. FromTeorem 1, it can be concluded
that

W1 � 2nδ1log
􏽢c1

c1
􏼠 􏼡 ∼ χ2(2),

W2 � 2n′δ2log
􏽢c2

c2
􏼠 􏼡 ∼ χ2(2),

Q1 � 2n
δ1
􏽢δ1

∼ χ2(2n− 2),

Q2 � 2n′
δ2
􏽢δ2

∼ χ2 2n′− 2( ).

(5)

Here, W1, W2, Q1 and Q2 are independent. Our pro-
posed GPQ for R is as follows:

Rg � R δ1g, δ2g, c1g, c2g􏼐 􏼑, (6)

where

δ1g �
Q1

􏽢δ01
2n

, δ2g �
Q2

􏽢δ02
2n
′ , c1g �

􏽢c01

exp W1/Q1
􏽢δ01􏼐 􏼑

, c2g �
􏽢c02

exp W2/Q2
􏽢δ02􏼐 􏼑

· (7)

We use Monte Carlo simulation to fnd GCI. Algorithm 1
is presented for this purpose. □

2.2. BPCI and BTCI. One of the critical issues in statistical
inference is the confdence interval for a parameter, which
expresses the status of the parameter at a certain level of
confdence. Usually, assuming the population distribution is
normal, the z-standard and t-student confdence intervals
for the mean population and the mean diference between
two populations, the chi-square and Fisher confdence in-
tervals for the variance, and the variance ratio of two
populations are used. Nevertheless, the assumption of
a normal society is not always established. Statistical studies

have shown that when data are selected from a population
with a skewed distribution or the sample size is small, the
abovementioned confdence intervals do not have the re-
quired coverage accuracy. In search of ways to solve these
problems, we can point to the bootstrap confdence intervals,
which have a high coverage accuracy, and their efciency is
further determined by the size of small samples. BPCI and
BTCI are bootstrap confdence intervals [21]. We obtain
these two confdence intervals for R of the Pareto distri-
bution with Algorithm 2.

2.3. A Special Case of Pareto Distribution. We consider
X ∼ Pareto(δ, c1) and Y ∼ Pareto(δ, c2). So, we have
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R
′

�
c1

max c1, c2( 􏼁
􏼠 􏼡

δ

1 −
1
2

c2

max c1, c2( 􏼁
􏼠 􏼡

δ
⎡⎣ ⎤⎦

� 1 −
1
2

c2

c1
􏼠 􏼡

δ
⎡⎣ ⎤⎦I c1 > c2( 􏼁 +

1
2

c1

c2
􏼠 􏼡

δ
⎡⎣ ⎤⎦I c1 < c2( 􏼁 +

1
2

I c1 � c2( 􏼁.

(8)

2.3.1. Confdence Intervals

Theorem 2. Let X1, . . . , Xn ∼ Pareto(δ, c1) and Y1, . . . , Yn′

∼ Pareto(δ, c2) be independent. Consider 􏽢c1, 􏽢c2 and 􏽢δ be the
ML estimation of c1, c2 and δ for Pareto(δ, c1) and Pareto
(δ, c2), then

(i) W1′ � 2nδ log(􏽢c1/c1) ∼ χ2(2).
(ii) W2′ � 2n′δ log(􏽢c2/c2) ∼ χ2(2).
(iii) Q′ � 2(n + n′)δ/􏽢δ ∼ χ2

(2(n+n′)− 2)
.

Where 􏽢c1 � x(1), 􏽢c2 � y(1) and 􏽢δ � [1/n + n′(􏽐
n
i�1log

(xi/x(1)) + 􏽐
n′

j�1log(yj/y(1)))]
− 1.

Proof. Te proof is similar to Teorem 1.
W1′, W2′ and Q′ are independent. We suggest the fol-

lowing GPQ for R:

Rg∗
′ � R

′ δg∗ , c1g∗ , c2g∗􏼐 􏼑, (9)

where

δg∗ �
Q
′􏽢δ0

2 n + n
′

􏼒 􏼓

, c1g∗ �
􏽢c01

exp W1′/Q
′􏽢δ0􏼒 􏼓

, c2g∗ �
􏽢c02

exp W2′/Q
′􏽢δ0􏼒 􏼓

· (10)

Similar to Algorithm 1, the GCI for R can be ob-
tained for this case. BPCI and BTCI are obtained by
Algorithm 3. □

(1) Consider (􏽢δ01, 􏽢δ02, 􏽢c01, 􏽢c02), the recorded value of (􏽢δ1, 􏽢δ2, 􏽢c1, 􏽢c2);
(2) Given 􏽢δ01, 􏽢δ02, 􏽢c01, 􏽢c02, n and n′;
(3) Generate W1, W2 ∼ χ2(2), Q1 ∼ χ2(2n− 2), and Q2 ∼ χ2

(2n′ − 2)
;

(4) Calculate δ1g, δ2g, c1g, and c2g;
(5) Calculate Rg;
(6) Repeat 2–5 steps N times and denote R1

g, . . . , RN
g ;

(7) Obtain the 100(1 − ε)% GCI by (R(ε/2)
g , R(1− ε/2)

g ), where the εth quantile of R1
g, . . . , RN

g is the same as R(ε)
g .

ALGORITHM 1: GCI.

