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Determining the right number of clusters without any prior information about their numbers is a core problem in cluster analysis.
In this paper, we propose a nonparametric clustering method based on diferent weighted spatial rank (WSR) functions.Temain
idea behind WSR is to defne a dissimilarity measure locally based on a localized version of multivariate ranks. We consider
a nonparametric Gaussian kernel weights function. We compare the performance of the method with other standard techniques
and assess its misclassifcation rate.Temethod is completely data-driven, robust against distributional assumptions, and accurate
for the purpose of intuitive visualization and can be used both to determine the number of clusters and assign each observation to
its cluster.

1. Introduction

In recent years, there has been a signifcant advancement in
clustering methods in the feld of data science and machine
learning. Density-based spatial clustering of applications
with noise (DBSCAN) has become one of the popular
nonparametric clustering algorithms that group together
points that are close to each other and are surrounded by
low-density areas [1]. Also, hierarchical clustering [2] has
been widely used to build a hierarchy of clusters by either
merging smaller clusters into larger ones or splitting larger
clusters into smaller ones. Te K-means clustering [3] re-
mains one of the most popular partitioning methods, where
the data are partitioned into K distinct, nonoverlapping
clusters.

In addition, spectral clustering [4] has gained popularity
due to its ability to use the eigenvectors of the similarity
matrix to partition the data into clusters. Afnity propa-
gation [5] assigns each data point to an exemplar, which is
a representative point of a cluster, and iteratively updates the

exemplars until convergence. Fuzzy clustering [6] assigns
each data point a probability of belonging to each cluster,
rather than assigning it to a single cluster. Te K-medoids
algorithm introduced by [7] uses actual data points as
representatives or medoids for each cluster, and medoids
selected from the dataset are typically the most centrally
located points within a cluster. Tis makes K-medoids more
robust to outliers and noise compared to K-means. Another
recent clustering method is the distance density clustering
(DDC) introduced by [8]. It is a distance density clustering
method that is a medoid-based clustering with time series
data density consideration which provides clustering results
in a hierarchy fashion.

Te clustering by the fast search and fnd of density peaks
(densityClust) method [9] is a density-based clustering
method that aims to identify clusters based on the local
density of data points and the distances between them,
which makes it suitable for datasets with irregularly shaped
clusters and varying densities. Furthermore, neighborhood
grid clustering (NGC) introduced by [10] is a density-based
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clustering algorithm that aims to identify clusters based on
the local density of data points and their spatial relation-
ships. It utilizes a grid-based approach to partition the data
space into cells and then assigns data points to their cor-
responding cells. Te algorithm then determines the cluster
assignments by considering the density and spatial prox-
imity of the points within each cell.

Tese methods have their own strengths and weaknesses
and are suitable for diferent types of data and applications.
Te choice of the appropriate clustering method depends on
various factors such as the size and nature of the data, the
desired number of clusters, and the research question being
addressed.

Further advancements have been made in the use of
spatial ranks to analyse multivariate data, with the devel-
opment of nonparametric methods being particularly no-
table [11–13]. Tey have a number of attractive features
including being distribution-free and easy to compute.
Furthermore, the traditional spatial ranks function gives
information about how central each observation is and its
direction in relation to the centre. However, they do not
capture the distances between each pair of observations,
which is important for cluster analysis.

Recently, Baragilly and Chakraborty [11] utilized spatial
ranks as a clustering tool, using a forward search method-
ology based on nonparametric multivariate spatial rank
functions to determine the number of clusters in the data.
Teir method does not depend on the choice of the initial
subsample and has been shown to perform well in diferent
mixture distributions. Tis work has been extended to
clustering functional datasets in medical applications [14].

Tis paper proposes a novel approach to utilizing spatial
ranks for clustering, using a nonparametric weighted spatial
ranks function that takes into account the distances between
each pair of observations as weights and defnes a dissimi-
larity measure based on spatial ranks. By measuring the
distances between each pair of observations instead of their
central tendency, it becomes easier to segment a given set of
data into a specifc number of clusters.

Te main idea behind the weighted spatial ranks (WSRs)
is to defne a dissimilarity measure based on a localized
version of spatial ranks, such that the weighted ranks can be
used as a classifer and a confrmatory tool to determine the
number of clusters and assign each observation to its cluster.
Proper selection of a weight function can lead to better
identifcation of clusters, and kernel weights are a popular
choice in pattern analysis, classifcation, cluster analysis,
machine learning, and support vector machines.

