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Te linear combination of Student’s t random variables (RVs) appears in many statistical applications. Unfortunately, the
Student’s t distribution is not closed under convolution, thus, deriving an exact and general distribution for the linear com-
bination of K Student’s t RVs is infeasible, which motivates a ftting/approximation approach. Here, we focus on the scenario
where the only constraint is that the number of degrees of freedom of each t− RV is greater than two. Notice that since the odd
moments/cumulants of the Student’s t distribution are zero and the even moments/cumulants do not exist when their order is
greater than the number of degrees of freedom, it becomes impossible to use conventional approaches based on moments/
cumulants of order one or higher than two. To circumvent this issue, herein we propose ftting such a distribution to that of
a scaled Student’s t RV by exploiting the second moment together with either the frst absolute moment or the characteristic
function (CF). For the ftting based on the absolute moment, we depart from the case of the linear combination of K � 2 Student’s
t RVs and then generalize to K≥ 2 through a simple iterative procedure. Meanwhile, the CF-based ftting is direct, but its accuracy
(measured in terms of the Bhattacharyya distance metric) depends on the CF parameter confguration, for which we propose
a simple but accurate approach. We numerically show that the CF-based ftting usually outperforms the absolute moment-based
ftting and that both the scale and number of degrees of freedom of the ftting distribution increase almost linearly with K.

1. Introduction

Te Student’s t-distribution arises in numerous scenarios, e.g.,
when estimating the mean of a normally distributed population
of unknown variancewith relatively few samples and in Bayesian
analysis of data from a normal family. Moreover, such a dis-
tribution plays a key role in many relevant statistical analyses,
including Student’s t-test for assessing the statistical signifcance
of the diference between two samplemeans, the construction of
confdence intervals for the diference between two population
means, and linear regression analysis [1–6].

One of the distinctive properties of the Student’s t

distribution is its heavy tail. Tis behavior is also seen in the
famous family of stable distributions; however, the Student’s
t distribution is more analytically tractable, which allows, for
example, to write down explicitly its likelihood function [1].

1.1. Main Statistics of the Student’s t Distribution. Te
probability density function (PDF) and cumulative density
function (CDF) of a Student’s t random variable (RV) T with
] ∈ R+ degrees of freedom, i.e., T ∼ T(]), is given by [6].
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here, B(·, ·) and Γ(·) are the beta ([7], Equation (5.12.1)) and
gamma ([7], Equation (5.2.1)) functions, respectively.
Meanwhile, the integer moments are [6] as follows:

E T
m

􏼂 􏼃 � ]m/2
􏽙

m/2

i�1

2i − 1
] − 2i

, m even, m< ], (4)

while E[Tm] � 0 for m odd, and moments of order ] or higher
do not exist. We observe that for the specifc case of m � 2
(second moment), (4) reduces to ]/(] − 2).

Two statistics that play a key role in our proposed ap-
proach are the absolute moments and the characteristic
function (CF). Te latter is given by [6]
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where K](·) is the modifed Bessel function of second kind
and order ] ([7], Sec. 10.25) (Notice that CFT(r) ∈ R, while
the moment generating function of T does not exist).
Meanwhile, the absolute moments can be obtained as
follows:
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where (a) follows from leveraging the symmetry of T around
zero and from substituting (1), (b) exploits ([8], Equation
(3.241.4)) to solve the defnite integral, and (c) is attained
after simple algebraic transformations after substituting (3).

1.2. On the Linear Combination of Student’s tRVs. Te linear
combination of Student’s t RVs, denoted as follows:

Z≜ 􏽘
K

i�1
σiTi, (7)

where Ti ∼ T(]i) and (without loss of generality) σi > 0,
appears in many statistical applications. For instance,

(i) Fairweather [9] proposed a method based on the
pivotal quantity Z to obtain an accurate confdence
interval for the common mean of several normal
populations. Notice that the problem of characterizing
the distribution of independent samples that are col-
lected from diferent normal populations with a com-
monmean but possiblywith diferent variances appears
in many practical applications, e.g., when diferent
instruments/methods/laboratories are used to measure
substances or products to assess their average quality
[10];