(1) Given 􏽢δ01, 􏽢δ02, 􏽢c01, 􏽢c02, n, and n′;
(2) Generate W1, W2 ∼ χ2(2), Q1 ∼ χ2(2n− 2), and Q2 ∼ χ2

(2n′ − 2)
;

(3) Calculate 􏽢RB � R(􏽢δ1B, 􏽢δ2B, 􏽢c1B, 􏽢c2B), where
􏽢δ1B� 2n􏽢δ01/Q1, 􏽢c1B � 􏽢c01 exp(W1/2n􏽢δ01) and
􏽢δ2B� 2n

′􏽢δ02/Q2, 􏽢c2B � 􏽢c02 exp(W2/2n
′􏽢δ02)

are the estimations of the bootstrap sample for δ1, δ2, c1, and c2;
(4) Repeat 2 and 3 steps N times and denote 􏽢R

1
B, . . . , 􏽢R

N

B ;

(5) Obtain the 100(1 − ε)% BPCI by (􏽢R
(N+1)(ε/2)

B , 􏽢R
(N+1)(1− ε/2)

B ).

(6) Obtain the 100(1 − ε)% BTCI by [􏽢Rml − T
(1− ε/2)
B (Var(􏽢RB)1/2), 􏽢Rml + T

(ε/2)
B (Var(􏽢RB)1/2)],

where 􏽢Rml is the ML estimation of R, Var(􏽢RB) is the variance of 􏽢R
1
B, . . . , 􏽢R

N

B , and T
(ε)
B is the εth quantile of Υi

B � (􏽢R
i

B − 􏽢R)

(Var(􏽢RB))− 1/2.

ALGORITHM 2: BPCI and BTCI.
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3. ML Estimation of R Based on GOS

Let G and g be continuous CDF and PDF, respectively. If the
joint PDF of X(1,n,q,h), . . . , X(n,n,q,h) are as follows:

gX(1,n,q,h) ,...,X(n,n,q,h)
x1, . . . , xn( 􏼁

� Dn􏽙

n

i�1
1 − G xi􏼂 ( 􏼁􏼃

ηi− ηi+1− 1
g xi( 􏼁,

(11)

then X(1,n,q,h), . . . , X(n,n,q,h) are GOS, where

G
− 1

(0)<x1 < . . . < xn1
<G

− 1
(1),

G
− 1

(υ) � inf x: G(x)≥ υ{ },
(12)

is the quantile function of G and

Dk � 􏽙
k

i�1
ηi, k � 1, 2, . . . , n,

ηi � l + n − i + 􏽘
n− 1

m�i

qm > 0, i � 1, . . . , n, ηn+1 � 0,

(13)

and (q1, . . . , qn− 1) ∈ Rn− 1.
Let X(1,n,q,h), . . . , X(n,n,q,h) be GOS from Pareto(δ, c) and

x be the observation vector. Te likelihood function is
obtained as follows:

L(δ, c | x) � Dnδ
n
c
δ􏽐

n

i�1 ηi − ηi+1( )

· 􏽙
n

i�1
x

− δ ηi − ηi+1( )− 1
i u x(1) − c􏼐 􏼑.

(14)

Te log-likelihood function is

l(δ, c | x)∝ n log δ + δ􏽘
n

i�1
ηi − ηi+1( 􏼁log c − δ􏽘

n

i�1
ηi − ηi+1( 􏼁logxi

⎛⎝ ⎞⎠u x(1) − c􏼐 􏼑, (15)

where xi is the recorded value of the GOS sample and

u(t) �
1, t≥ 0,

0, t< 0.
􏼨 (16)

So, the ML estimator of c is 􏽢c � X(1,n,q,h) and
taking the derivative of l relative to δ and putting it equal
to zero

zl

zδ
�

n

δ
+ 􏽘

n

i�1
ηi − ηi+1( 􏼁log

c

xi

􏼠 􏼡 � 0, (17)

where the ML estimator of δ is obtained by

􏽢δ �
1
n

􏽘

n

i�1
ηi − ηi+1( 􏼁log

X(i,n,q,h)

X(1,n,q,h)

􏼠 􏼡⎡⎣ ⎤⎦
− 1

. (18)

Now, we obtain the ML estimate of R. Let X(i,n,q,h) ∼
Pareto(δ1, c1), i� 1, 2, . . . , n and Y(j,n′ ,q′ ,h′) ∼ Pareto(δ2, c2)

be GOS such that X(i,n,q,h) and Y(j,n′ ,q′ ,h′) are independent.
According to invariance property of the ML estimator, the R

estimate is given by

􏽢R � R 􏽢δ1, 􏽢δ2, 􏽢c1, 􏽢c2􏼐 􏼑

�
􏽢c1

max 􏽢c1, 􏽢c2( 􏼁
􏼠 􏼡

􏽢δ1
1 −

􏽢δ1
􏽢δ1 + 􏽢δ2

􏼠 􏼡
􏽢c2

max 􏽢c1, 􏽢c2( 􏼁
􏼠 􏼡

􏽢δ2
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦,

(19)

where 􏽢c1 � X(1,n,q,h) and 􏽢c2 � Y(1,n′,q′ ,h′),

􏽢δ1 �
1
n

􏽘

n

i�1
ηi − ηi+1( 􏼁log

X(i,n,q,h)

X(1,n,q,h)

􏼠 􏼡⎡⎣ ⎤⎦
− 1

,

􏽢δ2 �
1
n′

􏽘

n′

j�1
ηj
′ − ηj+1′􏼐 􏼑log

Y j,n′ ,q′ ,h′( )

Y 1,n′,q′ ,h′( )

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1

.

(20)

In the above equations,

(1) Given 􏽢δ0, 􏽢c01, 􏽢c02, n, and n′;
(2) Generate W1′, W2′ ∼ χ2(2), and Q′ ∼ χ2

(2(n+n′)− 2)
;

(3) Calculate 􏽢RB � R(􏽢δB, 􏽢c1B, 􏽢c2B), where 􏽢δB � 2(n + n′)􏽢δ0/Q′, 􏽢c1B � 􏽢c01e
W1′/2(n+n′)􏽢δ0 , and 􏽢c2B � 􏽢c02e

W2′/2(n+n′)􏽢δ0

are the estimations of the bootstrap sample for δ, c1, and c2;
(4) Perform steps 4, 5, and 6 in Algorithm 3.

