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Background. Survival analysis attracted the attention of diferent scientists from various domains such as engineering, health, and
social sciences. It has been widely exploited in clinical trials when comparing diferent treatments looking at their survival
probabilities. Kaplan–Meier curves plotted from the Kaplan–Meier estimates of survival probabilities are used to depict the
general image for such situations.Methods.Te weighted log-rank test has been dealt with by suggesting diferent weight functions
which give specifc strength in specifc situations. In this work, we proposed a new weight function comprising all numbers at risk,
i.e., the overall number at risk and the separate numbers at risk in the groups under study, to detect late diferences between
survival curves. Results. Te new test has been found to be a good alternative after the FH (0, 1) test in detecting late diferences,
and it outperformed all tests in case of small samples and heavy censoring rates according to the simulation studies. Te new test
kept the same strength when applied to real data where it showed itself to be among the powerful ones or even outperforms all
other tests under consideration. Conclusion. As the new test stays stronger in the case of small samples and heavy censoring rates,
it may be a better choice whenever targeting the detection of late diferences between the survival curves.

1. Introduction

Survival analysis has so many applications in the real world
such as engineering like testing the lifetime of life bulbs,
medicine like testing the efciency of diferent treatments,
and it fnds even its role in social sciences. In medical re-
search studies, the comparison of two medical treatments is
of crucial importance because they help to decide on which
treatment works better than another. Tis is where the
comparison of survival curves has its role.

Te comparison of survival curves is done when two or
more samples are submitted to diferent treatments or drugs.
When comparing drugs, they test them on parallel groups
and they decide which one is more efcient. Efciency may
be referred to as the time it takes to cause positive efect if
any and at which percentage. For the comparison of survival
curves, we consider and record the survival probabilities at
each instant of interest for the groups or samples under

consideration and we draw the Kaplan–Meier curves and
compare them using diferent techniques. Diferent sce-
narios are explored and some tests are more powerful in
specifc scenarios accordingly. Such scenarios are pro-
portional hazards, early diferences, and late diferences.
Some also include middle diferences even though they do
not attract the attention of many and this may probably be
due to the fact that it rarely happens.Te test that is explored
in this research is appropriate while investigating the late
diferences between curves.

2. Materials and Methods

2.1. Weighted Log-Rank Test. Te weighted log-rank test is
sometimes used in testing the equality of survival distri-
butions. Taking the case of two groups or two treatments, the
type of hypotheses that are being tested is of the following
form:
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H0: S1(t) � S2(t) for all t, against
H1: S1(t)≠ S2(t) for some t, where Si(t) is the survival in

group i at time t.
In the case of nonproportional hazard rates, the com-

parison of survival curves is preferably done using diferent
weighted log-rank tests. Te weight function is of crucial
role, and its misspecifcation leads to inaccurate results and
will cause the loss of power of the test.

Te weighted log-rank statistic is written in a stochastic
integral form by the following quantity:

Lw � 􏽚
τ

0
w(t)

R1(t)R2(t)

R(t)

dN1(t)

R1(t)
−

dN2(t)

R2(t)
􏼢 􏼣, (1)

where τ is the total time of the study, w (t) is the weight
function at time t, Ri(t) is the number of items/individuals at
risk at time t in the ith group, R(t) is the overall number of
items/individuals at risk at time t, and Ni(t) is the number of
items/individuals which underwent the event of interest by
time t in the ith group [1]-[2].