(ii) Te Behrens–Fisher distribution of the test statistic for
testing the equality of the means of two normal pop-
ulations with unknown variances is that of a linear
combination of two independent Student’s t RVs. Te
problem appears in many traditional statistical prob-
lems, e.g., check [3, 11–13];

(iii) Te distribution of RVs Ti can approximate other
heavy-tailed symmetric distributions, e.g., X/Y|Y≥y0,
whereX andY are respectively Gaussian and Rayleigh-
distributed. In such scenarios, the distribution of their
linear combination Z may be extremely valuable. In-
terestingly, the sum of random variables in the form
X/Y|Y≥y0 appears in the scenario proposed in [14],
where the goal is to determine the number of active
devices in a machine-type wireless communication
network by relying on coordinated pilot transmissions
without much signaling overhead, which facilitates the
posterior data decoding procedures.

Unfortunately, the Student’s t distribution is not closed
under convolution [15], thus, deriving the exact distribution
of Z has been shown to be a cumbersome task, especially for
an arbitrary number of degrees of freedom ]i and number of
addends K. For instance, the methods proposed in [2–5, 15]
are restricted to the case of all Tis having an odd number of
degrees of freedom.Meanwhile, the PDF of Z is given in [16]
as an infnite series, but only for the specifc case of K � 2.

In general, approximation methods are often more
tractable and appealing, which motivates our work in this
paper. Specifcally, we aim to accurately approximate the
distribution of Z in closed-form given that Ti􏼈 􏼉 are in-
dependently distributed with ]i > 2, ∀i, and no other con-
straints (the assumption that RVs Ti􏼈 􏼉 are independent is
common in the literature, e.g., [2, 4–6, 16]). To the best of
our knowledge, this is the frst work to (satisfactorily)
address this.

1.3. Our Approach. For the approximation, we resort to
a Student’s t distribution ftting. Specifcally, we aim to accu-
rately ft Z ∼ σzT(]z) with ]z > 2, which should hold, at least
intuitively, as both distributions share the same symmetric and
bell-shaped form. However, what might appear to be a simple
and straightforward approach is not when considering that the
Student’s t distributions havemore than two degrees of freedom
and no other constraints. We elaborate on this as follows:

Te distribution ftting approaches commonly rely on
moments (including L− moments [17]) or cumulants matching.
Specifcally, at least two moments and/or cumulants of Z are
needed to match those of a scaled Student’s t distribution since
such a distribution is characterized only by the scale σz, and the
number of degrees of freedom ]z. However, the challenge lies in
that ]z (and each ]i)must be greater than themoment/cumulant
order, while (i) the odd moments/cumulants cannot be used
since they are zero, and (ii) the negative moments do not
converge since fZ(0)> 0. Tis implies that (i) we cannot ft
moments/cumulants of order higher than 2 in order to allow
]z ∈ (2,∞), and (ii) we cannot rely on the frst moment/
cumulant. Meanwhile, fractional moments could be used, but
they are complex and difcult to compute in general.
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In this work, we resort to a ftting based on the second
moment matching together with absolute moment match-
ing, or CF matching, to circumvent the above issues. Note
that using second moment matching is a natural choice
given its simplicity, while exploiting the absolute moment
also seems appealing. However, although absolute moments
of any order, E[| · |m], with m ∈ R, m< ], could be used, they
are cumbersome to derive due to the limited separability of
the absolute value of a sum, thus, we focus on the simplest
m � 1 case. Finally, a CFmatching performance is intriguing
as it is not a commonly adopted approach in the literature
for distribution ftting problems, especially because mo-
ments or other simpler statistics are often available, so we
adopt it here given the special characteristics/challenges of
the considered problem.

2. Computation of the Relevant Statistics of Z

2.1. Second Moment. Terefore, the second moment of Z is
given by

E Z
2

􏽨 􏽩 � 􏽘
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which comes from leveraging the independence and zero-
mean features of Ti􏼈 􏼉 and from using (4) with m � 2.

