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Classifcation is one of the main areas of machine learning, where the target variable is usually categorical with at least two levels.
Tis study focuses on deducing an optimal cut-of point for continuous outcomes (e.g., predicted probabilities) resulting from
binary classifers. To achieve this aim, the study modifed univariate discriminant functions by incorporating the error cost of
misclassifcation penalties involved. By doing so, we can systematically shift the cut-of point within its measurement range till the
optimal point is obtained. Extensive simulation studies were conducted to investigate the performance of the proposed method in
comparison with existing classifcation methods under the binary logistic and Bayesian quantile regression frameworks. Te
simulation results indicate that logistic regression models incorporating the proposed method outperform the existing ordinary
logistic regression and Bayesian regression models. We illustrate the proposed method with a practical dataset from the fnance
industry that assesses default status in home equity.

1. Introduction

Classifcation is one of the main areas of machine learning,
where the target variable is qualitative, with at least two
groups. If the target variable consists of only two groups, it is
called binary. Applicable areas include loan administration,
image processing, and survival analysis. Commonly used
classifcation techniques can be categorized into four groups:
supervised, unsupervised, semisupervised, and hybrid. Te
supervised method uses the target variable to classify data
points into distinct groups and make predictions. Using the
target input and output, the model can measure its accuracy
and learn from them. Without a target variable, the un-
supervised method is typically recommended to identify
uncharacterized patterns in the data set.Tis method gathers
data and distinguishes between data points with expected
deviations from the successive data points. As they do not
require any target information, the unsupervised method
may serve as the frst stage in separating data points that do
not follow expected patterns, thus classifying them as
anomalies. However, semisupervised methods are used

when the target information for a particular data set is
incomplete. Tis model frst learns the part of the data set
containing target scores and uses that to predict the other
part without target scores. Lastly, the hybrid methods are
just a combination of both the supervised and unsupervised
methods.

Any binary classifcationmodel aims to classify each data
point into one of two distinct groups. However, the results of
most binary classifcation models are usually predicted
probabilities [1]. A cut-of point is applied to these predicted
probabilities to classify data points into the present (1)-
absent (0) maps. Tus, choosing a cut-of point for binary
classifcation is a vital step for decision-making as it may
have severe consequences on the model’s accuracy. Te
default cut-of probability is 0.5. However, this may not
result in higher prediction accuracy as data sets are usually
imbalanced [1]. Binary classifcation models are subject to
two types of errors: false-positive (FP) and false-negative
(FN). Tese rates, FP and FN, are characterized by error cost
functions (i.e., the cost of misclassifying a data point as
group 1 when it belongs to group 2 or vice versa). A good
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classifcation model aims to minimize the misclassifcation
function’s expected error cost. However, due to the chal-
lenges involved in accurately specifying the error cost of
misclassifcation penalties, in many applicable areas, re-
searchers usually assume an equal cost of misclassifcation
[2–5]. However, this has its drawbacks; for example, Ling
and Sheng [2] indicate that the variation between diferent
misclassifcation costs can be quite large. In addition,
Johnson and Wichern [6] state that any classifcation rule
that ignores the error cost of misclassifcation might be
problematic.

As a result, cost-sensitive machine learning has ex-
panded over time due to its ability to integrate fnancial
decision-making considerations such as information ac-
quisition and decision-making error costs [2, 7]. Te aim of
this type of learning is to minimize the total misclassifcation
cost [2]. Also, cost-sensitive learning plays a signifcant role
in classifcation model evaluation [8]. Researchers in this
feld aim at choosing cut-of points to reduce the
misclassifcation rate.

Bayesian methods have recently been used to address
binary classifcation problems [9–11]. Nortey et al. [10]
demonstrated that Bayesian quantile regression is a viable
classifcation model for anomaly detection. Often, it is
much easier to postulate the error cost ratios than to state
their respective component parts [6]. For example, it may
be difcult to accurately specify the costs (in appropriate
units) of misclassifying a loan application as nonrisky
when, in fact, the application is risky and also mis-
classifying a loan application as risky when, in fact, the
application is nonrisky. However, a realistic number of
these error cost ratios can be obtained and used to identify
an optimal cut-of point for classifcation. Determining an
optimal cut-of point requires simultaneous assessment of
the test sensitivity and specifcity [12]. Te optimal cut-of
point is the one that produces the highest sum of test
sensitivity and specifcity. Tus, it should be chosen as the
point that accurately classifes most data points correctly
and most minor of them incorrectly [13].