Te variance of this weighted log-rank statistic is esti-
mated by the quantity:

􏽢σ2Lw
� 􏽚

τ
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w
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(t)
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dN(t)

R(t)
, (2)

where N(t) � N1(t) + N2(t).
Computationally, the weighted log-rank statistic is

written as follows:

U � 􏽘
k

j�1
wj dij − dj

rij

rj

􏼠 􏼡, (3)

where wj is the weight at time tj, rj is the overall number of
items/individuals at risk at time tj, rij is the number of
items/individuals at risk at time tj in the ith group, dij is the
number of events of interest at time tj in the ith group, and dj

is the overall number of events of interest at time tj.
Te statistic U is such that its expected value is E [U]�

0 and Var(U) � 􏽐
k
j�1w

2
j(r1jr2jdj(rj − dj))/(r2j(rj − 1)),

and hence, the statistic to be computed becomes
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􏽐
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, (4)

where rj is the overall number at risk in both groups at time
tj and rij is the number at risk in the ith group at time tj. We
recall that the statistic mentioned above is asymptotically
chi-square distributed (χ2wl ∼ χ2(1)) and can be reduced to
a normal distributed statistic as follows:

T �
􏽐

k
j�1wj dij − dj rij/rj􏼐 􏼑􏼐 􏼑

������������������������������
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􏽱 ∼ N(0, 1).

(5)

Te weighted log-rank test statistic contains all three
quantities, while the weights considered by diferent re-
searchers were based on rj transformed diferently or the
overall survival probability [3]. Even the survival

probabilities considered were the overall ones for the overall
sample.

One of the famous weight functions is displayed in
Table 1.

Various modifcations and improvements have been
made to get more powerful weight functions. For example,
Garès et al. [4] used the Gρ,c family of tests which was
proposed by Fleming and Harrington [5] to investigate the
late efects in controlled trials. Tere exists another test
statistic found from a given number of FH statistics tests and
it is called Max-combo test statistic [6]-[7]. Tis test is
calculated as the maximum (linear) combination of a se-
lected set of FH tests (G1,1), (G1,0), (G0,1), and (G0,0). Tis
technique was introduced because nearly each test statistic
has high power in a specifc situation, and it would be more
helpful to know the situation before.

However, it is not easy to know if in the situation under
study, there are early or late efects. FH (0, 1) is more
powerful in the case of late efects or late separation of
survival curves, while FH (1, 0) becomes more powerful in
the case of early efects or early separation of the survival
curves. Te lack of prior knowledge about the (location of)
efects is the cause of using the combination of two or more
tests in order to capture every feature [7].

According to the work done by Rückbeil et al. [6], they
dealt with the Max-Combo test statistic from three stan-
dardized FH tests which are (G1,0), (G0,1), and (G0,0) under
fve diferent randomization procedures. Tey compared the
separate FH tests andMax-Combo test, and it was found that
the Max-Combo test in each case was the second in power
where the highest power of Max-Combo of 83% was ob-
served when they were assessing late treatment efects.

Te study Lee [8] has dealt with the standardization of
the weighted log-rank test statistics and the Max-combo test
statistics Lin et al. [9]. Tis is the statistic divided by the
square root of its variance estimate. Tree cases were con-
sidered for multiple standardized weighted log-rank test
statistics. Considering the corresponding Z statistics Z1 and
Z2 from (G1,0) and (G0,1), respectively, as studied by [8]; the
three cases are as follows:

(i) Te average of the absolute values. Tis is,
(|Z1| + |Z2|)/2.

(ii) Te absolute value of the average. Tis is,
|Z1 + Z2|/2.

(iii) Te maximum of the absolute values. Tis is,
Max(|Z1|, |Z2|).

Lee [10] evaluated the maximum and average of (G0,0),
(G0,2), (G2,0), and (G2,2). Karrison [11] considered Max
(|Z1|, |Z2|,

����Z3|), where the Z statistics Z1, Z2, and Z3 were
from (G0,0), (G0,1), and (G1,0). Tis combination covers
a good range of possibilities including early diferences or
late ones and proportional hazards features.

Abou-Shaara [12] studied the similarities between the
Kaplan–Meier and ANOVA in his work, and he fnally
found that the two methods lead to the same conclusion.