ALGORITHM 3: BPCI and BTCI for the special case δ1 � δ2 � δ.
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ηi � h + n − i + 􏽘
n− 1

s�i

qs, i � 2, . . . , n,

ηj
′ � h
′
+ n
′
− j + 􏽘

n′− 1

t�j

qt, j � 2, . . . , n
′
.

(21)

In addition, q � (q1, . . . , qn− 1) and q′ � (q1′, . . . , qn′− 1′).

4. Bayesian Estimation of R Based on GOS

We consider the prior distributions of parameters δ and c

independently and propose their density as follows:

φ δi( 􏼁 � ζ ie
− ζ i δi − ϑi( )u δi − ϑi( 􏼁, i � 1, 2,

φ ci( 􏼁 �
ξic

ξi − 1
i

9
ξi

i

u 9i − ci( 􏼁, i � 1, 2.
(22)

Let x be the observation vector, then the joint posterior
distribution of δ1 and c1 is

Π δ1, c1 | x( 􏼁∝ L δ1, c1 | x( 􏼁φ δ1( 􏼁φ c1( 􏼁

∝ δn
1e

− δ1τ1c
δ1􏽘

n

i�1
ηi− ηi+1( )+ξ1− 1

1 u δ1 − ϑ1( 􏼁u ϵ0 − c1( 􏼁.

(23)

We obtain the marginal posterior distribution of c1 as
follows:

φ1 c1 | x( 􏼁 � 􏽚
∞

ϑ1
δn
1e

− δ1τ1c
δ1􏽐

n

i�1 ηi− ηi+1( )+ξ1− 1
1 u ϵ0 − c1( 􏼁dδ1

�
Γ n+1,τ∗ϑ1( 􏼁

τn+1
1

c
ξ1− 1
1 u ϵ0 − c( 􏼁.

(24)
Also, the conditional posterior distribution of δ1 is

φ1 δ1 c1
􏼌􏼌􏼌􏼌 , x􏼐 􏼑 �

Π δ1, c1 | x( 􏼁

φ1 c1 | x( 􏼁

�
δn
1e

− δ1τ1c
δ1􏽐

n

i�1 ηi− ηi+1( )
1 τn+1

∗ u δ1 − ϑ1( 􏼁u 91 − c1( 􏼁

Γ n + 1,τ∗ϑ1( 􏼁u ϵ0 − c1( 􏼁
,

(25)
where

ϵ0 � min x(1), 91􏼐 􏼑,

τ1 � ζ1 + 􏽘
n

i�1
ηi − ηi+1( 􏼁log xi,

τ∗ � ζ1 + 􏽘
n

i�1
ηi − ηi+1( 􏼁log

xi

ϵ0
􏼠 􏼡·

(26)

Similarly, let y be the observation vector. We obtain

φ2 c2 | y( 􏼁 � 􏽚
∞

ϑ2
δn′

2 e
− δ2τ2c

δ2􏽐
n′

j�1 ηj
′− ηj+1′( 􏼁+ξ2− 1

2 u ϵ00 − c2( 􏼁dδ2

�
Γ n
′
+1,τ∗∗ϑ2􏼒 􏼓

τn′+1
2

c
ξ2− 1
2 u ϵ00 − c2( 􏼁,

φ2 δ2 c2
􏼌􏼌􏼌􏼌 , y􏼐 􏼑 �

Π δ2, c2 | y( 􏼁

φ2 c2 | y( 􏼁

�
δn′

2 e
− δ2τ2c

δ2􏽐
n′

j�1 ηj
′− ηj+1′( 􏼁

2 τn′+1
∗∗ u δ2 − ϑ2( 􏼁u 92 − c2( 􏼁

Γ n
′
+1,τ∗∗ϑ2􏼒 􏼓u ϵ00 − c2( 􏼁

,

(27)

where

ϵ00 � min y(1), 92􏼐 􏼑,

τ2 � ζ2 + 􏽘
n′

j�1
ηj
′ − ηj+1′􏼐 􏼑logyi,

τ∗∗ � ζ2 + 􏽘
n′

j�1
ηj
′ − ηj+1′􏼐 􏼑log

yi

ϵ00
􏼠 􏼡·

(28)

We propose Algorithm 4 to obtain the Bayesian conf-
dence interval.

5. Special Case δ1 = � δ2 = � δ

In this section, we obtain theML and Bayesian estimators for
R of Pareto distribution based on GOS for the special case
δ1 � δ2 � δ.

6 Journal of Probability and Statistics



5.1. ML Estimation. We consider X(i,n,q,h) ∼ Pareto(δ, c1), i

� 1, 2, . . . , n and Y(j,n′ ,q′ ,h′) ∼ Pareto(δ, c2) to be GOS. Te
likelihood function and log-likelihood function are

L δ, c1, c2( 􏼁∝ δn+n′
c
δ􏽐

n

i�1 ηi − ηi+1( )
1 c

δ􏽐
n′

j�1 ηj
′− ηj+1′( 􏼁

2

× 􏽙
n

i�1
x

− δ ηi− ηi+1( )
i 􏽙

n′

j�1
y

− δ ηj
′− ηj+1′( 􏼁

j u x(1) − c1􏼐 􏼑u y(1) − c2􏼐 􏼑,

l δ, c1, c2( 􏼁 � n + n
′

􏼒 􏼓log δ + δ􏽘
n

i�1
ηi − ηi+1( 􏼁log c1 + δ 􏽘

n′

j�1
ηj
′ − ηj+1′􏼐 􏼑log c2

− δ􏽘
n

i�1
ηi − ηi+1( 􏼁logxi − δ 􏽘

n′

j�1
ηj
′ − ηj+1′􏼐 􏼑logyj.