2.2. Characteristic Function. Te CF of the sum of in-
dependent RVs matches the product of their independent
CFs, thus
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2.3. Absolute Moment. Te absolute moment of Z obeys

E[|Z|] � E 􏽘

K

i�1
σiTi
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⎡⎣ ⎤⎦. (10)

Remarkably, further simplifying (10) is not a trivial task.
Furthermore, its computational complexity scales with K.

Terefore, we focus on the case K � 2, but leverage the
corresponding results for the distribution ftting of the linear
combination of any K≥ 2 RVs in Section 4.

Te absolute moment for the case of K � 2 can be
computed as follows:

E[|Z|] � E σ1T1 + σ2T2
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where in (a), we exploit the fact that σ1T1 + σ2T2 is sym-
metric around 0, thus, it can adopt positive and negative
values with probability 0.5. Ten, (b) comes after applying
the integral operator to each of the integrand’s addends and

leveraging the symmetry of 􏽒
a

− a
x1fT1

(x1)dx1 � 0. Now,
observe that E[|Z|] � 2(σ1I1 + σ2I2), and we are concerned
with computing I1 and I2.

In the case of I1, we have that
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where (a) comes from solving the inner integral via [8],
Equation (2.27.7)], while we leverage ([8], Equation
(3.259.3)) to solve the remaining integral in (b).

In the case of I2, we have that
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where (a) comes from using the CDF defnition, and (b)
from leveraging 􏽒

∞
− ∞ x2fT2

(x2)dx2 � 0, followed by split-
ting the integration region such that the sign of x2 can be
fxed accordingly. Te latter, together with the symmetry of
T1, is exploited to attain (c), while (d) is immediately ob-
tained after simple algebraic transformations. Note that I2 �

2I2,2 − I2,1, where I1 and I2 require integral computations as
shown in (13). Fortunately, their calculation can be further
simplifed as described next.
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I2,1 �

��]2
√ Γ ]2 − 1( 􏼁/2( 􏼁

2Γ ]2/2( 􏼁
��
π

√ , (14)

which comes from using ([8], Equation (3.241.4)).
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where (a) comes from substituting (2), (b) follows from
rearranging terms, while (c) is obtained by leveraging (14).

Now, to simplify I
′
2,2, we introduce the following variable

transformation
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where (a) comes fromexploiting the variable transformationy �

z2, while the integral is solved in (b) by leveraging ([8], Equation
(3.197.8)). Ten I

′
2,2 can be easily estimated by truncating the

infnite sum in (19). As illustrated in Figure 1, the relative ap-
proximation error decreases following a power law decay, thus,

a relatively small number of addends is needed, especially for
small ]2, ]1, and large ω2.

By combining (12), (13), (14), (15), and (19), and
substituting them into (11), we obtain
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2.4. Special Case: Sum of i.i.d. Student’s t RVs. Herein, we
consider the special case of the sum of i.i.d. Student’s t RVs,
i.e., σi � σ, ]i � ], and ∀i � 1, . . . , K. With this in hand, the
computation of E[Z2], CFZ(r), and E[|Z|] (for K � 2) can
be more easily obtained as follows:
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α]I2,2′), one may depart from (a) in (12) to write

I1 �
2α2]]
] − 1

􏽚
∞

0
1 + x

2
2/]􏼐 􏼑

− ]
dx2

�
Γ((] − 1)/2)Γ(] − 1/2)

2]Γ(]/2)
3]− 1/2 ,

(22)

which leverages ([8], Equation (3.251.2)) and (3) followed by
some simple algebraic simplifcations. Meanwhile, (14) can
be directly used with ] instead of ]2. Now, (19) can be
computed by departing from (17) as

I2,2′ � ]􏽚
1

0
z
]− 2

Iz2
]
2
,
1
2

􏼒 􏼓dz

�
(a) Γ((] + 1)/2)

Γ(]/2)
��
π

√ 􏽚
1

0
x
]− (3/2)

2F1 ]2,
1
2
, 1 +

]
2
, x􏼒 􏼓dx

�
(b) ]

] − 1
1 −

��
π

√
Γ(] − 1/2)