Tere can be a need of estimating the confdence interval
of the estimated probability [13], and it is found as follows:
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􏽢S(t) ± 1.96
��������
􏽣Var[􏽢S(t)]

􏽱

, (6)

where 􏽣Var[􏽢S(t)] is computed according to Greenwood’s
formula as follows:

􏽣Var[􏽢S(t)] � 􏽢S(t)
2

􏽘
j: tj ≤ t

dj

rj rj − dj􏼐 􏼑
. (7)

Klein et al. [14] proposed a test called a naive test of the
null hypothesis for some fxed time points. Such test might
be obtained from cumulative hazards 􏽣Hi(t) or survival
probabilities 􏽢S1(t).

Qian and Zhou [15] proposed a family of hazard rate
functions of hyperbolic-cosine-shaped (CH) type and the
deduced CH class weight functions generated good statistic
tests for the late diferences detection.

2.2. NewWeight Function. Te existing weight functions are
built-in functions of rj and, hence, vary in function of the
total remaining number of individuals at risk in general. Te
use of rj transformed in diferent ways shows that only the
size of the total number of individuals at risk in general is
taken into account. However, the separate numbers r1j and
r2j of individuals at risk in each of the groups would be
involved and may probably help to capture more features.
Te involvement of r1j and r2j separately in the weight will
help to detect the diference in the occurrence of the event
interest in the two groups at each time point depending on
the relation between the two numbers. Tere is, therefore,
a need of a new weight function comprising simultaneously
rj, r1j, and r2j which will change in function of the three
variables and hence probably take into account the varia-
tions between r1j and r2j. Tis new weight is thought of
being more adaptive since it captures, to some extent, the
diference in variations between r1j and r2j by itself and it
will be relatively small (big) for small (big) diferences in the
two quantities. In other words, if the occurrences are likely
equal in both the groups, the weight will be relatively less
heavy than when the occurrences will be higher in one group
than another. While rj was considering the overall change
(and hence general occurrences), separate changes in
numbers of individuals at risk in the respective groups are
needed for the search of more accuracy and precision of
the test.

Te new weight function that has been proposed in this
study is of the following form:

wj � wj rj, r1j, r2j􏼐 􏼑 �
rj

r1jr2j

, (8)

and according to its form, this weight function is monotone
increasing. For diferent couples (r1j, r2j) whose sum is rj,
the new weight will be relatively higher as the diference
between r1j and r2j increases compared to when the two
numbers are nearly equal.

Te stochastic form of the frst statistic will be reduced to

LwNew � 􏽚
τ

0

dD1(t)

R1(t)
−

dD2(t)

R2(t)
􏼢 􏼣, (9)

with its corresponding variance which is as follows:

􏽢σ2LwNew
� 􏽚

τ

0

R(t)

R1(t)R2(t)

dD(t)

R(t)
. (10)

From the direct observation, it can be seen that this
statistic depends on the variations in numbers of events in
the respective groups, which may lead to the probable
predicted sensitivity.

Substituting the new weight function in the general
weighted log-rank statistic, we obtain the new statistic which
is as follows:

χ2wl �
􏽐

k
j�1 rj/r1jr2j􏼐 􏼑 dij − dj rij/rj􏼐 􏼑􏼐 􏼑􏼐 􏼑

2

􏽐
k
j�1 rj/r1jr2j􏼐 􏼑

2
r1jr2jdj rj − dj􏼐 􏼑/r2j rj − 1􏼐 􏼑􏼐 􏼑

,

(11)

or simply

χ2wl �
􏽐

k
j�1 rj/r1jr2j􏼐 􏼑 dij − dj rij/rj􏼐 􏼑􏼐 􏼑􏼐 􏼑

2

􏽐
k
j�1 dj rj − dj􏼐 􏼑/r1jr2j rj − 1􏼐 􏼑􏼐 􏼑

. (12)

