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Te ability of government agencies to assign accurate ages of fsh is important to fsheries management. Accurate ageing allows for
most reliable age-based models to be used to support sustainability and maximize economic beneft. Assigning age relies on
validating putative annual marks by evaluating accretional material laid down in patterns in fsh ear bones, typically by marginal
increment analysis. Tese patterns often take the shape of a sawtooth wave with an abrupt drop in accretion yearly to form an
annual band and are typically validated qualitatively. Researchers have shown key interest in modeling marginal increments to
verify the marks do, in fact, occur yearly. However, it has been challenging in fnding the best model to predict this sawtooth wave
pattern. We propose three new applications of time series models to validate the existence of the yearly sawtooth wave patterned
data: autoregressive integrated moving average (ARIMA), unobserved component, and copula. Tese methods are expected to
enable the identifcation of yearly patterns in accretion. ARIMA and unobserved components account for the dependence of
observations and error, while copula incorporates a variety of marginal distributions and dependence structures. Te unobserved
component model produced the best results (AIC: − 123.7, MSE 0.00626), followed by the time series model (AIC: − 117.292, MSE:
0.0081), and then the copula model (AIC: − 96.62, Kendall’s tau: − 0.5503). Te unobserved component model performed best due
to the completeness of the dataset. In conclusion, all three models are efective tools to validate yearly accretional patterns in fsh
ear bones despite their diferences in constraints and assumptions.

1. Introduction

Sustainable fsheries rely on the use of age-based de-
mographic models that account for reproduction and
growth to maximum economic beneft. To achieve this goal,
it is required that fsh be ascribed correct ages [1]. Ascribing
correct ages relies on validating putative annual marks on
fsh bones [2]. Te most commonly used technique to
validate marks is marginal increment analysis (MIA) [2, 3].
MIA evaluates the width of newly accreted material laid
down on the edge of fsh ear bones measured over a year
compared to material accreted over the previous year [2]
(Figure 1). Te ratio is typically averaged by month over all
age groups and plotted over a single year. Te plot shows
a single dip if one band is produced yearly (Figure 2). Tis
dip validates the pattern of a putative annual ring, allowing
for accurate ageing of the fsh to the nearest year.

For this pattern verifcation, few instances exist of sta-
tistically validated quantitative approaches because of ir-
regular patterns observed due to changing environmental
conditions. One such irregular pattern often looks like
a sawtooth wave with an abrupt drop in accretion yearly to
make an annual band [5–7]. Such sawtooth wave patterns
provide challenges in ftting data to statistical models. At-
tempts have been made to overcome the difculty of
modeling the sawtooth wave pattern. Okamura et al. [6] used
circular statistics and conversion of the month of capture to
the median of the month and then another conversion of the
median of the month to radians with accretion ratios as the
linear vector. Te circular method provides a short-term
forecast that assumes the data are uniformly distributed
around one preferred direction [8]. In contrast, Phelps et al.
[7] used analysis of variance to identify signifcant difer-
ences in increment widths between months, but not in the
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years’ trend. Analysis with a time series model is appropriate
for yearly patterned data because time series models identify
seasonal patterns and should detect a yearly accretion
pattern.

Te advantage of time series analysis is that it accounts for
the dependence of the observations and errors in the dataset
[9]. Time series analysis of marginal increments can allow for
the objective determination of the temporal, seasonal, and
cyclic nature of growth accretion. Time series models, such as
autoregressive integrated moving average (ARIMA), un-
observed component models (UCMs), and Gaussian copula,
can pinpoint seasonal changes through time.

A time series approach works especially well when data
are complete and abundant. Other assumptions of ARIMA
include the independence and identical distribution under

the Gaussian nature of the error terms in the model
statement, as well as the constant variance assumption or
stationarity. Unfortunately, the sawtooth wave pattern in
MIA data complicates fnding a well-ftted time series model.

Te UCM can break a time series of data into trend,
cyclical, seasonal, autoregressive, and lagged components
[10, 11]. Bian et al. [12] gave a summary of UCM appli-
cations but did not include analysis in fsheries research. To
our knowledge, this paper is the frst to use UCM to model
MIAs. UCMs use smoothing models that allow for improved
analysis and put more weight onto observations that are
closer to each other due to the nonignorable correlation of
time series measurements [13]. Te single-error model is in
fact broken up into its component calibration.