2]− 1Γ(]/2)
2􏼠 􏼡,

(23)

where (a) comes from stating the regularized incomplete
beta function in terms of a hypergeometric function
according to ([7], Equation (8.17.7)) and using
x≜ z2⟶ dx � 2zdz, while (b) follows from leveraging
[19] together with iterative integration by parts. Finally, by
combining the above results, we obtain

E[|Z|] �
σ

�
]

√
Γ((] − 1)/2)Γ(] − 1/2)

2]− 2Γ(]/2)
3 . (24)

3. Distribution Fitting

Next, we follow two diferent distribution-ftting ap-
proaches. Te frst approach is based on matching the
second and absolute moments, while the second approach
relies on matching the second moment and the CF for
a certain r. We also illustrate their accuracy.

3.1. Fitting Based on Second and Absolute Moments.
According to (4) with m � 2 and (6) with m � 1, the set of
equations to solve is as follows:

σ2z]z

]z − 2
� E Z

2
􏽨 􏽩,

σz

��
]z

√
Γ ]z − 1( 􏼁/2( 􏼁

Γ ]z/2( 􏼁
��
π

√ � E[|Z|]􏼨 􏼩, (25)

with variables σz, ]z􏼈 􏼉. Recall that E[Z2] is given by (8),
while E[|Z|] is given in (20) for the case of K � 2. By iso-
lating σz in the frst equation, i.e., σz �

��������������
(]z − 2)E[Z2]/]z

􏽰
,

and substituting it into the second equation, the system of
(25) transforms to

h ]z( 􏼁≜
Γ ]z − 1( 􏼁/2( 􏼁

�����
]z − 2

􏽰

Γ ]z/2( 􏼁
�

��
π

√
E[|Z|]

������
E Z

2
􏽨 􏽩

􏽱 . (26)

We observe that attaining an exact closed-form solution
for ]z in (26) is not viable, thus, we resort to a low-complex
approximation of h(]z). For this, we plot h(]z) vs. ]z in
Figure 2, and realize that h(]z) has approximately the form
of a quotient of two linear functions. Hence, we state

h ]z( 􏼁 ≈
p1]z + p2

]z + p3
. (27)

Here, we know that h(2) � 0, and

lim
]z⟶∞

h ]z( 􏼁 � lim
]z⟶∞

Γ ]z − 1( 􏼁/2( 􏼁
�����
]z − 2

􏽰

Γ ]z/2( 􏼁
,

�
(a) lim

]z⟶∞

��������
2 ]z − 2( 􏼁

]z

􏽳

,

�
�
2

√
,

(28)
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where (a) comes from using ([7], Equation 5.11.12). Ten, in
order to satisfy such conditions, we can directly set p1 and p2
as follows:

lim
]z⟶∞

h ]z( 􏼁 � p1 �
�
2

√
, (29)

h(2) �
2p1 + p2

2 + p3
� 0⟶ 2p1 + p2 � 0⟶ p2 � − 2

�
2

√
,

(30)

where (30) uses the result in (29) in the last step. Finally,
p3 � −

�
3

√
can be obtained easily by standard curve ftting.

Te accuracy of (27) is also depicted in Figure 2.
With (27) in place, one can estimate ]z and σz as follows:

]⋆z ≈
πE[|Z|] − 2

�������
2E Z

2
􏽨 􏽩

􏽱

��
π

√
E[|Z|] −

�������
2E Z

2
􏽨 􏽩

􏽱 , (31)

σ⋆z ≈

��������������������

(π − 2
��
π

√
)E[|Z|]E Z

2
􏽨 􏽩

πE[|Z|] − 2
�������
2E Z

2
􏽨 􏽩

􏽱

􏽶
􏽴

, (32)

and use the approximation Z ∼ σ⋆zT(]⋆z ). Such a distribu-
tion ft is illustrated in Figure 3 and evinces the appropri-
ateness of our approach. All in all, the ftting accuracy only

seems to be afected by the distribution tails, which is ex-
pected considering that only two (low-order) features of the
child distributions are used for the ftting. Nevertheless, even
in the tails region, the accuracy is surprisingly good, being
only critically afected when the child distributions have
signifcantly diverging degrees of freedom and scaling fac-
tors in opposite directions, e.g., small ]1, σ2 and large ]2, σ1.