Te paper also demonstrates how weighted spatial ranks
may be used for the purpose of visualizing the clusters, so
that the number of clusters may be determined using
weighted rank contours for a low-dimensional input space
after dimension reduction.

Section 2 of the paper introduces the weighted spatial
rank function and evaluates its use for diferent parametric
and nonparametric weight functions. Section 3 demon-
strates the weighted rank-based clustering algorithm and
proposes a confrmatory classifer based on weighted ranks
that can be used to assign observations to the most

appropriate cluster for two-dimensional data. Section 4
demonstrates the weighted rank-based clustering algorithm
to higher dimensional data, and Section 5 provides nu-
merical examples based on both simulated and real datasets
to examine the performance of the proposed algorithm. Te
algorithm is compared with other clustering methods in
Section 6, and concluding remarks are presented in
Section 7.

2. Weighted Spatial Rank Functions

In this section, we propose two diferent weighted spatial
rank functions. Suppose that X ∈ Rd has a d-dimensional
distribution of F, which we assume to be continuous hereon,
then the unweighted spatial rank function of the point
X ∈ Rd with respect to F can be defned as
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Te frst weighted spatial rank function of the point
X ∈ Rd with respect to F is a vector function and can be
defned as
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Te second weighted spatial rank function can be de-
fned as
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where their L2 norms are

WSRN(1)
Fn
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(x)
�����

�����. (5)

Note that, the diference between (2) and (3) lies with
the scale (denominator) which in (2) is the sum of the
weights of wi where wi � wi(x) and is therefore data
dependent, whereas in (3) it depends on n which is data
independent.

Kernel weight functions are often used in nonparametric
estimation and, as already indicated, in a range of classif-
cation and pattern recognition problems. Here, we consider
the Gaussian kernel weight, which is one of the commonly
used nonparametric kernel weight functions and it is defned
as follows:

wi � e
− x− Χi‖ ‖

2/2
, (6)
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where ‖x‖ is the Euclidean norm such that
‖x‖ �

���������������
x2
1 + x2

2 + . . . + x2
d

􏽱
is the direction of the d-

dimensional vector x (for comprehensive details on kernel
weights, see Souza [15])

3. Weighted Spatial Ranks
Clustering Algorithm

We now introduce the weighted spatial ranks clustering
algorithm starting with the bivariate case (d � 2) before
considering the higher dimensional case d> 2.

3.1. Weighted Spatial Ranks Clustering Algorithm for a Bi-
variate Case (d� 2)

(1) Let X1,X2, ...Xn ∈ R2 be a random sample with two
variables x1 and x2 and let Sx be the Cartesian
product of two equally spaced sets,
Sx1 � min(x1), . . . , max (x1)􏼈 􏼉 and Sx2

� min(x2),􏼈

· · · , max (x2)} so that each s ∈ Sx is a two-
dimensional vector.

(2) For each s ∈ Sx, we calculate WSRN(s) with respect
to Xias
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where i � 1, . . . n and wi � e− ‖s− Xi‖
2/2.

(3) Plot the weighted functional spatial ranks contour
based on WSRN(s) and s∊Sx, and then determine
the number of clusters K from the contour lines.

(4) Based on the contour lines, specify the assigned
observations in each cluster. You can use a lower
contour level for better visualization.

(5) Use the weighted spatial rank classifer’s rule defned
in Section 3.2 to confrm the assignment of each
observation and allocate the unassigned observations
to the proper cluster.

3.2.Weighted Spatial Ranks Classifer. Suppose that we have
k groups, with distributions F1, F2, ..., Fk, then based on the
second WSR function in (3), we can assign d-dimensional
observation vector x to the i-th group if

WSRN(2)
Fi

(x) � max
1≤j≤ k

WSRN(2)
Fj

(x), (8)

where i≠ j, 1≤ i≤ k. Note, if we had used WSR(1)
Fi
, then since

WSR(1)
Fi

increases outward from the spatial median, we have

WSRN(1)
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(x) � min
1≤j≤ k

WSRN(1)
Fj

(x). (9)

So, after determining the number of clusters using the
WSR contour, (8) may be used to assign each observation to
the most suitable cluster.