Te Gaussian copula construction emanates from Joe
[14] and other authors [15, 16]. However, just as in the UCM
case, its use in fsheries research is still in its infancy [17, 18].
Copula models easily incorporate a variety of marginal
distributions and diferent dependence structures, unlike
ARIMA whose assumptions rely on identical joint distri-
butions at all-time values and identical Gaussian marginal
distributions [9]. As a frst advantage, the copula approach
for parameter estimation in multistage models captures
dependence from the temporal samples. A second advantage
is that the copula circumvents the nontrivial computations
in the variances of estimates. Gaussian copulas are very
common in economics, epidemiology, time series analysis,
and climate change [19–23].

We propose the comparison of the ARIMA, UCM, and
copula-based statistical time-series methods while in-
corporating serial dependence. Te goal is to evaluate the
feasibility and preliminary efcacy of the models on fsh
ear bone accretion data. We are fortunate in this frst test
to have an unusually complete dataset without often-
missing seasonal components due to conditions that
prohibit fshing such as adverse weather or lack of fsh
availability.

Te paper is organized as follows. In Section 2, the data
are described with the ARIMA, UCM, and copula models
and the statistical analysis methods are presented. In Section
3, the solutions are presented. In Section 4, we end with
a discussion of the performance of these models using our
complete dataset.

2. Materials and Methods

2.1. Data Collection. Te data for this study were extracted
from the data included by Barbieri et al. [4] using DataTief
III, Version 1.7 (2015) to extract the data points from
a graph. According to the authors’ methods, fsh were
collected eachmonth between June 1988 and June 1991 from
commercial fsheries in the Chesapeake Bay and brought to
their laboratory. Next, individual biometrics were recorded,
and ear bones were excised.

Fish ear bones (sagittal otoliths) were sectioned and then
mounted on microscope slides and magnifed to a range
from 0.8x to 8x and photographed using an Olympus DP71
camera and program Cells Sense (Figure 1).Te images were
then uploaded to program Image-Pro Plus v. 6.2.0.424
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Figure 1: Tis is the microscopic cross section of the ear bone of
a 3-year-old Atlantic croaker. Te age is evidenced by the three
numbered dark bands. Year 1 begins at the nucleus and continues
down the succal groove (dashed line) to band 1. Year 2 begins at
band 1 and continues to band 2. Year 3 begins at band 2 and ends at
band 3. Accretional growth during year 3 extends to the edge of the
ear bone as indicated by “+.” Inset: the marginal increment ratio is
b/a.
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Figure 2: Time series of marginal increment analysis (MIA) data
with one standard error interval from [4]. Notice the dip in May of
each year. By fsheries convention, age in months is arbitrarily
assigned a birthdate of January 1 to all fshes born in the northern
hemisphere. Te x axis has two legends. Te frst shows age in
months, and the second shows the distribution of months as years.
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(Media Cybernetics Inc.) for marginal increment mea-
surement, in micrometers. Te frst marginal increment was
measured from the last dark band to the outer edge of the ear
bone. Te second is measured from the last dark band to the
previous dark band.Tese measurements are then combined
as a ratio of the last partial accretion to the last full accretion
band (Figure 1). Te average ratio was then calculated for
each age class by its month of capture. Te average was
plotted by month and visually inspected for the drop in the
sawtooth wave. Fish were categorized by the age at capture,
regardless of year of capture. Te youngest age caught was
1 year.

2.2. Model Diagnostics and Goodness of Fit Measurements.
Consider the data as n observations of type y1, . . . , yn, the
likelihood function can be written as follows:

L Θ; y1, . . . , yn(  � 
n

i�1
fy yi;Θ( , (1)

where

Θ � θ1, . . . , θp 
T
, (2)

is the vector of p parameters associated with the model
equation.

Te log-likelihood equation can then be formulated as
follows:

log(L) � 
n

i�1
log fy yi;Θ(  . (3)

Akaike’s information criterion is then calculated by the
following equation:

AIC � − 2 log(L) + 2K, (4)

where K � p is the number of parameters in the model
[24, 25].