In addition, many studies concentrate on the receiver
operating characteristic (ROC) curve and the corresponding
area under the curve (AUC), a graph that measures the
diagnostic ability of any binary classifcation model to de-
termine an optimal cut-of point [14, 15]. Te ROC curve
plots the sensitivity (the true-positive rate) against the
complement of specifcity (the false-positive rate) for all
distinctive cut-of points. Other criteria are also introduced
by assuming specifc values or defning a linear combination
or function of sensitivity and specifcity (see, e.g.,
[12, 13, 16–18]). Moreover, Liu [19] proposed the concor-
dance probability method, which defnes the optimal cut-of
point as the maximizer of the product of sensitivity and
specifcity of the model.

In view of the above reasons, this study seeks to develop
a cost-sensitive machine learning method that is relatively
efcient and consistent based on univariate discriminant
functions. Te approach modifes the univariate discrimi-
nant function to incorporate the cost ratios, thus avoiding
the equality of error cost of misclassifcation assumption.

Te remainder of the paper is organized as follows. In
Section 2, we set out the framework for estimating the
parameter of interest, i.e., the concordance probability, and
our approach for modifying the univariate discriminant
function to incorporate the cost ratios. In Section 3, we
conduct a simulation study to assess the performance of the
proposed methods with the existing ones in the literature.
Section 4 presents a practical application of the proposed
method. Lastly, general conclusions from the simulation
results are presented in Section 5.

2. Materials and Methods

Tis section presents the model framework for estimating
the parameters of interest.

2.1. Binary Logistic Regression. Let p be the predicted
probability for a binary response variable, Y � 1, using an
input variable, x � (x1, x2, . . . , xk)′. Ten, the logistic re-
sponse function is modelled for multiple covariates:

p � P(Y � 1|x) �
e

β0+􏽐
k

i�1βixi􏽮 􏽯

1 + e
β0+􏽐

k

i�1βixi􏽮 􏽯
. (1)

Te model in (1) is nonlinear and transformed into
linearity using the logit response function. From (1), the logit
function is given in the following equation:

ln
p

1 − p
􏼠 􏼡 � β0 + β1x1 + β2x2 + . . . + βkxk. (2)

Te logistic regression coefcient in (2) is estimated by
the method of maximum likelihood.

2.2. Bayesian Quantile Regression. Let yi be a response
variable and xi be a k × 1 vector of independent variables for
the ith observation. Let qτ(xi) denote the τth (0< τ < 1)

quantile regression function of yi given xi. Suppose that the
relationship between qτ(xi) and xi can be modelled as
qτ(xi) � xiβτ , where βτ is a vector of unknown parameters of
interest. Ten, we consider the quantile regression model
given in the following equation:

yi � xi
′βτ + εi, i � 1, 2, . . . , n, (3)

where εi is the error term whose distribution (with density say
g(.)) is restricted to have the τth quantile equal to zero; that is,
􏽒
0
−∞ g(εi)dεi � τ.Te error densityg(.) is often left unspecifed

in the classical literature of Kozumi and Kobayashi [20]. Tus,
quantile regression estimation of βτ proceeds by minimizing

􏽘

n

i�1
ρτ yi − xi

′βτ( 􏼁, (4)

where ρτ(.) is the loss (or check) function and is defned as

ρτ(u) � u[τ − I(u< 0)], (5)

and I(.) denotes the usual indicator function.
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Kozumi and Kobayashi [20] considered the linear model
from (3) and assumed that εi has a three-parameter
asymmetric Laplace distribution with a density function
given by

g εi( 􏼁 �
τ(1 − τ)

σ
exp −ρτ

εi

σ
􏼒 􏼓􏼚 􏼛, (6)

where σ > 0 is the scale parameter. Te parameter, τ, de-
termines the skewness of the distribution, and the τth
quantile of this distribution is zero. To develop a Gibbs
sampling algorithm for the quantile regression model,
Kozumi and Kobayashi [20] utilized a mixture representa-
tion based on exponential and normal distribution, as
summarised as follows.