(29)

Terefore, 􏽢c1 � X(1,n,q,h), 􏽢c2 � Y(1,n′ ,q′ ,h′), and

􏽢δ �
1

n + n′
􏽘

n

i�2
ηi − ηi+1( 􏼁log

X(i,n,q,h)

X(1,n,q,h)

􏼠 􏼡 + 􏽘
n′

j�2
ηj
′ − ηj+1′􏼐 􏼑log

Y j,n′ ,q′ ,h′( )

Y 1,n′ ,q′,h′( )

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1

, (30)

are the ML estimations of the parameters c1, c2, and δ.

5.2. Bayesian Estimation. Consider the following prior
distributions for parameters δ, c1, and c2:

φ(δ) � ζe
− ζδ

, δ > 0,

φ ci( 􏼁 �
ξic

ξi − 1
i

9
ξi

i

u 9i − ci( 􏼁, i � 1, 2.

(31)

Te joint posterior distribution is

Π δ, c1, c2 | x, y( 􏼁∝ δn+n′
c
δ􏽐

n

i�1 ηi − ηi+1( )+ξ1− 1
1 c

δ􏽐
n′

j�1 ηj
′− ηj+1′( 􏼁+ξ2− 1

2

× e
− δτ′

u(δ)u ϵ0 − c1( 􏼁u ϵ00 − c2( 􏼁,

(32)

where ϵ0 � min x(1), c1􏽮 􏽯, ϵ00 � min y(1), c2􏽮 􏽯 and

τ′ � ζ + 􏽘
n

i�1
ηi − ηi+1( 􏼁logxi + 􏽘

n′

j�1
ηj
′ − ηj+1′􏼐 􏼑logyj. (33)

In this case, the R changes as follows:

R
′

� 1 −
1
2

c2

c1
􏼠 􏼡

δ
⎡⎣ ⎤⎦I c1 > c2( 􏼁

+
1
2

c1

c2
􏼠 􏼡

δ
⎡⎣ ⎤⎦I c1 < c2( 􏼁 +

1
2

I c1 � c2( 􏼁.

(34)

Based on the squared error loss function, the Bayesian
estimator of R is 􏽢R′ � E(R′ | x, y). For this purpose, we must
obtain E[(c2/c1)

δ | x, y] and E[(c1/c2)
δ | x, y] under the

(1) Generate c11 ∼ φ1(c1 | x) and c22 ∼ φ2(c2 | y);
(2) Generate δ11 ∼ φ1(δ1 | c1, x) and δ22 ∼ φ2(δ2 | c2, y);
(3) Obtain RBayes � R(δ11, δ11, c11, c22);
(4) Repeat the previous three steps N times and denote R1

Bayes, . . . , RN
Bayes;

(5) Sort Ri
Bayes, i � 1, . . . , N􏽮 􏽯 and say R

(1)
Bayes, . . . , R

(N)
Bayes;

(6) Compute 100(1 − ε)% Bayesian confdence interval by (R
N(ε/2)
Bayes , R

N(1− ε/2)
Bayes ).

ALGORITHM 4: Bayesian confdence intervals.
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posterior distribution. By considering ϵ∗ � min ϵ0, ϵ00􏼈 􏼉, we
obtain

E
c2

c1
􏼠 􏼡

δ

| x, y⎡⎣ ⎤⎦ � 􏽚
∞

0
􏽚
ϵ∗

0
􏽚
ϵ0

c2

c2

c1
􏼠 􏼡

δ

δn+n′
c
δ􏽐

n

i�1 ηi − ηi+1( )+ξ1− 1
1

× c
δΣn′j�1 ηj

′− ηj+1′( 􏼁+ξ2− 1
2 e

− δτ′
dc1dc2dδ

� 􏽚
∞

0

δn+n′
e

− δτ′

δA + ξ1

ϵδA+ξ1
0 ϵ

δC+ξ2
∗

δC + ξ2
−
ϵδD+ξ1+ξ2
∗

δD + ξ1 + ξ2
⎡⎣ ⎤⎦dδ

� 􏽚
∞

0
ϕ(δ)dδ,

(35)

where A � 􏽐
n
i�1(ηi − ηi+1) − 1, C � 􏽐

n′

j�1(ηj
′ − ηj+1′ ) + 1,

D � A + C, and

ϕ(δ) �
δn+n′

e
− δτ′

δA + ξ1

ϵδA+ξ1
0 ϵ

δC+ξ2
∗

δC + ξ2
−
ϵδD+ξ1+ξ2
∗

δD + ξ1 + ξ2
⎡⎣ ⎤⎦dδ. (36)

Integral 49 cannot be solved by analytical methods. To
solve this integral, we propose a variable change method. Let
U � 1/1 + δ, then

􏽚
∞

0
ϕ(δ)dδ � 􏽚

1

0
ϕ

1 − u

u
􏼒 􏼓

1
u
2􏼠 􏼡du � E ϕ

1 − u

u
􏼒 􏼓

1
u
2􏼠 􏼡􏼢 􏼣,

(37)

where U ∼ U(0, 1) is from uniform distribution. We gen-
erate M samples form U(0, 1). Tus, under the strong law of
large numbers,

E
c2

c1
􏼠 􏼡

δ

| x, y⎡⎣ ⎤⎦ ≈
1

M
􏽘

M

z�1
ϕ

1 − uz

uz

􏼠 􏼡
1
u
2
z

􏼠 􏼡· (38)