Te mean squared error is formulated as

MSE �
1
n



n

i�1
Yi − Yi 

2
, (5)

and Kendall’s tau that measures the diference in the
measure of concordance and discordance between the
marginal CDFs is

τ � Pr X1 − X2(  Y1 − Y2( > 0 

− Pr X1 − X2(  Y1 − Y2( < 0 ,
(6)

for pairs of observations (X1, Y1) and (X2, Y2), and can also
be formulated as follows:

τ � 4
1

0

1

0
C(u, v)dC(u, v) − 1, (7)

as by Sun et al. [16], where C represents the copula function
that will be described in Section 2.5, with u and v capturing
the marginal distribution of X and Y, respectively.

2.3. Time SeriesModel. Te data from the time series process
Xt are described as an ARIMA (p, d, q) model and are
defned as follows:

ϕ(B)Xt � θ(B)Zt, (8)

where p, d, and q are non-negative integers, based on
a sample size of n, with

Xt � (1 − B)
d
Yt,

Zt ∼WN 0, σ2 ,

ϕ(z) � 1 − ϕ1z − . . . − ϕpz
p
,

θ(z) � 1 + θ1z + . . . + θqz
q
,

(9)

where Yt is the transformed Xt series with the mean re-
trieved and B is the backward shift operator [26].

Te parameter p is associated with the autoregressive
portion of the process, while q is associated with the moving
average portion of the process. To help estimate the
autoregressive parameter (p), the sample autocorrelation
function can be used once graphed:

ρ(h) �
c(h)

c(0)
, − n< h< n, (10)

where c is the sample autocovariance function and is defned
as follows:

c(h) ≔ n
− 1



n− |h|

t�1
xt+|h| − x  xt − x( , − n< h< n. (11)

To help estimate the moving average parameter (q), the
sample partial autocorrelation function can be used once
graphed:

α(0) � 1,

α(h) � ϕhh, h≥ 1,
(12)

where ϕhh is the last component of

ϕh � Γ− 1h ch, (13)

where

Γh � [c(i − j)]
h
, i, j � 1 . . . T, h≥ 1,

ch � c(h).
(14)

Te likelihood function is as follows [27]:

L θ|Yt(  � 
n

n�2

1
2πn/2

 |Σ|1/2
exp

− 1
2

Y
′Σ− 1

Y , (15)

where Σ is the variance/covariance matrix of the observed
time series data.

R package “astsa” is used to loop through possible
combinations of p and q ranging from zero to three. [28].
AIC, log likelihood, and MSE were used to decide the
best model.
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2.4. Unobserved Component Model. Components of the
models can be assumed unobserved and must be esti-
mated under a time series model. Te unobserved
component model (UCM) ofers such fexibility. Un-
observed components can be modeled using the following
equation:

Yt � μt + ct + ψt + rt + φiYt− i + εt, (16)

where μt represents the trend component, ct represents the
seasonal component, ψt represents the cycle trend, rt is the
autoregressive term, φiYt− i is a regressive term involving
the lagged dependent variables, εt is the error term assumed
to be independent with an identical Gaussian distribution,
and μt, ct, ψt, and rt are assumed to be independent of each
other [13].

Te likelihood function is as follows [27]:

L(θ|Y) � p1 y1( 

n

t�2
pt yt

yt− 1; θ , (17)

where Y � (y1, . . . , yn)′.
Analysis is conducted using SAS “proc ucm.” Six models

are tested using various combinations of the level, slope,
cycle, and season and described in Table 1. Model 1 uses
a stochastic level, slope, cycle, and season; model 2 uses
a stochastic level and slope, no cycle, and stochastic season;
model 3 uses a stochastic level, fxed slope, and stochastic
cycle and season; model 4 uses a stochastic level, no slope,
and stochastic cycle and season; model 5 uses a stochastic
level, fxed slope, no cycle, and stochastic season; model 6
uses a stochastic level, no slope or cycle, and stochastic
season.

2.5. Copula Model. A copula is defned as follows:

P Yt ≤yt, Yt− 1 ≤yt− 1(  � C P Yt ≤yt( , P Yt− 1 ≤yt− 1(  ,

t � 1, 2, . . . , T, C: [0, 1]
2⟶ [0, 1],

(18)

which satisfes the following requirement:

C(u, 0) � C(0, v)

� 0, C(u, 1) � u, C(1, v) � v, for 0≤ u, v≤ 1,

C u2, v2(  − C u2, v1(  − C u1, v2(  + C u1v1( 

≥ for 0≤ u1 ≤ u2 ≤ 1∧ 0≤ v1 ≤ v2 ≤ 1.