Let z be a standard exponential variable and u be
a standard normal variable. If a random variable ε follows
a three-parameter asymmetric Laplace density with a density
as stated in (6), then one can represent ε as a location-scale
mixture of normals given in the following equation:

ε � σ(ϕz + η
�
z

√
u), (7)

where ϕ � (1 − 2τ/τ(1 − τ)) and η2 � (2/τ(1 − τ)).
From these results, the dependent variable yi can be

rewritten equivalently as follows:

yi � xi
′βτ + σ ϕzi + η

��
zi

√
ui( 􏼁. (8)

Expanding (8) and thereafter reparametrisation, we
obtain the following equation:

yi � xi
′βτ + ϕvi + η

���
σvi

√
ui, (9)

where vi � σzi. Te exponential normal mixture distribution
of εi shows that yi

′s are normally distributed with mean,
xi
′βτ + ϕvi, and variance, η2σvi [10, 20]. Terefore, yi has

a normal density function:

1
η ���σvi

√ exp
yi − xi
′βτ − ϕvi( 􏼁

2

2η2σvi

⎡⎣ ⎤⎦, (10)

and the resulting likelihood function is given by

L yi( 􏼁 � 􏽙

n

i�1

1
η ���σvi

√ ⎞⎠ exp − 􏽘

n

i�1

yi − xi
′βτ − ϕvi( 􏼁

2

2η2σvi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.⎛⎝

(11)

Te aim then is to estimate the regression coefcients, β,
scale parameter, σ, and the mixture variable, vi, in (9).

Two sets of prior probability density distributions are
selected for the parameters: β ∼ N(U0, V0), where N(.)

denotes a normal distribution, and β ∼ dexp(U0, V0), where
dexp(.) denotes a double exponential distribution. Also, we
assume that vi ∼ exp(1/σ), where exp(.) denotes an expo-
nential distribution, and σ ∼ IG(n0/2, s0/2), where IG(.)

denotes an inverse gamma distribution.
In the case of the frst Bayesian model (i.e., with

β ∼ N(U0, V0) and β ∼ dexp(U0, V0)), named Bayesian
model 1, we assign

β ∼ N U0, V0( 􏼁,

vi ∼ exp
1
σ

􏼒 􏼓

σ ∼ IG
n0

2
,
s0

2
􏼒 􏼓.

(12)

Likewise, for the second Bayesian model (i.e., with
vi ∼ exp(1/σ) and σ ∼ IG(n0/2, s0/2)), named Bayesian
model 2, we assign

β ∼ dexp U0, V0( 􏼁,

vi ∼ exp
1
σ

􏼒 􏼓

σ ∼ IG
n0

2
,
s0

2
􏼒 􏼓.

(13)

Given the likelihood distribution in (11) and by speci-
fying the prior probabilities of the parameters of interest, the
posterior distributions can be derived. Tus, for Bayesian
model 1, the posterior distribution is given as

g βτ , vi, σ ∣ yi( 􏼁∝N xi
′βτ + ϕvi, η

2σvi􏼐 􏼑N U0, V0( 􏼁 exp
1
σ

􏼒 􏼓IG
n0

2
,
s0

2
􏼒 􏼓

∝ 􏽙
n

i�1

1
η ���σvi

√⎛⎝ ⎞⎠ exp − 􏽘
n

i�1

yi − xi
′βτ − ϕvi( 􏼁

2

2η2σvi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

×
1

�����
2πV0

􏽰 exp −
βτ − U0( 􏼁

2

2V0
􏼢 􏼣

1
σ
exp −

vi

σ
􏼒 􏼓

1
σ

􏼒 􏼓
n0/2( )+1

exp −
s0

2σ
􏼒 􏼓.

(14)

Also, for Bayesian model 2, the posterior distribution is
given as
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g βτ , vi, σ | yi( 􏼁∝N xi
′βτ + ϕvi, η

2σvi􏼐 􏼑dexp U0, V0( 􏼁 exp
1
σ

􏼒 􏼓IG
n0

2
,
s0

2
􏼒 􏼓

∝ 􏽙
n

i�1

1
η ���σvi

√⎛⎝ ⎞⎠ exp − 􏽘
n

i�1

yi − xi
′βτ − ϕvi( 􏼁

2

2η2σvi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

×
1

2V0
exp −

βτ − U0( 􏼁
2

2V0
􏼢 􏼣 ×

1
σ
exp −

vi

σ
􏼒 􏼓 ×

1
σ

􏼒 􏼓
n0/2( )+1

exp −
s0

2σ
􏼒 􏼓.