Similarly, we repeat the above steps for E[(c1/c2)
δ | x, y]

as follows:
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δ
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(39)

where A∗ � 􏽐
n′

j�1(ηj
′ − ηj+1′ ) − 1, C∗ � 􏽐

n
i�1(ηi − ηi+1) + 1,

D∗ � A∗ + C∗, and

ϕ∗(δ) �
δn+n′

e
− δτ′

δA
∗

+ ξ2

ϵδA∗+ξ2
00 ϵ

δC∗+ξ1
∗

δC
∗

+ ξ1
−
ϵδD∗+ξ1+ξ2
∗

δD
∗

+ ξ1 + ξ2
⎡⎣ ⎤⎦· (40)

6. Simulation

Te Monte Carlo simulation is used to compare GCI, BPCI,
and BTCI of R for Pareto distribution and the specifc case of
Pareto distribution. For this purpose, samples of Pareto
distribution with diferent sample sizes (n, n′) and diferent
values of R � 0.148 (δ1 � 3, δ2 � 3, c1 � 2, c2 � 3), R � 0.852
(δ1 � 3, δ2 � 3, c1 � 3, c2 � 2), and R � 0.600 (δ1 � 2, δ2 �

3, c1 � 3, c2 � 3) and also for the special case, samples with
diferent values of R � 0.222(δ � 2, c1 � 2, c2 � 3), R � 0.987

(δ � 4, c1 � 5, c2 � 2), and R� 0.500 (δ1 � 3, c1 � 2, c2 � 2)

are generated.Te length (L) and coverage probability (CP) of
these confdence intervals for Pareto distribution and its
specifc case are summarized in Tables 1 and 2, respectively.
Based on these two tables, the CPs of GCI are approximately
equal to 0.95, the CPs of BPCI are less than 0.95, and the CPs
of BTCI are greater than 0.95. For BPCI and BTCI, in most
cases, with the increase of (n, n′), the CPs approach 0.95. We
can conclude GCI is better than BPCI and BTCI. Also, with
increasing sample size (n, n′), the L of all confdence intervals
has decreased.

We also compare the ML and Bayesian confdence in-
tervals of R based on GOS for Pareto distribution and its
specifc case. Consider (n, n′) ∈ (10, 10), (10, 15), (15, 10),{

(20, 20)} and the number of repetitions is 10,000. To generate
a GOS sample, we perform the algorithm proposed in [22].
Te random samples of Pareto distribution with parameters
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Table 1: L and CP of generalized, bootstrap percentile, and bootstrap-t confdence intervals (95%) of R for Pareto distribution for
R � 0.148(δ1 � 3, δ2 � 3, c1 � 2, c2 � 3), R � 0.852(δ1 � 3, δ2 � 3, c1 � 3, c2 � 2), and R� 0.6(δ1 � 2, δ2 � 3, c1 � 3, c2 � 3).

R n, n′
GCI BPCI BTCI

L CP L CP L CP

0.148

5, 5 0.540 0.957 0.397 0.910 0.233 0.969
5, 10 0.535 0.959 0.351 0.877 0.219 0.679
10, 5 0.534 0.951 0.313 0.943 0.216 0.970
10, 10 0.528 0.950 0.310 0.936 0.201 0.968
10, 15 0.526 0.952 0.285 0.920 0.200 0.961
15, 15 0.519 0.952 0.280 0.935 0.162 0.974
15, 20 0.507 0.951 0.272 0.941 0.162 0.991
20, 15 0.503 0.950 0.271 0.944 0.159 0.960
20, 20 0.414 0.952 0.268 0.944 0.158 0.959

0.852

5, 5 0.508 0.950 0.461 0.942 0.211 0.967
5, 10 0.506 0.951 0.448 0.941 0.251 0.985
10, 5 0.476 0.952 0.359 0.938 0.304 0.984
10, 10 0.470 0.955 0.347 0.945 0.258 0.963
10, 15 0.471 0.952 0.337 0.941 0.264 0.965
15, 15 0.423 0.957 0.331 0.943 0.314 0.968
15, 20 0.401 0.954 0.326 0.947 0.410 0.968
20, 15 0.324 0.952 0.235 0.935 0.271 0.960
20, 20 0.299 0.956 0.225 0.943 0.221 0.962

0.600

5, 5 0.406 0.950 0.342 0.933 0.333 0.964
5, 10 0.402 0.953 0.297 0.940 0.312 0.959
10, 5 0.367 0.954 0.294 0.944 0.312 0.963
10, 10 0.342 0.954 0.238 0.947 0.312 0.970
10, 15 0.344 0.952 0.226 0.948 0.297 0.975
15, 15 0.268 0.958 0.215 0.941 0.288 0.972
15, 20 0.265 0.953 0.209 0.930 0.282 0.981
20, 15 0.265 0.957 0.174 0.947 0.263 0.971
20, 20 0.237 0.954 0.165 0.944 0.261 0.974

Table 2: L and CP of generalized, bootstrap percentile, and bootstrap-t confdence intervals (95%) of R in the special case of Pareto
distribution for R � 0.222(δ � 2, c1 � 2, c2 � 3), R � 0.987(δ � 4, c1 � 5, c2 � 2), and R � 0.5(δ � 3, c1 � 2, c2 � 2).