2.3. Power and Relative Efciency of a Test. Te power of the
test statistic is by default expressed as follows: 1 − β, where β
is the probability of type two error. With the statistic of the
weighted log-rank test, we have quantities which help to get
the power. Assuming the quantity U � 􏽐

k
j�1 􏽥wj(dij−

dj(rij/rj)) found in the numerator, we have the corre-
sponding variance V � 􏽐

k
j�1 􏽥w2

j(r1jr2jdj(rj − dj))/(r2j(rj −

1)) on the denominator, and they are such that
(U/

��
V

√
) ∼ N(0, 1) [16]. Te power of the test statistic is

then computed as follows:

Power � p
U
��
V

√ >Φ−1 1 − α
2

􏼒 􏼓􏼠 􏼡. (13)

Since the p value is also one among the methods of
testing the hypothesis, it is good to recall how it is found
from the two statistics. With U and V, the one-sidep value is
calculated as follows:

P − value � Φ(U/
��
V

√
) [17].

Having two weighted log-rank statistics Tw and Tw, the
ARE of Tw relative to Tl as proposed by Jiménez et al. [18] is
given by

Table 1: Some famous weight functions.

Tests Weight functions
Log-rank 1
Gehan–Wilcoxon rj

Tarone–Ware ��
rj

􏽰

Peto-Peto 􏽥S(t)

Modifed Peto-Peto (􏽥S(t))/(rj + 1)

Fleming–Harrington 􏽢S(tj−1)
ρ[1 − 􏽢S(tj− 1)]

c
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RE Tw, Tl( 􏼁 �
Φ−1(1 − α) +Φ−1 Power Tw( 􏼁( 􏼁

Φ−1(1 − α) +Φ−1 Power Tl( 􏼁( 􏼁
􏼠 􏼡

2

, (14)

where Φ−1 is the quantile function of the standard normal
distribution and α � 0.05.

Computationally, the power of the Z statistic obtained
from the log-rank test is found as follows:

Power Tw( 􏼁 �
1

M
􏽘

M

1
1 Zw >Φ

−1
(1 − α)􏼐 􏼑, (15)

where M is the number of simulations which were per-
formed (example: 10,000, 5,000, 1,000, . . .), and in our
computations, we used M� 5000.

3. Data Analysis

3.1. Simulation Study Scenario. Te ideal illustration of late
separation is depicted in Figure 1. To carry out the simu-
lation study, we used the simsurv R package which helped to
simulate survival times from standard parametric distri-
butions. In our case, we used the Weibull distribution to
simulate the survival times. For one group, we generated the
survival times using the Weib (1.2, 3.6), while for the second
group, the survival times were generated from Weib (2.9,
5.4) (60% of the survival times for this group) and the
remaining (40%) were generated from Weib (1.5, 3.6).

For any case, we performed 5,000 simulations, and the
analysis was done by R. We considered the cases of equal
sample sizes in all our simulations. Te notation (n1, n2) (c)
has been used, where n1� n2 represents the sample size
under consideration and n1� n2 is the number of in-
dividuals in each group and c is the overall censoring rate.
Te censoring rates taken into account are 20%, 40%, and
60% and c� 0 means that there has been no censoring.Tere
are therefore four simulation cases for each sample size. Te
used sample sizes per group are 20, 50, 80, and 100.

3.2. Simulation Results. To make it more visible and sepa-
rate, we look at the following plot in Figure 2 which shows
graphically the variations in power as obtained in Table 2. To
read the plots well, NoCens100 stands for the case of no
censoring in the case of a sample size of 100 individuals per
group. It is the same for 80, 50, and 20. Cens10020 stands for
the case of 100 individuals per group with the overall
censoring rate of 20% and the same analogy applies to
others.

Te new test may be recommended as an alternative of
test while aiming at the detection of late diferences between
treatments. It imposes itself as a good choice when the
sample size becomes smaller. In other words, the new test
outperforms the existing ones for small sample sizes (n≤ 50)

. To see this more clearly, we used the relative efciencies of
all tests (in power) compared to the standard log-rank test.
We will mainly look at FH (1, 1) and FH (0, 1), and the new
test looks to be relatively more efcient. In regard to the
efciency of the tests, we evaluate them relatively to the
standard log-rank test. Tis last is known to perform better

in the case of proportional hazards but still keeps some level
of power in other scenarios. Even in our case of late dif-
ferences detection, it was the third choice after being out-
performed by our newly proposed test. Table 3 shows the
heatmap of the relative efciencies of other tests at all levels
of censoring under consideration with respect to the LR test.