3.1.1. Linear Combination of K> 2 Student’s t RVs.
Notice that if a scaled Student’s t distribution fts accurately
the distribution of the linear combination of K � 2 Student’s
t RVs, then such a Student’s t ftting approach applies for the
linear combination of any K≥ 2 Student’s t RVs. Tis can be
easily shown by induction as follows:

According to the previous subsection’s results, we can
state that

σ1T1 + σ2T2 ∼ σz2
T ]z2

􏼐 􏼑 (33)

holds approximately. Here, σzn
� g1(σ1, . . . , σn, ]1, . . . , ]n)

and ]zn
� g2(σ1, . . . , σn, ]1, . . . , ]n), where g1(·) and g2(·)

are transformation functions (given by (31) and (32) in the
particular case of n � 2). Ten, assume that
􏽐

K
i�1σiTi ∼ σzK

T(]zK
), and observe that

􏽘

K+1

i�1
σiTi � σK+1 TK+1􏽼√􏽻􏽺√􏽽

T ]K+1( )

+ 􏽘
K

i�1
σiTi

􏽼√√􏽻􏽺√√􏽽

σzK
T ]zK

􏼐 􏼑

T1 + σ2
σ1

T2
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Figure 3: PDF of the linear combination of two Student’s t RVs.
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Figure 4: PDF of the (normalized) linear combination of K

Student’s t RVs. We set σi � i/2 and ]i � 2 + i/2. Straight lines
correspond to the empirical PDF obtained through Monte Carlo
simulations, while dotted lines correspond to our proposed Stu-
dent’s t distribution ftting based on second and absolute moments
matching.
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∼ g1 σzK
, σK+1, ]zK

, ]K+1􏼐 􏼑
􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽

σzK+1

T g1 σzK
, σK+1, ]zK

, ]K+1􏼐 􏼑
􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽

]zK+1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠. (34)

Tus, proving the hypothesis.
Wrapping up, the linear combination ofK≥ 2 Student’s t

RVs is approximately distributed as σzK
T(]zK

), where σzK
,

]zK
can be iteratively obtained as follows:

σzi+1
� g1 σzi

, σi+1, ]zi
, ]i+1􏼐 􏼑,

]zi+1
� g2 σzi

, σi+1, ]zi
, ]i+1􏼐 􏼑,

(35)

∀i≥ 1, where σz1
� σ1, ]z1

� ]1, and g1(σ1, σ2, ]1, ]2),
g2(σ1, σ2, ]1, ]2) are respectively given by (31) and (32),

which can be computed by leveraging (8) and (20). Te
accuracy of such a procedure has been corroborated by
several simulation campaigns, and it is illustrated here in
Figure 4 for an example set of distribution parameters.

3.2. Fitting Based on Second Moment and Characteristic
Function. According to (4) with m � 2 and (5), the set of
equations to solve is as follows:

σ2z]z

]z − 2
� E Z

2
􏽨 􏽩,

��
]z

√
σz|r|( 􏼁

]z/2K]z/2
��
]z

√
σz|r|( 􏼁

2]z/2− 1Γ ]z/2( 􏼁
� CFZ(r), (36)

with variables σz, ]z􏼈 􏼉. Recall that E[Z2] is given by (8),
while CFZ(r) is given in (9). As in Section 3.1, we frst isolate
σz in the frst equation, i.e., σz �

��������������
(]z − 2)E[Z2]/]z

􏽰
, and

then substitute it into the second equation. By doing this, the
system of (36) transforms to

g ]z( 􏼁≜
|r|

������������

]z − 2( 􏼁E Z2[ ]

􏽱

􏼒 􏼓
]z/2

K]z/2 |r|

������������

]z − 2( 􏼁E Z
2

􏽨 􏽩

􏽱

􏼒 􏼓

2]z/2− 1Γ ]z/2( 􏼁
� CFZ(r).