R n, n′
GCI BPCI BTCI

L CP L CP L CP

0.222

5, 5 0.620 0.952 0.322 0.888 0.391 0.958
5, 10 0.554 0.959 0.315 0.914 0.239 0.964
10, 5 0.496 0.951 0.275 0.924 0.231 0.961
10, 10 0.409 0.954 0.273 0.927 0.214 0.967
10, 15 0.363 0.959 0.273 0.907 0.180 0.968
15, 15 0.323 0.950 0.260 0.913 0.380 0.962
15, 20 0.311 0.951 0.260 0.938 0.376 0.973
20, 15 0.291 0.955 0.260 0.927 0.270 0.965
20, 20 0.297 0.953 0.252 0.933 0.164 0.976

0.987

5, 5 0.572 0.958 0.551 0.945 0.309 0.971
5, 10 0.570 0.954 0.551 0.948 0.304 0.961
10, 5 0.572 0.955 0.551 0.944 0.229 0.969
10, 10 0.562 0.957 0.550 0.942 0.215 0.969
10, 15 0.554 0.956 0.549 0.939 0.214 0.976
15, 15 0.554 0.950 0.450 0.944 0.209 0.972
15, 20 0.551 0.959 0.449 0.945 0.203 0.961
20, 15 0.551 0.958 0.449 0.940 0.201 0.961
20, 20 0.548 0.956 0.449 0.945 0.108 0.961

0.500

5, 5 0.637 0.949 0.733 0.940 0.328 0.963
5, 10 0.579 0.956 0.713 0.946 0.328 0.970
10, 5 0.567 0.953 0.601 0.926 0.304 0.974
10, 10 0.514 0.959 0.595 0.942 0.290 0.978
10, 15 0.510 0.955 0.596 0.941 0.269 0.972
15, 15 0.442 0.958 0.556 0.945 0.214 0.969
15, 20 0.420 0.949 0.549 0.936 0.158 0.961
20, 15 0.410 0.950 0.539 0.936 0.145 0.976
20, 20 0.379 0.957 0.530 0.944 0.112 0.959
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(1) Generate independently ϖ1, . . . ,ϖs ∼ U(0, 1);
(2) Set Zi � ϖ1/ηi

i , i � 1, . . . , s, where ηi � l + n − i + 􏽐
n− 1
m�i qm;

(3) Obtain E∗s � 1 − 􏽑
s
i�1Zi, where E∗s is the sth uniform GOS;

(4) Calculate Xs
′ � F− 1(E∗s ), s � 1, . . . , n, where Xs

′ is the sth GOS based on F.

ALGORITHM 5: Generate the GOS sample.

Table 3: Bias, MSE, L, and CP of ML and Bayesian confdence interval based on GOS for Pareto distribution
(ζ1 � 2, ζ2 � 3, ϑ1 � 0, ϑ2 � 0, 91 � 3, 92 � 5, ξ1 � 2, and ξ2 � 2).

R n, n′
OOS FR PTII

MLE Bayes MLE Bayes MLE Bayes

0.148

10, 10

Bias 0.077 0.148 0.116 0.049 − 0.022 0.158
MSE 0.013 0.025 0.143 0.007 0.004 0.028

L 0.352 0.390 0.614 0.348 0.395 0.391
CP 0.966 0.950 0.964 0.951 0.950 0.950

10, 15

Bias 0.033 0.117 − 0.129 0.046 − 0.053 0.116
MSE 0.006 0.015 0.026 0.006 0.005 0.015

L 0.290 0.320 0.586 0.344 0.330 0.334
CP 0.959 0.950 0.954 0.950 0.950 0.950

15, 10

Bias 0.146 0.166 0.700 0.031 0.037 0.188
MSE 0.028 0.030 0.579 0.005 0.005 0.039

L 0.215 0.318 0.525 0.333 0.313 0.324
CP 0.967 0.951 0.967 0.950 0.954 0.950

20, 20

Bias 0.104 0.131 − 0.091 − 0.527 0.002 0.137
MSE 0.014 0.018 0.134 0.282 0.002 0.020

L 0.128 0.308 0.205 0.310 0.274 0.314
CP 0.975 0.950 0.914 0.950 0.975 0.950

0.83

10, 10

Bias − 0.078 − 0.421 − 0.097 − 0.525 0.020 − 0.153
MSE 0.013 0.187 0.143 0.279 0.005 0.028

L 0.841 0.549 0.577 0.376 0.502 0.726
CP 0.824 0.953 0.750 0.953 0.951 0.958

10, 15

Bias − 0.154 − 0.482 − 0.682 − 0.539 − 0.045 − 0.229
MSE 0.031 0.237 0.551 0.293 0.006 0.059

L 0.776 0.458 0.441 0.355 0.501 0.675
CP 0.952 0.951 0.941 0.952 0.913 0.957

15, 10

Bias − 0.033 − 0.413 0.155 − 0.520 0.060 − 0.137
MSE 0.007 0.180 0.027 0.273 0.007 0.022

L 0.760 0.446 0.424 0.355 0.419 0.632
CP 0.927 0.955 0.919 0.956 0.969 0.951

20, 20

Bias − 0.103 − 0.499 0.002 − 0.208 − 0.002 − 0.282
MSE 0.014 0.251 0.171 0.047 0.002 0.085

L 0.752 0.387 0.424 0.316 0.357 0.631
CP 0.897 0.951 0.942 0.953 0.953 0.954

0.5

10, 10

Bias 0.003 − 0.103 0.017 − 0.205 − 0.005 − 0.008
MSE 0.015 0.020 0.175 0.046 0.014 0.010

L 0.644 0.535 0.319 0.379 0.645 0.620
CP 0.932 0.952 0.817 0.952 0.951 0.954

10, 15

Bias − 0.091 − 0.164 − 0.444 − 0.222 − 0.002 − 0.006
MSE 0.020 0.031 0.232 0.053 0.015 0.012

L 0.562 0.449 0.205 0.350 0.510 0.539
CP 0.885 0.958 0.962 0.957 0.785 0.956

15, 10

Bias 0.087 − 0.085 0.446 − 0.192 − 0.124 − 0.098
MSE 0.019 0.016 0.230 0.040 0.025 0.018