(19)

In addition, Sklar’s theorem states that for the following
equation,

Pr(X≤ x, Y≤y) � C F(x), G(y) , (20)

a unique function of C can be found if F and G are con-
tinuous [16, 19].

Tis paper will use beta marginals described as follows:

G(y) �
y
α− 1

(1 − y)
β− 1

B(α, β)
,

B(α, β) �
Γ(α)Γ(β)

Γ(α + β)
,

μ � E Yt ,

σ2 � Var Yt( ,

(21)

where α and β are the shape and scale parameters and Γ is the
Gamma function. Te likelihood function is as follows [29]:

L(θ|Y) � p y1, θ( 

n

t�2
pt yt

yt− 1, . . . y1; θ . (22)

Te equation used in the copula analysis was

MIAt � tan
2πt

12
− 4  sin

2πt

12
− 4 

+
2
π2

cos
2πt

12
− 4  + εt,

(23)

where sin, cos, and tan are the trigonometric functions and
εt∼iidN(0, σ2) are the error terms.

R package “gcmr” was used to ft the copula models [30].
For the sake of interpretability of smoothness, ARIMA (1, 1,
0) was selected. Due to time dependency, trigonometric
functions were used in the model equation [31–33]. Te
copula is more parsimonious than UCM or time series. It
includes only the time series parameters in a more succinct
form based on the marginal distributions of Yt

′s. Te copula
equation was estimated and reported along with the log
likelihood and AIC. Kendall’s tau was calculated to estimate
a correlation between marginal accretion width over con-
secutive time periods.

3. Results

3.1. Data. Ear bones from a total of 1185 fsh were prepared,
and increments were measured by Barbieri et al. [4]. Te
monthly average increment by age is graphed in Figure 2. A
clear decrease in accretion width can be observed in May of
each year, as well as a decreasing variance over time.

3.2. ARIMA Model. Te model with the highest log likeli-
hood (65.6458), lowest AIC (− 117.292), and MSE (0.00805)
had an autoregressive order of 2 and a moving average order

Table 1: Combination of all possible methods used to test the
unobserved component models (UCMs).

Level Slope Cycle Season
Model 1 Stochastic Stochastic Stochastic Stochastic
Model 2 Stochastic Stochastic — Stochastic
Model 3 Stochastic Fixed Stochastic Stochastic
Model 4 Stochastic — Stochastic Stochastic
Model 5 Stochastic Fixed — Stochastic
Model 6 Stochastic — — Stochastic
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of 3 (Table 2). All the estimated parameters were signifcant
except the third moving average term, and when this third
term is removed, the constant term becomes insignifcant
(Table 3). Te QQ plots of these two models show the
majority of the data with a normal distribution (Figure 3).

3.3. Unobserved Component Model. Te six models tested
using various combinations are presented in Table 4. Model
4 provided the highest log likelihood (67.874) and lowest
AIC (− 123.7), while model 1 produced the lowest MSE
(0.00626). Te AIC and MSE were smaller than those of the
ARIMA model, while the log likelihood is larger than the
best of the ARIMA models. (Table 4). All models produced
an identical graph with an extremely narrow confdence
interval (Figure 4).

Te residuals for models 2, 3, and 5 had a distinct si-
nusoidal pattern, while the others had a slightly more
random appearance (Figure 5).Te QQ plots of the residuals
show most of the data follow a normal distribution (Fig-
ure 6). Models 2, 5, and 6 had a sinusoidal pattern in the ACF
graphs (Figure 7).

3.4. Copula Model. Figure 8 describes the graph of the
copula function. Tangent was added to the equation to
properly model the drop of the sawtooth wave. Te copula
produced a log likelihood, AIC, and Kendall tau of − 52.31,
− 188.9633, and − 0.5503, respectively. Kendall’s tau is neg-
ative since as time increases, the marginal increment de-
creases. Such a result has not been captured under ARIMA
or UCM.TeAIC and log likelihood were smaller than those
of ARIMA or UCM. Te variance of the copula model was
larger than that of either ARIMA or UCM (Figure 9). Te
conditional residual plot showed dips corresponding to May
of each year, and QQ plots showed the majority of the data
within a normal distribution (Figure 9). Te marginal re-
sidual plot showed dips corresponding to May of each year,
and the QQ plot showed the majority of the data within
a normal distribution (Figure 9). Te pattern in the MIA
residuals shows that alternative models are better fts.