(15)

It can be shown that the marginal conditional density for
β in Bayesian model 1 is normally distributed with mean and
variance given, respectively, as

μ �
􏽐

n
i�1 xi
′ yi − ϕvi( 􏼁/η2σvi􏼐 􏼑 + U0/V0( 􏼁􏽨 􏽩

􏽐
n
i�1 xixi

′/η2σvi􏼐 􏼑 + 1/V0( 􏼁􏼐 􏼑􏼐 􏼑
, (16)

and

ζ2 � 􏽘

n

i�1

xixi
′

η2σvi

+
1

V0
􏼠 􏼡⎡⎣ ⎤⎦

−1

. (17)

Also, the marginal conditional distribution of β for
Bayesian model 2 is normally distributed with mean and
variance given as

μ � 􏽘
n

i�1

xiϕvi

η2σvi

−
yixi

η2σvi

−
U0

V0
􏼠 􏼡 × 􏽘

n

i�1

xixi
′

η2σvi

+
1

V0
􏼠 􏼡, (18)

and

ζ2 � 􏽘
n

i�1

xixi
′

η2σvi

−
1

V0
􏼠 􏼡⎡⎣ ⎤⎦

−1

, (19)

respectively.
Furthermore, the marginal conditional distribution of vi

follows a generalized gamma distribution with parameters
(1/2), μ2i and m2

i , where

μ2i � 􏽘
n

i�1

yi − xi
′βτ( 􏼁

2

η2σ
⎡⎣ ⎤⎦, (20)

and

m
2
i � 􏽘

n

i�1

ϕ2

η2σ
+
2
σ

􏼠 􏼡. (21)

Lastly, the marginal conditional distribution of σ is
obtained as

g σ | β, vi, y, x( 􏼁∝
1
σ

􏼒 􏼓
(n/2) 1

σ
􏼒 􏼓

n 1
σ

􏼒 􏼓
n0/2( )+1

exp − 􏽘
n

i�1

yi − xi
′βτ − ϕvi( 􏼁

2

2η2σvi

−
vi

σ
⎡⎣ ⎤⎦ −

s0
2σ

⎧⎨

⎩

⎫⎬

⎭

∝
1
σ

􏼒 􏼓
3n+n0/2( )+1

exp −
1
σ

s0

2
+ 􏽘

n

i�1
vi + 􏽘

n

i�1

yi − xi
′βτ − ϕvi( 􏼁

2

2η2vi

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭.

(22)

As a result, the marginal distribution of σ follows an
inverse gamma with the following parameters:

3n + n0

2
, (23)

and

s0

2
+ 􏽘

n

i�1
vi + 􏽘

n

i�1

yi − xi
′βτ − ϕvi( 􏼁

2

2η2vi

. (24)

2.2.1. Estimating the Mixture Component. A mixture dis-
tribution for a fxed number of components can be specifed

as 􏽐
n
i�1cig(μi, σi), where ci, μi, and σi are the proportions of

the component distributions, their means, and standard
deviations, respectively. To estimate the parameters c, μ, and
σ2 associated with vi, the frst assumption is that the mar-
ginal conditional distribution of vi is a fnite mixture dis-
tribution of two normal components. Te second
assumption is that the latent variable, λ, has a value of 0 or 1
associated with absent and present event rates, respectively.

In this context, c1 and c2 are the proportions of present
and absent event rates, i.e., p(λ � 1) and p(λ � 0). Te
estimation of the mixture variable is done in R using the
Bayesian mixture package. Te package provides the Gibbs
sampling of the posterior distribution, a method to set up the
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model, and specifes the priors and initial values required for
the Gibbs sampler.

2.2.2. Computing the Probability Score. As the aim is to
compute the probability P(Y|λ � 1) for each observation, it
can also be noticed from (2.2.5) that λi, i � 0, 1 is only de-
pendent on Y through the estimated values of vi, and σ.
Terefore, from the Bayes theorem, the probability that an
observation belongs to the present event rate is computed as

p(Y|λ � 1) �
p λ � 1|Y, σ, vi( 􏼁p Y, σ, vi( 􏼁

􏽐
1
i�0p λi | Y, σ, vi( 􏼁p Y, σ, vi( 􏼁

. (25)

2.3. Incorporating the Error Cost Ratios. In this section, we
outline our steps in modifying the univariate discriminant
function to incorporate the error cost ratios.