L 0.514 0.446 0.202 0.349 0.435 0.486
CP 0.967 0.953 0.948 0.956 0.972 0.951

20, 20

Bias − 0.002 − 0.167 0.454 − 0.191 − 0.093 − 0.078
MSE 0.006 0.029 0.233 0.040 0.016 0.016

L 0.509 0.387 0.135 0.319 0.389 0.395
CP 0.959 0.952 0.933 0.952 0.943 0.951
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(1) Require: Suppose we want to generate a sample of a PDF f that does not have a simple form,Generate U∗ ∼ U(0, 1);
(2) Generate y∗ ∼ g(y∗), where g(y∗) is a PDF that is close to f and it is easy to sample;
(3) Obtain Cm � max f(x)/g(x)􏼈 􏼉;
(4) If U∗ ≤f(y∗)/Cmg(y∗), then select y∗ as the sample, else go to the frst step;
(5) Repeat the above steps until reach the desired number of samples.

ALGORITHM 6: Acceptance-rejection method.

Table 4: Bias, MSE, L, and CP of ML and Bayesian confdence interval based on GOS for Pareto distribution
(ζ1 � 2, ζ2 � 2, ϑ1 � 1, ϑ2 � 1, 91 � 4, 92 � 4, ξ1 � 3, and ξ2 � 3).

R n, n′
OOS FR PTII

MLE Bayes MLE Bayes MLE Bayes

0.26

10, 10

Bias 0.218 0.217 0.533 0.275 0.067 0.133
MSE 0.064 0.051 0.392 0.085 0.014 0.021

L 0.571 0.553 0.472 0.462 0.470 0.475
CP 0.964 0.950 0.879 0.955 0.968 0.953

10, 15

Bias 0.157 0.195 0.018 0.274 0.003 0.113
MSE 0.037 0.041 0.145 0.085 0.007 0.015

L 0.559 0.527 0.432 0.461 0.376 0.431
CP 0.972 0.951 0.773 0.953 0.947 0.952

15, 10

Bias 0.330 0.255 0.728 0.284 0.192 0.197
MSE 0.120 0.067 0.532 0.091 0.045 0.042

L 0.535 0.519 0.430 0.376 0.304 0.432
CP 0.951 0.950 0.871 0.952 0.961 0.950

20, 20

Bias 0.283 0.237 0.327 − 0.053 0.143 0.200
MSE 0.087 0.058 0.148 0.013 0.025 0.042

L 0.444 0.436 0.430 0.320 0.293 0.316
CP 0.950 0.950 0.947 0.947 0.958 0.950

0.60

10, 10

Bias 0.140 − 0.082 0.308 − 0.051 0.144 − 0.063
MSE 0.031 0.009 0.147 0.013 0.030 0.007

L 0.453 0.570 0.542 0.665 0.347 0.590
CP 0.975 0.952 0.835 0.958 0.972 0.951

10, 15

Bias 0.079 − 0.101 − 0.101 − 0.046 0.046 − 0.090
MSE 0.016 0.012 0.194 0.012 0.013 0.010

L 0.382 0.543 0.386 0.663 0.324 0.552
CP 0.967 0.952 0.877 0.955 0.961 0.953

15, 10

Bias 0.211 − 0.059 0.398 − 0.038 0.235 − 0.041
MSE 0.051 0.005 0.159 0.011 0.060 0.004

L 0.373 0.532 0.335 0.620 0.288 0.505
CP 0.959 0.955 0.880 0.950 0.951 0.954

20, 20

Bias 0.163 − 0.087 0.089 − 0.317 0.182 − 0.070
MSE 0.031 0.008 0.025 0.112 0.037 0.006

L 0.317 0.532 0.326 0.552 0.230 0.456
CP 0.959 0.955 0.887 0.959 0.953 0.957

0.88

10, 10

Bias 0.001 − 0.255 0.083 − 0.313 0.053 − 0.175
MSE 0.003 0.069 0.026 0.109 0.005 0.032

L 0.417 0.481 0.476 0.395 0.239 0.325
CP 0.947 0.953 0.867 0.950 0.968 0.950

10, 15

Bias − 0.035 − 0.297 − 0.239 − 0.313 0.019 − 0.202
MSE 0.005 0.091 0.217 0.108 0.002 0.043

L 0.390 0.433 0.426 0.390 0.235 0.323
CP 0.940 0.952 0.884 0.951 0.964 0.951

15, 10

Bias 0.033 − 0.237 0.118 − 0.300 0.076 − 0.159
MSE 0.003 0.059 0.014 0.101 0.007 0.026

L 0.327 0.430 0.426 0.391 0.234 0.316
CP 0.959 0.951 0.898 0.953 0.975 0.950

20, 20

Bias − 0.001 − 0.307 0.118 − 0.297 0.054 − 0.196
MSE 0.002 0.096 0.014 0.098 0.004 0.039

L 0.321 0.417 0.421 0.311 0.225 0.315
CP 0.958 0.954 0.821 0.950 0.974 0.951
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Table 5: Bias, MSE, L, and CP of ML and Bayesian confdence interval based on GOS in the special case of Pareto distribution
(ζ � 1, ϑ� 0, 91 � 5, 92 � 5, ξ1 � 1 and ξ2 � 1).