4. Discussion

Te sawtooth wave pattern of MIA data proved challenging
to model, but when analyzed with ARIMA, UCM, and
copula, these methods provided precise timing of accretional
patterns in fsh ear bones.Temodels demonstrated that, for
Atlantic croaker, dark bands had formed by May and oc-
curred only once during the year.Tus, providing a model to
validate the formation of dark bands was evident after
a sharp drop in accretion while also providing statistical
metrics of model ft, attributes missing from qualitative
measures.

Te frst step in our approach was to formulate more
fexible assumptions about the dependence structure of the
process. More precisely, the joint density of the accretion
process could directly and conveniently describe the sto-
chastic process. Using the dependence structure of ARIMA,
the conditional probability of the sawtooth pattern was well

described. Te UCM model matched the results from
ARIMA as the autocorrelation was captured under Gaussian
white noise and is also extendable when one considers the
copula types of distributions. In this paper, we applied the
copula ideas of Salinas-Gutierrez et al. [34] and Alqawba and
Diawara [35], with beta marginals.

ARIMA and UCM produced the best results. ARIMA is
well established and widely used in analysis of complete
datasets.TeUCMs are valuable extensions of the time series
with variance decreasing over time. Te confdence intervals
in both contain most of the recorded data and matched the
seasonal pattern well. In both models, parsimony is obtained

Table 2: Model diagnostics for the ARIMA (p, 1, q) model.

p\q 0 1 2 3
(a)
0 − 80.6663 − 83.841 − 81.8519 − 88.0023
1 − 83.211 − 81.8484 − 90.054 − 89.9316
2 − 82.1529 − 96.3694 − 83.3204 −117. 9 
3 − 80.8888 − 99.4612 − 107.115 − 104.951
(b)
0 0.017768 0.016501 0.016498 0.014002
1 0.016651 0.016499 0.013748 0.013359
2 0.016426 0.012415 0.014449 0.008054
3 0.016247 0.011402 0.010011 0.010014
(c)
0 42.33315 44.92048 44.92594 49.00115
1 44.60548 44.92422 50.02699 50.96579
2 45.07647 53.18471 47.66019 65.64576
3 45.44441 55.73059 60.5575 60.47542
(d)
0 − 84.66630 − 85.56429 − 81.29855 − 85.17230
1 − 84.93434 − 81.29511 − 87.22398 − 84.82492
2 − 81.59961 − 93.53942 − 78.21372 −109.90819
3 − 78.05882 − 94.35452 − 99.73167 − 95.29084
Te bold values show the best model parameters, while the italic values
show the second best model parameters. (a) Te AICs for selected ARIMA
models. (b)TeMSE for selected ARIMAmodels. (c) Te log likelihood for
selected ARIMA models. (d) Te BIC for selected ARIMA models.

Table 3: Parameter estimates for best ARIMA models.

Estimate Standard error t value p value
(a)
AR 1 1.6169 0.0559 28.932 <0.0001
AR 2 − 0.9253 0.0506 − 18.2994 <0.0001
MA 1 − 2.063 0.1885 − 10.9446 <0.0001
MA 2 1.2442 0.3565 3.4899 0.0009
MA 3 − 0.1262 0.1803 − 0.7 0.4864
Constant − 0.0051 0.0019 − 2.6825 0.0093
(b)
AR 1 0.9625 0.0715 13.4632 <0.0001
AR 2 − 0.9573 0.0561 − 17.073 <0.0001
MA 1 − 0.8789 0.0877 − 10.0175 <0.0001
MA 2 1 0.0861 11.6125 <0.0001
Constant − 0.0083 0.0161 − 0.5134 0.6094
(a) Parameter estimates for best time series model, ARIMA (2, 1, 3) (bold in
Table 2). (b) Parameter estimates for second best time series model, ARIMA
(2, 1, 2) (italic in Table 2).
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mainly because of complete data. Te cycle was automati-
cally obtained, giving us close to perfect time-varying
predictions.