Let g(y1) and g(y2) be the density functions associated
with a p × 1 random vector variable Y for π1 and π2. An
object with related measurement y must be allocated to

either π1 or π2. Also, letΩ be the sample space ofY andA1 be
the values of Y for which objects are classifed as π1 and
A2 � Ω − A1 as the remaining y values for which objects are
classifed as π2 because they are mutually exclusive and
exhaust the sample space.

Te probability P(2|1) of classifying an object as π2 when
it is derived from π1 is given as

P(2|1) � P Y ∈ A2 ∣ π1( 􏼁 � 􏽚
A2�Ω−A1

g1(y)dy. (26)

Similarly, the probability P(1|2) of classifying an object
as π1 when it is derived from π2 is given as

P(1|2) � P Y ∈ A1 ∣ π2( 􏼁 � 􏽚
A1

g2(y)dy. (27)

In addition, let p1 and p2 be the prior probabilities of an
object belonging to Π1 and Π2, where p1 + p2 � 1. Ten, the
total probability of accurately or inaccurately characterizing
objects can be deduced as the product of the prior and
conditional classifcation probabilities. For example,

P objects  accurately  classified as π1( 􏼁 � P Y ∈ A1 | π1( 􏼁P π1( 􏼁 � P(1|1)p1. (28)

Classifcation systems are commonly assessed based on
their misclassifcation probabilities. However, this overlooks
the error cost of misclassifcation. Te error cost of mis-
classifcation (ECM) can be characterized by a cost matrix
given in Table 1.

Tus, we assign a cost of

(i) Zero for accurate classifcation
(ii) c(1|2) when an object from Π2 is inaccurately

classifed as π1
(iii) c(2|1) when an object from Π1 is inaccurately

classifed as π2
For any rule, when the of-diagonal entries of the cost

matrix are multiplied by their respective probabilities of
occurrence, we obtain the expected error cost of mis-
classifcation (EECM) as

EECM � c(2|1)P(2|1)p1 + c(1|2)P(1|2)p2. (29)

Te areas, A1 and A2, that reduce the EECM have de-
fned y values for which the following holds:

A1 :
g1(y)

g2(y)
≥

c(1 ∣ 2)

c(2 ∣ 1)
×

p2

p1
, (30)

and

A2 :
g1(y)

g2(y)
<

c(1 ∣ 2)

c(2 ∣ 1)
×

p2

p1
, (31)

respectively, for A1 and A2. Clearly, from (30) and (31) the
inclusion of the minimum EECM rule requires the
following:

(a) Te ratio of density distribution assessed at a new
observation say y0

(b) Te cost ratio
(c) Te prior probability ratio

Te presence of these ratios in the description of the
optimal classifcation regions makes it much easier to
postulate the cost ratios than their respective parts. Suppose
gi, i � 1, 2 is normally distributed with parameters μi and σ2i ,
and then, (24) can be rewritten as follows:

1/
����
2πσ1

􏽰
􏼐 􏼑 exp − 1/2σ21􏼐 􏼑 Y − μ1( 􏼁

2

1/
����
2πσ2

􏽰
􏼐 􏼑 exp − 2σ22/􏼐 􏼑 Y − μ2( 􏼁

2 ≥
c(1 ∣ 2)

c(2 ∣ 1)
×

p2

p1
,

1
2σ21σ

2
2

σ21 − σ22􏼐 􏼑Y
2

+ 2 σ22μ1 − σ21μ2􏼐 􏼑Y + σ22μ1 − σ21μ2􏼐 􏼑􏽨 􏽩≥ ln
σ1
σ2

􏼠 􏼡

(1/2)π(1 ∣ 2)

π(2 ∣ 1)
×

p2

p1

⎡⎣ ⎤⎦.

(32)

However, if σ1 � σ2 � σ, then from (32),
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μ1 − μ2( 􏼁Y +
1
2

μ22 − μ21􏼐 􏼑≥ σ2 ln
c(1|2)

c(2|1)
×

p2

p1
􏼢 􏼣. (33)

We denote the left-hand side of (32) and (33) as the
quadratic and linear discriminant functions, say q and lwith
their respective right-hand sides as the critical values
denoted as c1 and c2. Te sample estimates for q and c1 are
given, respectively, as

q �
1
2

s
2
1 − s

2
2􏼐 􏼑Y

2
+ 2 s

2
2y1 − s

2
1y2􏼐 􏼑Y + s

2
2y

2
1 − s

2
1y

2
2􏼐 􏼑􏽨 􏽩,

(34)

and

c1 � s
2
1s

2
2 ln

s1

s2
􏼠 􏼡

(1/2)