3.3. Confrmatory Analysis Based on the Weighted Spatial
Ranks Clustering Algorithm. In order to assess the weighted
spatial rank functions’ performance, we compare them with
other standard methods such as Euclidean distances,
Mahalanobis distances, spatial ranks, and spatial depth. A
simulation study is used to assess the performance of the
proposed weighted ranks-based clustering in defning the
group structure in multivariate data. Te simulated data are
sampled from a bivariate normal mixture distribution that is
assumed to cluster into two groups, where the mixture
proportion p= 0.3 and sample size n= 1000 such that X1,
X2, . . . ,Xn ∈ Rd is a random sample from

p.N2 μ1,Σ( 􏼁 + (1 − p).N2 μ2,Σ( 􏼁, (10)

where μ1 � (0, 0)T, μ2 � (5, 5)T, and Σ � I.
For all the contour plots that follow, they are derived

from a random sample of 1000 observations simulated from
the bivariate mixture normal distribution in (10). Figure 1
shows the contour plots of the Euclidean distances,
Mahalanobis distances, spatial ranks, and the spatial depth.
Te fgure clearly shows that the contours produced have
failed to map the shape of the two clusters’ structure in the
bivariate mixture distribution.

In Figure 2, WSRN(1)
Fn

(defned in (4)) and WSRN(2)
Fn

(defned in (5)) are used to derive the contour plots based on
the nonparametric Gaussian kernel weights function defned in
(6) (see section 4). In general, Figure 2 reveals that compared
with Figure 1, the contours produced from bothWSRN(1)

Fn
and

WSRN(2)
Fn

based on the Gaussian kernel function capture more
of the structure of the simulated data. However, the contour
based on WSRN(1)

Fn
failed to detect some of the observations

that are not close to either of the clusters. Tese undetected
observations are indicated by some lines between the two
clusters, suggesting the potential presence of a third cluster. In
contrast, it is clear that the cluster structure of the data is better
defned by using the WSRN(2)

Fn
as compared to that from the

WSRN(1)
Fn

in Figure 2(a).
Tis is because WSRN(1)

Fn
is a constant and the values

increase outward from the centre or spatial median of the
cluster. Tus, unassigned points may be assigned to that
cluster which results in the lowest weighted rank for the
point. In contrast, the contour derived from the second
normed weighted spatial rank function,WSRN(2)

Fn
, defned in

(5), is based on the values of WSRN(2)
Fn

that decrease outward
from the spatial median.Tus, the larger the weighted spatial
rank value for an individual point, the closer it is to the
centre of the cluster.

In summary, WSRN(2)
Fn

is more successful thanWSRN(1)
Fn

at capturing the cluster structure of the simulated data.
Overall, the most accurate contour plot is synthesized when
WSRN(2)

Fn
uses Gaussian kernel weights.

4. Weighted Spatial Ranks Based Clustering
Algorithm for Higher Dimensions (d > 2)

For real-world datasets, we often have to analyse complex
multidimensional data and this makes data visualization and
computation more complicated. In such cases, a dimension
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reduction strategy may be employed and here we use the
principal component analysis (PCA) to reduce the di-
mensionality of the data to two dimensions in order to derive
a contour plot (see [16]).

Te main idea of using PCA is to fnd a lower-
dimensional subspace that captures most of the variance
in the data. Specifcally, it involves fnding the orthogonal
rotation of the axes that maximises the variance. For a d-
dimensional random variable X= (X1, X2, . . ., Xd) with
covariance matrix Σ, let Cj � aT

j X
T, where aj is a d-

dimensional vector of constants. Since the variance of
Cj � aT

j 􏽐 aj, to fnd the principal component, Cj requires
fnding

argmax
aj

a
T
j 􏽘 aj􏼐 􏼑 subject to a

T
j aj � 1. (11)

It is necessary to constrain aj to have a unit length to
ensure fnite values. Tis may be solved by using the method
of Lagrange multipliers, so that for Lagrange multiplier, λj,
this reduces to solving the eigen equation.