(37)

It can be shown that g(]z) is a decreasing function and
that lim]z⟶ 2+g(]z) � 1 and lim]z⟶∞g(]z) �

l(|r|
�����
E[Z2]

􏽰
)≥ 0 for some decreasing function l(·). Tis is

illustrated in Figure 5 and implies that there is at most one
real solution ]⋆z for (37), which can be easily found via the
bisection method. After this, one sets
σ⋆z �

��������������
(]⋆z − 2)E[Z2]/]⋆z

􏽰
and uses the approximation

Z ∼ σ⋆zT(]⋆z ).
Te main challenge with this approach is the proper

setting of r. On one hand, (37) may not have solution for
certain values of r. On the other hand, diferent feasible
values of r may lead to signifcantly diferent ftting accuracy
fgures. We investigate these issues in Section 4.3. For now,
let us conveniently set

r � E Z
2

􏽨 􏽩
− 1/2

, (38)

so that g(]z) simplifes to

g ]z( 􏼁≜
]z − 2( 􏼁

]z/4K]z/2
�����
]z − 2

􏽰
( 􏼁

2]z/2− 1Γ ]z/2( 􏼁
. (39)

Observe that attaining an exact closed-form solution for
]z in g(]z) � CFZ(E[Z2]− 1/2) using (39) is still not viable.
Fortunately, g(]z) can be accurately approximated by a very
tractable fractional function of the form

g ]z( 􏼁 ≈
p1]z + p2

]z + p3
. (40)

Meanwhile, we know that lim]z⟶ 2+g(]z) � 1, and

lim]z⟶∞g(]z) ≈ 0.6070 as shown in Figure 5. Ten, in

order to satisfy such conditions, we can directly set p1 and p2

as follows:

lim
]z⟶∞

g ]z( 􏼁 � p1 � 0.607,
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g(2) ≈
2p1 + p2

2 + p3
� 1⟶ 2p1 + p2 � 2 + p3⟶ p3 � 2p1 + p2 − 2 � p2 − 0.786, (42)

where (42) leverages the result in (41) in the last step. Finally,
p2 � − 0.7606 can be obtained easily by standard curve ftting,
and then one can set p3 � − 0.7606 − 0.786 � − 1.5466. Te
accuracy of (40) is depicted in Figure 6.

With (40) in place, one can estimate ]z and σz as

]⋆z ≈
0.7606 − 1.5466 × CFZ E Z

2
􏽨 􏽩

− 1/2
􏼒 􏼓

0.607 − CFZ E Z
2

􏽨 􏽩
− (1/2)

􏼒 􏼓

,

σ⋆z ≈

�����������������������������

CFZ E Z
2

􏽨 􏽩
− (1/2)

􏼒 􏼓 − 1􏼒 􏼓E Z
2

􏽨 􏽩

1.6775 − 3.4111 × CFZ E Z
2

􏽨 􏽩
− 1/2

􏼒 􏼓

􏽶
􏽵
􏽴

,

(43)

and use the approximation Z ∼ σ⋆zT(]⋆z ). Such a distribu-
tion ftting is illustrated in Figures 7 and 8, and evinces the
appropriateness of our approach. Finally, notice that the
results here agree also with our previous observations
around Figure 3.

4. Fitting Accuracy Analysis

In this section, we assess the accuracy of the ftting methods
discussed in Section 3 by adopting the Bhattacharyya dis-
tance metric [20]. Tis metric measures the similarity of two
probability distributions, which in this case are the true
distribution of Z, fZ(z), and the approximate scaled Stu-
dent’s t distribution f􏽢Z

(z) based on one of the proposed
ftting approaches. Notice that since the true/exact distri-
bution of Z, fZ(z), is unknown and difcult to compute for
a general K, we leverage a Monte Carlo approach to estimate
the Bhattacharyya distance. Specifcally, such a metric is
computed as follows:

dB(Z, 􏽢Z) � − ln 􏽘
N

n�1

������������
fZ zn( 􏼁f􏽢Z

zn( 􏼁
􏽱

⎛⎝ ⎞⎠, (44)

where zn is the n− th sample taken from σ􏽐
K
i�1Ti, and fZ(zn)

is estimated using its histogram. As N⟶∞, (44) ap-
proaches the exact Bhattacharyya distance between the
continuous probability distributions of Z and 􏽢Z. Finally, we
focus on the special case of the sum of i.i.d. RVs for sim-
plicity, adopt N � 106, and set σ � 1 without loss of
generality.