×
c(1|2)

c(2|1)
×

p2

p1

⎡⎣ ⎤⎦, (35)

respectively. Tus, the ratio of the error cost of mis-
classifcation for (28) is obtained from

c(1 | 2): c(2 | 1) � a: k, (36)

where a ∈ N and

s1

s2
􏼠 􏼡

(1/2)

× a ×
p2

p1

⎡⎣ ⎤⎦e
− mx/s21×s22( ) < k<

s1

s2
􏼠 􏼡

(1/2)

× a ×
p2

p1

⎡⎣ ⎤⎦e
− mn/s21×s22( ). (37)

Here, mx is the maximum predicted probability, mn is
the minimum predicted probability, s21 is the sample vari-
ance for the present event rate, and s22 is the sample variance
for the absent event rate.

Similarly, in the case of the linear discriminant function,

l � y1 − y2( 􏼁Y +
1
2
y
2
2 − y

2
1􏼒 􏼓, (38)

and

c2 � s
2 ln

c(1|2)

c(2|1)
×

p2

p1
􏼢 􏼣. (39)

Also, the ratio of the error cost of misclassifcation for c2
is derived using (36), where a ∈ N and

a ×
p2

p1
􏼢 􏼣e

− mx/s21×s22( ) < k< a ×
p2

p1
􏼢 􏼣e

− mn/s21×s22( ). (40)

Terefore, by the minimum EECM rule, an object y is
classifed as belonging to the present group if and only if

q �
1
2

s
2
1 − s

2
2􏼐 􏼑Y

2
+ 2 s

2
2y1 − s

2
1y2􏼐 􏼑Y + s

2
2y

2
1 − s

2
1y

2
2􏼐 􏼑􏽨 􏽩≥ c1, σ1 ≠ σ2, (41)

or

l � y1 − y2( 􏼁Y +
1
2
y
2
2 − y

2
1􏼒 􏼓 ≥ c2, σ1 � σ2. (42)

Te univariate discriminant functions (34) and (35) are
proposed for classifying an object into two distinct groups if
μ1 is statistically diferent from μ2. In the next section, the
performance criteria for evaluating these proposals are
presented.

2.4. Performance Evaluation. To assess the classifcation
methods, the confusion matrix is of interest. Table 2 shows
the confusion matrix.

Te metrics of performance evaluation computed from
Table 2 includes sensitivity (the ability of the model to
correctly classify present event rates as present), specifcity
(the ability of the model to correctly classify absent event
rates as absent), and accuracy (the overall correct classif-
cation). Mathematically, the metrics of performance eval-
uation are computed as follows:

Sensitivity �
TP

TP + FN
, (43)

Specificity �
TN

TN + FP
, (44)

and

Table 1: Error cost of misclassifcation.

Actual
(π1) (π2)

Classify as π1 0 c(1 | 2)

π2 c(2 | 1) 0
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Accuracy �
TP + TN

TP + FP + FN + TN
. (45)

3. Simulation Study

In this section, we present a simulation study to assess the
performance of the various models discussed in the previous
section. It is organized into two sections, namely, simulation
design and results and discussion.

3.1. SimulationDesign. Tree sample sizes, n � 100, n � 250,
and n � 500, are considered to investigate the empirical
consistency of the proposed methods. For each sample, our
interest is in estimating the average concordance probability
(multiplication of the model’s test sensitivity and specifcity,
respectively), bias, and mean square error. Te bootstrap
sampling technique was used to estimate the standard errors
of the estimators of the cut-of point from each model.

In addition, we selected a proportion of event occur-
rences as low as 0.05 to a high value of 0.5 in each generated
sample to study the proposed models’ performance as the
proportions vary. To select random samples having a pre-
determined proportion of event occurrence, we proposed
a modifed “conditional block bootstrap” in Minkah et al.
[21] where the authors implemented it in selecting bootstrap
samples for censored data. Te conditional block bootstrap
is a combination of ideas from the moving block bootstrap
[22] and the bootstrap for the censored data [23].