􏽘 − λjId􏼐 􏼑aj � 0. (12)

It also means that for the component which yields the
largest eigenvalue, λj has the largest variance and aj is the
corresponding eigenvector. It is also straightforward to show
that the aj for j= 1, . . ., d are orthogonal. Tus, for the d × d

matrix of eigenvectors, A � [a1, . . . , ad] and the matrix of
principal component scores C is given by C � XA. Tis
represents a rigid rotation of the X axes to an orientation of
maximum variance. Tus, the frst principal component C1
has the largest variance for X, and the second component C2
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Figure 1: Simulated data example: contour plots of (a) Euclidean distances, (b) Mahalanobis distances, (c) spatial ranks, and (d) spatial
depth based on 1000 random observations from bivariate mixture normal distribution with the two groups.
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has the second largest variance and so on (for more details
on PCA, see [17]).

4.1. Weighted Spatial Ranks Clustering AlgorithmWhen d> 2

(1) Let X1,X2, ...Xn ∈ Rd be a d-dimensional random
sample, then use the PCA to get the frst two
components C1 and C2 of that sample and construct
the matrix C, which is a matrix consisting of the two
components C1 and C2.

(2) ConsiderC1 andC2 as the new variables and perform
the steps of the weighted spatial ranks clustering
algorithm when d � 2.

5. Numerical Examples

In this section, we apply the weighted spatial ranks-based
clustering algorithm to two simulated datasets and three real
datasets.

5.1. Simulated Data Examples. In the frst simulated data
example, we consider a mixture of three quadvariate normal
distributions, with mixing proportions, p1 � 0.3 and
p2 � 0.4, and sample size n � 100, such that
X1,X2, ...,Xn ∈ Rd is a random sample from 4-dimensional
mixture normal distribution.

p1N4 μ1,Σ( 􏼁 + p2 N4 μ2,Σ( 􏼁 + 1 − p1 − p2( 􏼁N4 μ3,Σ( 􏼁,

(13)

where μ1 � (4, 4, 4, 4)T, μ2 � (− 4,4, − 4,4)T, μ3 � (− 4, − 4,

− 4, − 4)T, and Σ � I.

Figure 3(a) shows the scatterplot matrix of the principal
components and reveals a mixed picture. It is clear from the
component 1 versus component 2 panels that there are 3
clusters. In contrast, the component 2 versus component 3
and the component 2 versus component 4 suggest that there
are only 2 clusters. Figure 3(b) gives the proportion of the
total variance explained by each component, i.e., 97% of the
total variance is explained by the frst two components.
Figures 3(c) and 3(d) demonstrate that the weighted spatial
ranks contour accurately fts the shape of the three clusters
without any misclassifcation. Finally, in Figures 3(e) and
3(f ), the confrmatory plots based on the weighted ranks
classifer for the frst two components show that the ob-
servations have been correctly assigned to the three simu-
lated clusters.

In the second example, we simulate a random sample of
size n= 100 from a mixture of four 6-dimensional normal
distributions, with equal proportions of weights p= 0.25, i.e.,

pN6 μ1,Σ( 􏼁 + pN6 μ2,Σ( 􏼁 + pN6 μ3,Σ( 􏼁 + pN6 μ4,Σ( 􏼁,

(14)

with μ1 � (4, 4, 4, 4, 4, 4)T, μ2 � (− 4, 4, − 4, 4, − 4, 4)T,
μ3 � (− 4, − 4, − 4, − 4, − 4, − 4)T, μ4 � (4, − 4, 4, − 4, 4, − 4)T,
and Σ � I.

From the scatter plot matrix in Figure 4(a), we can see
that whilst there are four clear clusters in the component 1
versus component panels, the number of clusters is less clear
in the other panels. However, it is clear from Figure 4(b) that
the frst two components explain the majority (98%) of the
variance.

Te weighted spatial ranks contour plots shown in
Figures 4(c) and 4(d) clearly reveal the shape of the four
clusters, where in the latter, a lower contour level� 0.001 has
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Figure 2: Simulated data example: contour plots of (a) the normed weighted spatial rank function WSRN(1)
Fn

and (b) the normed weighted
spatial rank function WSRN(2)

Fn
, using Gaussian kernel weights based on 1000 random observations from bivariate mixture normal

distribution with the two groups.
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Figure 3: Simulated data 1: (a) scatterplot matrix of the PCA components, (b) the total variance explained by each component, (c) the
weighted spatial ranks contour, (d) the contour at level 0.005 and the confrmatory plots based on weighted ranks classifer for (e) the frst 2
components and (f) the original data.
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Figure 4: Simulated data 2: (a) scatterplot matrix of the PCA components, (b) the total variance explained by each component, (c) the
weighted spatial ranks contour, (d) the contour at level 0.001 and the confrmatory plots based on weighted ranks classifer for (e) the frst 2
components and (f) the original data.
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been used. Finally, the confrmatory plots based on the
weighted spatial ranks classifer for the frst two components
and the original data shown in Figures 4(e) and 4(f )
demonstrate the correct assignment of the simulated ob-
servations to the right clusters.