Although the copula did not perform well, the results
were still acceptable for its use inMIA.Te variance estimate
is higher in this case than in ARIMA and UCM. Te
challenge may be due to the choice of the marginal distri-
bution not being as good ft to these data. Te way ARIMA
and UCM components were captured, as regularity of cycle
and seasonality, provides less of an emphasis on sampling.
Te strength of copulas is in capturing a fexible correlation

structure when additional variables, such as temperature or
length, are measurable. In conclusion, all three models are
efective tools to validate yearly accretional patterns in fsh
ear bone despite their diferences in constraints and
assumptions.

Overall, we validated the annual pattern of the MIA data
with all three models (ARIMA, UCM, and copula). In this
case, we had a full dataset and have shown we can use these
three methods with quantitative results that validate the
qualitative visual results shown by Barbieri et al. [4] and
Foster [3]. We anticipate that copulas will outperform
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Figure 3: QQ plots of the best two ARIMA models: (a) (2, 1, 3) and (b) (2, 1, 2).

Table 4: Summary statistics for each of the six UCMs.

Models AIC MSE Log likelihood
1 − 121.2 0.006 6 67.594
2 − 91.53 0.01001 49.766
3 − 118 0.00649 65.014
4 −1 3.7 0.00844 67.874
5 − 93.53 0.01001 49.766
6 − 99.68 0.01277 52.842
Model 4 has the lowest AIC and largest log likelihood. Model 1 has the lowest MSE as shown in bolded text.
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Figure 4: MIA data ft from each of the six unobserved component models (UCMs). Te same graph was produced for all six models. Te
confdence intervals are very narrow.
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ARIMA and UCMs when challenged with incomplete data
where imputation is necessary, when some variable trans-
formations are not recommended, when missingness cannot
be avoided, and the efects of covariates are not removable.

In the future, we will test the performance of copulas when
challenged with both the sawtooth wave pattern and in-
complete datasets (Kirch et al., in process). We hope to
increase the use of copula in this feld and generalize this
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Figure 5: Residual plot of the six UCMs. Dark blue indicates one standard error, while light blue indicates two standard errors. Note: models
(d, f ) are displayed on a diferent y-scale than the other models to highlight the modeling of the MIA at early ages; also, the x-scale indicates
months, i.e., 13� January, 19� July, etc. (a) Model 1 uses a stochastic level, slope, cycle, and season. (b) Model 2 uses a stochastic level and
slope, no cycle, and stochastic season. (c) Model 3 uses a stochastic level, fxed slope, and stochastic cycle and season. (d) Model 4 uses
a stochastic level, no slope, and stochastic cycle and season. (e) Model 5 uses a stochastic level, fxed slope, no cycle, and stochastic season.
(f ) Model 6 uses a stochastic level, no slope or cycle, and stochastic season.
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Figure 6: QQ plots of the six UCMs. (a) Model 1 uses a stochastic level, slope, cycle, and season. (b)Model 2 uses a stochastic level and slope,
no cycle, and stochastic season. (c) Model 3 uses a stochastic level, fxed slope, and stochastic cycle and season. (d) Model 4 uses a stochastic
level, no slope, and stochastic cycle and season. (e) Model 5 uses a stochastic level, fxed slope, no cycle, and stochastic season. (f ) Model 6
uses a stochastic level, no slope or cycle, and stochastic season.
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Figure 7: Autocorrelation function plot of the six UCMs. Dark blue indicates two standard errors from the mean. (a) Model 1 uses
a stochastic level, slope, cycle, and season. (b) Model 2 uses a stochastic level and slope, no cycle, and stochastic season. (c) Model 3 uses
a stochastic level, fxed slope, and stochastic cycle and season. (d) Model 4 uses a stochastic level, no slope, and stochastic cycle and season.
(e) Model 5 uses a stochastic level, fxed slope, no cycle, and stochastic season. (f ) Model 6 uses a stochastic level, no slope or cycle, and
stochastic season.
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method of estimation for higher dimension problems. In
further research, the exploration of incomplete datasets and
other copulas should bring in interesting results.
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Te data used to support the study are available from the
corresponding author upon request.
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