In the proposed modifed “conditional block bootstrap”
procedure, the absent events are grouped into randomly
chosen blocks. However, each block must contain at least
one present event observation. Te bootstrap observations
are obtained by repeatedly sampling with replacement from
these blocks and placing them together to form the bootstrap
sample. Enough blocks must be sampled to obtain ap-
proximately the same sample size as the originally given
sample. Given a sample of size, n, and a proportion of
present event occurrence, p, the conditional block bootstrap
procedure is as follows:

A1. Group the n observations into two groups, namely,
present and absent groups (with their corresponding
covariates) with sample sizes np and na, respectively.
Tus, the proportion of the present event is p � np/n.
A2. Let nB

i , i � 1, . . . , m (nB
i ≥ 1) represent the number

of present observations to be included in a block, i. Te
block size, s, is obtained as (n × nB

i )/np. If s is not an
integer, let s � 􏽬􏼐n × nB

i )/np􏽭.
A3. Te number of blocks, m, is chosen such that
n≊m × s. In the case n � m × s, the blocks will have the
same number of observations. However, if n ≈ m × s,

then m is taken as ⌈n/s⌉, in which case the frst m − 1
blocks are allocated s observations each and the
remaining n − s(m − 1) observations are allocated to
the mth block.
A5. Let bjj � 1, . . . , m denote the jth block. Assign
observations to each block by random sampling
without replacement, s − nB

i observations from the
absent event group. In addition, randomly sample nB

i

observations without replacement from the present
event group and assign them to each block
bj, j � 1, . . . , m. Tus, each block would contain nB

i and
s − nB

i observations of present and absent events,
respectively.
A6. Sample m times with replacement from
b1, b2, . . . , bm and place them together to form the
bootstrap sample. Tese bootstrap samples will have
sample sizes equal to or approximately, n.
A7. For the bootstrap samples obtained in A6, perform
the analysis using Bayesian model 1 (BM1), Bayesian
model 2 (BM2), binary logistic regression using the
proposed methodology for obtaining the optimal cut-
of point (LM), and binary logistic regression with
a cut-of point of 0.5 (LN).
A8. For each model in A7, subsequently, obtain the
optimal cut-of point and compute its corresponding
cp denoted as 􏽢cp1, 􏽢cp2, 􏽢cp3, and 􏽢cp4, respectively.
A9. Repeat A1 to A8 a large number of times, R

(R≥ 800) (see, e.g., [24] for justifcation) to obtain the
cp values cpi1, cpi2, . . ., cpiR for i � 1, 2, 3, 4.
A10. Compute the average cp, bias, and MSE for the ith
method in A9, i.e.,

c.pi �
1
R

􏽘

R

j�1
c.pij, (46)

bias 􏽣c.pi, c.p( 􏼁 �
1
R

􏽘

R

j�1

􏽣c.pij
⎛⎝ ⎞⎠ − c.p, (47)

and

MSE 􏽣c.pi, c.p( 􏼁 �
1
R

􏽘

R

j�1
􏽣c.pij − 􏽣c.p􏼐 􏼑

2
. (48)

3.2. Results and Discussion. Te results of the simulation
study are presented in this section. For brevity and ease of
presentation, we display the plots of the average cp, bias, and
mean square error (MSE) as a function of the proportion of
event occurrences.Te criteria for an appropriate model is to
have high cp values (closer to 1) and low values of bias
and MSE.

Figure 1 shows the graph of average cp, bias, and MSE as
a function of the proportion of event occurrences for the
various models and the varying sample sizes.

Table 2: Confusion matrix for classifcation.

Actual
Present Absent

Classify as Present TP FP
Absent FN TN
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Clearly, the logistic-based models (LM and LN) have
high cp values than their counterparts from the Bayesian
frameworks (BM1 and BM2). Also, our proposed logistic
regression-based classifer that incorporates the error cost of
misclassifcation, LM, provides a better performance mea-
sure than LN as the proportion of event occurrences in-
creases. Also, this observation becomes more apparent as the
sample size increases. In the case of the Bayesian framework,
BM2 has better cp values, save for smaller proportions of
event occurrences. Terefore, in general, our proposed LM
model can be considered the most appropriate model with
high cp values for classifcation purposes.