5.2. Real Datasets’ Examples. In this subsection, the algo-
rithm is applied to three real datasets: the iris data [18],
fnancial data [19], and old faithful geyser data [20, 21]. Te
iris dataset consists of three diferent types of irises (Setosa,
Versicolour, and Virginica). However, most of the clustering
techniques consider there to be two groups, since iris Vir-
ginica and iris Versicolour are not separable without the
species information that Fisher used. As we can see from
Figure 5(c), the weighted ranks contour based on the frst
two components, which explain 97.8% of the total variances,
indicates two clusters. Te confrmatory plots in Figures 5(e)
and 5(f ) assign all of the observations to two groups.

Te second real dataset is the fnancial data [19], which
contains measurements of the three variables monitoring the
performance of 103 investment funds operating in Italy
since April 1996 (Table A.16 of Atkinson et al. [19]). Tese
data include two diferent kinds of funds (stock funds and
balanced funds). From Figure 6(c), the weighted ranks
contour of components 1 and 3, which explain 96.4% of the
total variances, suggests there are two clusters. Moreover, the
confrmatory plots provide a valid assignment of the ob-
servations, which is consistent with the two types of funds.

Te third dataset, the old faithful geyser data, is taken
from Azzalini and Bowman [20] and the MASS library of
Venables and Ripley [21]. It includes 272 observations and
two variables, the waiting time between eruptions, and the
duration of the eruption in minutes for the old faithful
geyser in Yellowstone National Park, Wyoming, USA. Tis
dataset consists of two apparent clusters, the short and the
long eruptions. From Figures 7(b) and 7(c), it can be seen
that the weighted ranks contour of the data indicates two
clusters with an unassigned observation (number 174).
Using the confrmatory classifer shown in Figure 7(d),
observation 174 is correctly assigned to the second cluster.

6. Comparison with Other Clustering Methods

Te WSRN method determines the number of clusters in
a dataset and classifes the data into each of the clusters. In
this section, we compare the WSRN method with other
clustering and classifcation methods.

Te frst method is the model-based clustering “mclust”
[22]. Tis is based on a Gaussian mixture model GMM [23]
where the number of clusters corresponds to the model which
returns the largest Bayesian information criterion (BIC). Te
second method is the K-means algorithm combined with the
Calinski–Harabasz (CH) index [24]. Te number of clusters
that returns the highest CH index is selected before applying
the K-means [25] algorithm to classify the data.

Te third method used as a comparator is the high-
dimensional data clustering (HDDC) [26] which is again
a clustering method based on the Gaussian mixture model

where the BIC is used to select the number of clusters. Te
fourth method used is the mixture of probabilistic principal
component analyses “MixtPPCA” [27] where the number of
clusters corresponds to the largest BIC. Te ffth method for
comparison is the partitioning around medoids “PAM”
clustering [28] method, where the number of clusters is
estimated based on the optimum average silhouette width
[29]. Te sixth method used in the comparison is the
density-based spatial clustering of applications with noise
(DBSCAN), where the number of clusters is estimated using
a density-based approach to identify regions of high density
in the data and these are considered as clusters [1]. Other
methods that have been used in the comparison are KMD:
clustering with K-medoids [7], FCM: fuzzy C-means clus-
tering [30], GG: Gath–Geva clustering algorithm [31], DDC:
distance density clustering [8], SNN: clustering with shared
nearest neighbor clustering [32], and densityClust: clus-
tering by fast search and fnd of density peaks [9].