R n, n′
OOS FR PTII

MLE Bayes MLE Bayes MLE Bayes

0.75

10, 10

Bias − 0.074 0.250 − 0.120 0.250 0.015 0.250
MSE 0.018 0.062 0.185 0.063 0.008 0.062

L 0.589 0.550 0.562 0.451 0.439 0.550
CP 0.896 0.950 0.961 0.951 0.962 0.962

10, 15

Bias − 0.136 0.250 − 0.647 0.248 − 0.067 0.250
MSE 0.032 0.062 0.484 0.062 0.015 0.062

L 0.543 0.550 0.491 0.451 0.384 0.551
CP 0.812 0.951 0.665 0.951 0.899 0.950

15, 10

Bias − 0.033 0.250 0.223 0.247 0.064 0.250
MSE 0.010 0.062 0.067 0.161 0.009 0.062

L 0.515 0.520 0.465 0.450 0.358 0.549
CP 0.929 0.959 0.972 0.950 0.965 0.951

20, 20

Bias − 0.093 0.250 − 0.151 − 0.357 − 0.007 0.250
MSE 0.016 0.062 0.219 0.127 0.006 0.062

L 0.447 0.505 0.464 0.406 0.348 0.548
CP 0.836 0.950 0.965 0.950 0.948 0.955

Table 6: Rolling contact fatigue data for two steel compositions 106 stress cycles.

X 3.19 4.26 4.47 4.53 4.67 4.69 5.78 6.79 9.37 12.75
Y 3.46 5.22 5.69 6.54 9.16 9.40 10.19 10.71 12.58 13.41
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Figure 1: QQ plot for X.
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(δ, γ) ∈ (δ1 � 3, c1 � 2, δ2 � 3, c2 � 3), (δ1 � 1, c1 � 3,􏼈 δ2 �

1, c2 � 1), (δ1 � 1, c1 � 1, δ2 � 1, c2 � 1)} are generated us-
ing Algorithm 5.

Te Bayesian confdence interval of R is obtained by
Algorithm 4. According to steps 1 and 2 of this algorithm, we
need to generate samples from φ1(c1 | x), φ2(c2 | y),φ1
(δ1 | c1, x), and φ2(δ2 | c2, y). As can be seen from 31, 32, 36,
and 37, these density functions do not have a simple form. To
generate samples of these density functions, we propose the
Algorithm 6.Te values of the hyperparameters are considered
ζ1 � 2, ζ2 � 3, ϑ1 � 0, ϑ2 � 0, 91 � 3, 92 � 5, ξ1 � 2 and ξ2 � 2.
Finally, 􏽢R, L, and CP of R by using the ML and Bayesian
methods for Pareto distribution are given in Table 3.

Te abovementioned steps are repeated with diferent
values of parameters (δ, γ) ∈ (δ1 � 2, c1 � 2, δ2 � 3, c2 � 3),􏼈

(δ1 � 2, c1 � 3, δ2 � 3, c2 � 3),(δ1 � 2, c1 � 3, δ2 � 3, c2 � 2)}

and diferent values of hyperparameters ζ1 � 2, ζ2 � 2, ϑ1 �

1, ϑ2 � 1, 91 � 4, 92 � 4, ξ1 � 3 and ξ2 � 3, and the results are
summarized in Table 4. For the special case of Pareto dis-
tribution, we produce a sample with parameters δ � 1, c1 � 2,

c2 � 1(R � 0.75). We consider the hyperparameters ζ � 1,

ϑ � 0, 91 � 5, 92 � 5, ξ1 � 1 and ξ2 � 1 for the Bayesian
method and report the results in Table 5. As mentioned
earlier, GOS includes many special cases. We consider
three cases ordinary order statistics (OOS) with l � 1, qi �

0, ηi � n − i + 1, frst n record values (FR) with
l � 1, qi � − 1, ηi � 1, and progressively type-II (PTII) with
l � h + 1, qi � 0, ηi � n + h − i + 1. From Tables 3–5, it can
be concluded that for OOS, FR, and PTII, the CP values of
the Bayesian method are almost equal to 0.95 but the ML
method is far from 0.95, which in most cases approaches
0.95 with the increase of the sample sizes. Te L of con-
fdence intervals decreases with increasing (n, n′) in both
methods for OOS, FR, and PTII.

7. Application

In this section, we use the rolling contact fatigue data for two
steel compositions 106 stress cycles [10]. Tese data are
reported in Table 6. Te Kolmogorov–Smirnov test shows
that X ∼ Pareto(1.79, 3.19)(D � 0.3045, p− value � 0.3125)

and Y ∼ Pareto(1.19, 3.46)(D � 0.2817, p− value � 0.4062).
Also, Figures 1 and 2 show the QQ plots for these data.

For these data, 􏽢R � 0.34 and GCI � (0.2420, 0.6505),
BPCI � (0.1120, 0.5277), and BTCI � (0.1278, 0.6868). Te
estimators of R for OOS, FR, and PTII are 0.343, 0.417, and
0.356, respectively. We can conclude that the estimators for
OOS, FR, and PTII are close to the 􏽢R.

8. Conclusion

Tis paper investigated classical and Bayesian stress-strength
reliability estimators based on GOS for Pareto distribution
for the frst time. It was proposed to calculate generalized
confdence intervals and bootstrap Algorithms 1 and 2.
Ten, the ML estimate of R was obtained based on GOS. To
calculate the Bayesian confdence interval, Algorithm 4 was
presented due to the complexity of the posterior distribu-
tion. In addition, classical and Bayesian inference was
performed for a specifc case of this model (δ1 � δ2 � δ). In
this case, for Bayesian estimation, we encountered a complex
integral that could not be solved analytically and we pro-
posed a change of variable method to solve this integral. In
the simulation part, we considered three specifc GOSmodes
including OOS, FR, and PTII and concluded that the CP
values of the Bayesian method are approximately equal to
0.95. As the sample size increases, the CP values of the ML
method approach 0.95 and the L values decrease in all
confdence intervals.

2.5

5.0

7.5

10.0

12.5

−1 0 1
Y

Q
Q

 P
lo

t

Figure 2: QQ plot for Y.
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