As seen on Figure 3, the graph at the left side is a random
simulation for sample size n� 100, while the right one is for
n� 20, and the censoring rate is 20% in both cases. As it can
be seen, the FH (0, 1) weight in dashed red increases
gradually and this justifes its high power for late diferences.
Te separation of curves usually happens gradually, and
hence, as the diference becomes higher, the FH (0, 1) weight
becomes higher too.

For the new weight in solid blue, there is only a brutal
increase in a very small number of time points at the end,
while it is relatively very small since the beginning of the
study. Tis behavior can help us to justify its efciency for
the case of small sample size because in such case, the late
separation does not take longer, and hence, the new weight
will not lose many event times of the separation. Apart
from this, the new weight could be powerful in case of
brutal separation in the very last few event times, and this
may not happen often practically. However, again, in the
few cases of strength, the new weight can reach to numbers
above 1 as seen on the graph at the right where it even
reached 2 at one last point. It is clear that the relative
weakness of the new weight for large sample sizes resides in
that fact of failing to capture some event times at the
beginning of the separation which may normally start
around the middle time of the study and remain sensitive to
a very limited number of last event times as both graphs
show. In contrast, FH (0, 1) captures gradually all sepa-
ration since their occurrence as shown by its gradual shape
or gradual increase. We recall that where the new weight
drops to 0 is when the number at risk in one of the groups
becomes 0 because there is no comparison at such points
and onward. To make it well understood, assume the
separation happened at the time point 30 (graph at the left).
We can see how much is the diference between the two
weights since then and hence the loss of power for the new
weight. For the graph at the right, if the separation started
from time point 25, for example, we notice that the dif-
ference between the two weights is not that high as at the
left side case. But again, we may highlight that the new
weight is very strict on the very late few event times with
exceptionally higher weights. Te lower loss of power for
the new weight in the case of censoring resides in the fact
that this last reduces the number of event times, and be-
cause the new weight needs just the very last few event
times, it does not lose too much power as the FH (0, 1)
which might have benefted from many event times since
the beginning of the separation. Tis is why small sample
size cases and heavy censoring cases are the favoring ones
for the new weight which needs just fewer last event times
than FH (0, 1). Tis is not strange because every weight
function has some circumstances when it excels in power
but fails in others. Our newly suggested weight is then
powerful in heavy censoring and/or small sample size cases.
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Figure 2: Power plots for diferent sample sizes and censoring rates. (a) Powers for 20%, 40%, and 60% censoring rates for n� 100. (b) Powers
for 20%, 40%, and 60% censoring rates for n� 80. (c) Powers for 20%, 40%, and 60% censoring rates for n� 50. (d) Powers for 20%, 40%, and
60% censoring rates for n� 20.

Table 2: Estimated powers of the weighted log-rank test statistics for late diferences.

(n1,
n2) (censoring
percent)

LR GW TW PP MPP FH (1,
1)

FH (0,
1)