Each method was applied to the three real datasets in
Section 5. As the external classes are known, the diferent
clustering methods were compared using the purity, en-
tropy, and themisclassifcation rate. Although the purity and
entropy are external validation methods commonly used in
classifcation, they measure the homogeneity of the data in
clusters and do not penalize algorithms that identify the
incorrect number of clusters. Indeed if each cluster is ho-
mogeneous for a particular class, both the purity and en-
tropy will assign a perfect score (1 for purity, 0 for entropy)
even if the number of clusters is incorrect. Te following
misclassifcation rate does penalize algorithms which
identify the incorrect number of clusters.

Let there be n data points where there are r true classes
such that T� {T1, T2, . . ., Tr} and in which the algorithm
identifes k clusters such that C� {C1, C2, . . ., Ck}. Let A� {1,
2, . . ., k} and B� {1, 2, . . ., r}. Te misclassifcation rate H is
defned as

H � 1 −
1
n

􏼒 􏼓max 􏽘
(i,j)∈A×B

Ci ∩Tj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (15)

subject to the constraint that if two terms |Ci ∩Tj| and
|Ct ∩Tu| appear in the sum, then i� t if and only if j� u
[14, 33].

Tus, each row and column of the matrix A×B con-
tribute at most one element to the sum. A consequence of
this is that |Ci ∩Tu| is set to zero if |Ci ∩Tj| is one of the
terms that maximises the sum in parentheses. Also, when
there is only one cluster, the sum contains one term only.

Te adjusted Rand index (ARI) is another commonly
used metric for evaluating the performance of clustering
algorithms [34]. While H compares clusters based on set
matching, ARI assesses clusters by counting point pairs
where there is agreement or disagreement. Moreover, ARI
takes into account the expected value of the unadjusted Rand
index, which is determined by randomly selecting entries in
the contingency table with fxed column and row totals.

Other cluster validity indices can be used to evaluate the
goodness of the diferent clustering structures such as the
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Figure 5: Iris data: (a) scatterplot matrix of the PCA components, (b) the total variance explained by each component, (c) the normed
weighted spatial ranks contour, (d) the contour at level 0.07 and the confrmatory plots based on weighted ranks classifer for (e) the frst 2
components and (f) the original data.
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Figure 6: Continued.
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Figure 6: Financial data: (a) scatterplot matrix of the PCA components, (b) the total variance explained by each component, (c) the normed
weighted spatial ranks contour, (d) the contour at level 0.0006 and the confrmatory plots based on weighted ranks classifer for (e) the frst 2
components and (f) the original data.
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Figure 7: Continued.
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Table 1: Comparison of diferent clustering approaches applied to the iris dataset.

Clustering method No. of
clusters Cluster sizes H Purity Entropy ARI

WSR 2 50, 100 0 1 0 1
GMM (mclust) “BIC” 2 50, 100 0 1 0 1
K-means “CH index”∗ 3 38, 62, 50 0.25 1 0 0.59
HDDC “BIC”∗ 3 45, 55, 50 0.24 1 0 0.65
MixtPPCA “BIC” 3 50, 52, 48 0.32 1 0 0.57
PAM “silhouette width” 2 51, 99 0.01 0.99 0.05 0.97
DBSCAN 2 50, 97 (3 noise points) 0.02 1 0 0.5
KMD 3 50, 42, 58 0.28 1 0 0.58
FCM 3 60, 50, 40 0.27 1 0 0.58
GG 3 50, 65, 35 0.23 1 0 0.61
DDC 3 57, 57, 36 0.29 0.95 0.20 0.47
SNN 3 47, 94, 9 0.06 0.98 0.06 0.87
densityClust 2 50, 100 0 1 0 1
∗Results are based on the mean of 1000 repetitions.
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Figure 7: Old faithful data: (a) scatterplot of the faithful data, (b) the normed weighted spatial ranks contour, (c) the contour at level 0.005,
and (d) the confrmatory plots based on weighted ranks classifer for original data.

Table 2: Comparison of diferent clustering approaches applied to the fnancial dataset.