4.1. Absolute Moment vs. CF-Based Fitting. Figure 9 shows
the ftting accuracy of the two methods proposed in this
work together with that of a benchmark approach based
on the second and fourth moments matching. As com-
mented earlier, such an approach can only be used when
]≥ 4, which was one of the key motivations for our work.
From the fgure, we can tell that (i) the proposed ftting
approaches are more accurate than the benchmark based
on second and fourth moments matching, which is also
restricted to the cases where ]≥ 4; (ii) the ftting based on
the CF matching is generally more accurate than the one
based on absolute moment matching, although both
approaches tend to converge as ] increases; and (iii) for
relatively small ], the proposed ftting approaches are
more accurate for a smaller K, while this behavior might
be reverted as ] increases.

4.2. Scaling Laws of the Fitting Parameters. Herein, we le-
verage the i.i.d. Assumption to illustrate in Figure 10 how the
parameters of the ftting distribution scale with K. For this,
we adopt only the CF-based ftting, as our previous results
indicate that it is the most accurate. We observe that both
parameters of the ftting distribution, the scale σz and the
number of degrees of freedom ]z, increase with K.
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Specifcally, σz, ]z ∼ c1K
c2 + c3 with c1, c2 > 0 and c2 < 1

(concave increase). Moreover, σz and ]z are respectively
increasing and decreasing functions of ].

4.3. Performance Impact of the CF Parameter Setting. As
commented earlier in Section 3.2, diferent choices of r in
(36) (or directly in (37)) may lead to signifcantly dif-
ferent ftting accuracy fgures. Here, we investigate these
issues by illustrating the estimated Bhattacharyya dis-
tance as a function of r in Figure 11. Observe that for

relatively large values of ], the accuracy depends little on
the specifc value of r. Tis situation changes drastically
as ] decreases approaches two, under which proper
setting r becomes more critical. Indeed, there is an
accuracy-optimum value of r, especially noticeable when
] is small. Notice that although the optimum r may be
cumbersome to determine beforehand in practice.
Nevertheless, and as a rule of dumb, relatively small
values of r are usually preferred, and our proposal in (38)
appears to be a valid (and simple) confguration
approach.
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5. Conclusion

In this work, we proposed two ftting approaches for the
distribution of linear combinations of the Student’s t RVs
with more than two degrees of freedom. Tey leverage
the second moment together with either the frst absolute
moment or the CF to ft the distribution to that of a scaled
Student’s t RV. For the former, we frst analytically
obtained the absolute moment of a linear combination of
K � 2 Student’s t RVs and then generalized to K≥ 2
through a simple iterative procedure, while the ftting is
direct for the latter but its accuracy depends on the CF

parameter. Notably, we proposed a simple CF parameter
confguration and showed that it can lead to high ftting
accuracy. We resorted to Monte Carlo simulations and
adopted the Bhattacharyya distance metric for numeri-
cally quantifying the ftting accuracy. We showed that the
CF-based ftting can usually outperform the absolute
moment -based ftting, although the accuracy provided
by both approaches converges when the t− RVs have
a sufciently large number of degrees of freedom. In-
terestingly, both proposed approaches outperform
benchmark ftting based on second and fourth moments
matching, which is only applicable when all t− RVs have
at least four degrees of freedom. Interestingly, both the
scale and number of degrees of freedom of the ftting
distribution were shown to increase almost linearly
with K.

Finally, notice that our work opens the path to even
more general ftting approaches. Indeed, by discarding
the second moment and leveraging only the absolute
moments and CFs, one may be able to accurately
characterize the distribution of the linear combinations
of t− RVs with more than one degree of freedom.
Moreover, by solely relying on CFs matching with dif-
ferent parameters r, one may completely remove the
constraint on the number of degrees of freedom and
arbitrarily ft the distribution of any linear combination
of t− RVs to that of a scaled Student’s t RV. However,
further studies are required on how to achieve this in an
optimal and/or simple manner.
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