FH (1,
0) New

(100, 100) (0) 0.7390 0.2726 0.4584 0.2726 0.2690 0.5266 0.9160 0.2682 0.8752
(100, 100) (20) 0.6306 0.2232 0.3762 0.2232 0.2200 0.5428 0.8512 0.2660 0.7882
(100, 100) (40) 0.5056 0.1800 0.2824 0.1800 0.1776 0.5326 0.7380 0.2524 0.6742
(100, 100) (60) 0.3448 0.1372 0.2098 0.1372 0.1354 0.4528 0.5578 0.2274 0.4958
(80, 80) (0) 0.6286 0.2102 0.3628 0.2102 0.2068 0.4338 0.8436 0.2066 0.8182
(80, 80) (20) 0.5302 0.1840 0.3062 0.1840 0.1800 0.4620 0.7608 0.2206 0.7338
(80, 80) (40) 0.4156 0.1560 0.2414 0.1560 0.1536 0.4522 0.6454 0.2172 0.6072
(80, 80) (60) 0.2980 0.1114 0.1702 0.1114 0.1104 0.3910 0.4880 0.1848 0.4606
(50, 50) (0) 0.4190 0.1402 0.2286 0.1402 0.1378 0.2868 0.6272 0.1376 0.6764
(50, 50) (20) 0.3410 0.1206 0.1920 0.1206 0.1184 0.2964 0.5306 0.1404 0.5508
(50, 50) (40) 0.2670 0.1056 0.1576 0.1056 0.1040 0.2908 0.4284 0.1396 0.4512
(50, 50) (60) 0.1812 0.0848 0.1204 0.0848 0.0842 0.2428 0.3084 0.1270 0.3258
(20, 20) (0) 0.1678 0.0776 0.1100 0.0776 0.0730 0.1396 0.2690 0.0730 0.3546
(20, 20) (20) 0.1518 0.0716 0.0974 0.0716 0.0704 0.1476 0.2360 0.0784 0.2782
(20, 20) (40) 0.1194 0.0652 0.0832 0.0652 0.0642 0.1342 0.1894 0.0752 0.2156
(20, 20) (60) 0.0960 0.0580 0.0712 0.0580 0.0558 0.1272 0.1580 0.0716 0.1734
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3.3. Discussion. As shown by the heatmap, we have three
relatively powerful tests when compared to the standard log-
rank test. Tose are FH (1, 1), FH (0, 1), and the new test. FH
(1, 1) is more powerful than LR when the censoring rate is
higher than 50% since the relative efciency has been more
than 150% only in the case where the censoring was 60%. For
the cases of no censoring and for those of censoring of 20%,
the test has not been more efcient than the standard LR test
irrespective of the sample size under consideration.

Te FH (0, 1) test, which is usually known to be the most
powerful for late diferences, still keeps its power, but it
becomes outperformed by the newly proposed test for small
sample sizes, that is, for n≤ 50. We can take two extreme
points for the two tests. For n � 100 with no censoring, the
RE of FH (0, 1) was 175% while it was 150% for the new test.
Tis implies that the diference in relative efciency is 25%
(or we can say that FH (0, 1) is 25% more relatively powerful

than the new test when both are compared to the LR for
n� 100.)

For n � 20 with the censoring rate of 60%, the RE of FH
(0, 1) is 356%, while it is 428% for the new test, and this
implies that the new test is 72% relatively more powerful
than FH (0, 1) when both tests are compared to the LR test.

So, we can see that the new test will make a higher
diference in relative efciency where it is relatively powerful
than what FH (0, 1) does in its favorable conditions. Noting
the importance of sample size, the new test may be a good
recommendation due to its behavior in case of small samples
and heavy censoring.

To get a more general recommendation between the two
tests, we can do an unweighted sum of diferences of relative
efciencies in all cases under study and see the result.Tat is,
we take the relative efciencies for FH (0, 1) minus those of
the new test (RE (FH (0, 1))—RE (new test)) in each case and

Table 3: Heatmap for relative efciencies compared to the standard log-rank test.
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Figure 3: Graphical illustration of the two competing weights: FH (0, 1) and the new weight.
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we sum up to see which one is generally relatively more
efcient. Operating on the data in the heatmap, we obtain
−220% in total, which shows that the new test is relatively
more efcient than FH (0, 1) in general. Tis is immediately
linked to the fact that where the new test is relatively more
efcient, it makes bigger diferences.