Clustering method No. of
clusters Cluster sizes H Purity Entropy ARI

WSR 2 53, 50 0.03 0.97 0.16 0.89
GMM (mclust) “BIC” 3 50, 15, 38 0.15 0.94 0.14 0.73
K-means “CH index”∗ 2 46, 57 0.03 0.97 0.19 0.89
HDDC “BIC”∗ 3 8, 45, 50 0.09 0.98 0.09 0.82
MixtPPCA “BIC” 2 53, 50 0.03 0.97 0.19 0.89
PAM “silhouette width” 2 57, 46 0.03 0.97 0.19 0.89
DBSCAN 1 102 (1 noise point) 0.03 0.54 0.99 − 0.003
KMD 2 46, 57 0.03 0.97 0.19 0.89
FCM 2 46, 57 0.03 0.97 0.19 0.89
GG 2 53, 50 0.03 0.97 0.16 0.89
DDC 3 11, 46, 46 0.12 0.97 0.14 0.76
SNN 3 47, 40, 16 0.16 0.93 0.15 0.71
densityClust 1 103 0 0.54 0.99 0
∗Results are based on the mean of 1000 repetitions.
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connectivity index [35], CS index [36], and Sym index [37]
(for more extensive details, see [38]).

Table 1 shows the results of the diferent algorithms
applied to the iris dataset, where nine of the twelve methods
recorded perfect scores for the purity and entropy, despite
only 4 algorithms identifying the correct number of clusters.
For these data, the WSR, mclust, and densityClust have the
best misclassifcation rate, and H and both have perfect
entropy, purity, and ARI scores.

For the fnancial dataset, as shown in Table 2, the WSR
with seven other algorithms have the joint lowest mis-
classifcation rates. Te HDDC algorithm records the best
scores for the purity and entropy but this identifes an in-
correct number of clusters. Based on the ARI, WSR, K-
means, MixtPPCA, PAM, KMD, FCM, and GG record the
best scores. Finally, for the old faithful dataset, Table 3 shows
that the WSR algorithm has the joint third lowest H, but the
HDDC and GG algorithms are the best across all the four
metrics for this dataset.

 . Concluding Remarks

In this paper, we have introduced a new clustering method
based on weighted spatial ranks. Te WSRN algorithm is
completely data-driven and it both determines the number
of clusters and classifes the data. As a nonparametric
method, it does not require any assumptions to be made on
the underlying distribution(s) of the data. Te synthesis of
weighted rank contours, based on principal components
analysis when the data have more than two dimensions,
allows the intuitive visualization of the cluster structure in
relation to the distribution of the data points.

We considered nonparametric kernel weights and we
introduced WSRN functions based on Gaussian kernel
weights. Compared to other standard approaches, the
WSRN function based on the Gaussian kernel weights
provided the best results in terms of cluster detection and

visualization. Te weighted rank contours based on
Gaussian weights were more accurate and provided the best
ft to the shape of the clusters’ structure. Tey captured each
observation carefully and assigned it to the proper group
with a minimal probability of misclassifcation. It also
performed competitively with other methods when clus-
tering and classifying the data from three real datasets.

Although the WSRN method is invariant under or-
thogonal transformations, it is not an afne invariant. Using
afne invariant ranks has the potential to improve the results
if the scales of diferent clusters are not similar [39]. A
further possible extension to the method would be to
consider generalizations of the Euclidean norm for esti-
mating the WSRN. Tus, diferent Lp norms for p> 2 could
be investigated to establish the optimal value for p.
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Table 3: Comparison of diferent clustering approaches applied to the old faithful dataset.

Clustering method No. of
clusters Cluster sizes H Purity Entropy ARI

WSR 2 172, 100 0.018 0.98 0.12 0.93
GMM (mclust) “BIC” 3 40, 97, 135 0.15 1 0 0.71
K-means “CH index”∗ 10 46, 42, 19, 23, 48, 21, 23, 13, 20, 17 0.71 0.98 0.07 0.18
HDDC “BIC”∗ 2 175, 97 0 1 0 1
MixtPPCA “BIC” 2 174, 98 0.004 0.996 0.03 0.98
PAM “silhouette width” 2 172, 100 0.018 0.98 0.12 0.93
DBSCAN 3 168, 82, 17 (5 noise points) 0.08 0.98 0.09 0.85
KMD 3 97, 76, 99 0.28 1 0 0.60
FCM 2 172, 100 0.018 0.98 0.12 0.93
GG 2 97, 175 0 1 0 1
DDC 2 172, 100 0.018 0.98 0.12 0.93
SNN 2 270, 2 0.01 0.64 0.94 − 0.01
densityClust 1 272 0 0.64 0.94 0
∗Results are based on the mean of 1000 repetitions.
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