3.4. Application to Real Data. To check the reliability of the
new test, we preferred using two real datasets to be sure of
the comparison. Tose datasets are as follows:

(i) Head-and-Neck-Cancer Study by the Northern
Oncology Group (NCOG)

(ii) Time to infection of Kidney Dialysis Patients Data

Te data from the Head-and-Neck-Cancer Study which
was done by Northern Oncology Group (NCOG) are found
in Efron [19] and have been reused by many other authors
including Qian and Zhou [15] recently. Arm A represents
patients who underwent radiation therapy and those who
underwent radiation plus chemotherapy were put in Arm B.

For the second dataset of time to infection of kidney
dialysis patients, it is a (built-in) dataset found in R under
KMsurv package. Te group was formed referring to the
methods for placing catheters in kidney dialysis patients.
Surgically placed catheter made group 1 and percutaneously
placed catheter made group 2. Te plot of Kaplan–Meier
curves for both datasets is shown.

From Figure 4, we notice that for NCOG data, the curves
are closer to each other at the beginning but separate later
where Arm B appears to have higher survival probabilities
than Arm A. Te two-sidedp values for the nine tests have
been computed and are given in table.

As seen from the p values in Table 4, the newly proposed
test showed itself as stronger than any others as it has the
smallest p value of 0.0129, followed by the Fle-
ming–Harrington (FH (0, 1)) with p value� 0.0223 and
lastly by the standard log-rank test with p value� 0.047. Tis
is in accordance with the simulation results even though the
new test seems to outperform the existing stronger test for
late diferences, FH (0, 1).

However, this is not strange because even the difer-
ence in the powers observed in the simulation was not that
high enough that one may not hesitate to recommend this
new test as a good choice. Te other tests got p values
greater than 0.05 because they are usually known to be
weak in the detection of late diferences, and this is no
surprising based on the shape of the two curves. Teir
failure or weakness to detect such diference might be
from their nature. However, since the diference seems to
be signifcant by an immediate look at the graph, if one-
sidedp values are under consideration, the majority of all
these tests could have their p values to be less than 0.05,
and hence, the diference might be detected. In such a case,
only GW and FH (1, 0) might be the only ones to fail
detecting such diference. Te general observation which
will remain intact is that the new test performed better
than any other test in this case.

As it can be immediately observed from the KM curves
for kidney data, the two survival curves crossed each other at
the early stages where they were even close to each other.
After crossing each other, they separated quickly, and this
will lead us to the justifcation of the p value obtained for FH
(1, 1) in Table 5. It has been obtained that in addition to the
two tests which were expected to detect such diferences, we
got another one (FH (1, 1)) which is stronger in the detection
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Figure 4: Graphs for real data application cases.
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of middle diferences. In other words, because it gives
heavier weights to middle events and reduces as they go
farther from the median time, it detected those diferences in
this case because in the middle of the study period, the
curves had already been separated as it can be immediately
seen on the graph. It is to be highlighted that this test has
been surprising since it was at the point of outperforming
both expected tests with the p value of 0.005. However, FH
(0, 1) remained the frst among the three tests with the p

value of 0.0046 and the new test was the third with p value of
0.021. Contrary to the frst NCOG data, even if we had taken
one-sidedp values, no change might have been observed on
the tests with signifcant p values.

4. Conclusion

Te newly proposed test is a good alternative for the de-
tection of late diferences between survival curves. It shares
the same positive behavior with FH (0, 1) of being relatively
more efcient and powerful than the LR, and even though
the reduction of power as the censoring rate increase is
common, this reduction is relatively small for the new test
compared to the remaining others (including the LR test and
FH (0, 1)). Te new test may, therefore, be the frst choice in
cases of small sample sizes and heavy censoring rates. Te
same strength has been observed while dealing with real
datasets when the new test remains still sensitive for late
diferences in survival. Based on the fact that the small size of
the sample and censoring are the major threats in survival
analysis studies, referring to the power and higher relative
efciency of the new test in such cases, one may consider it as
a better choice for late diferences detection between survival
curves.
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