In terms of bias, the results are mixed, but BM1 shows
lesser bias in most cases across the sample sizes and pro-
portion of event occurrences. In the case of the MSE, the
logistic-based models provide smaller values compared with
the Bayesian models, especially for a smaller proportion of
event occurrences. In addition, there is a gradual decrease in
the MSEs as the sample increases. Tis is desirable as it
indicates the empirical consistency of the estimators of the
cp values in each model. In conclusion, the proposed LM
model is universally competitive in generating higher cp

values regardless of the sample size and the proportion of
event occurrences in a data set.
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Figure 1: Simulation results. Topmost row: n � 100; middlemost row: n � 250; bottommost row: n � 500. Leftmost column: average of 􏽣c.p;
middlemost column: bias; rightmost column: MSE.
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4. Practical Application

Tis section illustrates the proposed method for estimating
the optimal cut-of point on a home equity loan data set. Te
data comprise 1000 customers in the United States of
America. Te dependent variable, Y, is the loan amount (in
thousands of dollars), while the independent variables are
the mortgage (amount due on the existing mortgage in
thousands of dollars), the value of the current property, the
reason for the loan (1� debt consolidation and 2� home
improvement), job (1�manager, 2� ofce, 3� others,
4� executive, 5� sales, and 6� self-employed), years at the

present position, and debt-to-income ratio. In addition, the
variable Bad represents the status of the loan repayment.
Table 3 shows the structure of the home equity loan dataset.

Our interest is in the estimation of the cut-of point for
the classifcation of loan repayment using the methods
discussed in the previous sections.

4.1. Estimating Cut-Of Point Using Bayesian Quantile
Regression. Te quantile regression equation for the home
equity loan data is

Y � β1 + β2 ∗mortgage + β3 ∗ value + β4 ∗ reason + β5 ∗ job + β6 ∗ years + β7 ∗ debtinc + ϕvi. (49)

Estimates of the model’s parameters at τ � 0.75 for BM1
and BM2 are shown in Tables 4 and 5, respectively.

Here, the aim is to identify bad home equity loan
through the estimated values of the latent variable vi. Te
components of the mixture variable, vi, estimated for the
home loan equity data are shown in Table 6.

Te marginal conditional distribution of vi is a fnite
mixture of two normal components. Te component with
the larger mean is associated with the distribution of bad
home equity loans, while the component with the smaller
mean is associated with the distribution of good home equity
loans. Te averages for the bad home equity loan rates are
estimated as μ1 � 3.724 and μ1 � 3.711 (with corresponding
proportions c2 � 0.01447 and c2 � 0.01522), respectively,
for BM1 and BM2.

We now compute the probability of each observation
belonging to the distribution of bad and good home loan
equity rates using (25). Tables 7 and 8 show some data points
and their respective computed probabilities.

Furthermore, to ascertain which univariate discriminant
function will be most suitable for classifcation, Levene’s test
for equality of variance of the two distributions of present

and absent event rates is conducted on the home equity data
set. Te test results show that there is a signifcant diference
in the variances of the two distributions of bad and good
loan repayment events for BM1 (F � 29.0806,

p value � 0.010) and BM2 (F � 26.6754, p value � 0.0001).
Terefore, this implies that a quadratic discriminant func-
tion is most appropriate for the classifcation of this data set.

Moreover, the independent-samples t-tests for equal
means for the two distributions of present and absent event
rates are signifcant (t � 33.9785, p value< 0.01) for BM1
and (t � 34.2974, p value< 0.01) for BM2. Now, using (35)
and systematically shifting the k within the bounds (30), we
obtain the optimal cut-of points, 0.4902 and 0.4964, at k �

0.03 and k � 0.0005, for BM1 and BM2, respectively. At
these points, the highest concordance probabilities are
achieved.

4.2.EstimatingCut-OfPointUsingBinaryLogisticRegression.
Te binary logistic regression equation for the home equity
loan data is given as follows:

ln
p

1 − p
􏼠 􏼡 � β0 + β1 + ∗ loan + β2 ∗motdue + β3 ∗ value + β4 ∗ r2 + β5 ∗ j2 + β6 ∗ j3

+ β6 ∗ j3 + β7 ∗ j4 + β8 ∗ j5 + β9 ∗ j6 + β10 ∗ years + β11 ∗ debtinc.

(50)

Table 9 presents the parameter estimates obtained
through the maximum-likelihood principle for the data set.

Also, Table 10 presents the predicted probabilities of bad
and good home equity loan rates for the data set.

In addition, Levene’s test for equality of variance
between the distribution of good and bad home equity
loans shows there are no signifcant diferences (p val-
ue � 0.5). Hence, a linear discriminant function is the
most applicable for classifcation. Te sample pooled

variances for the two groups of loan statuses are esti-
mated as 0.101581. In addition, the independent-samples
t-tests for equality of means for a bad and good home
equity loan are rejected, with the p values being less
than 0.01.

It is similar to the Bayesian quantile regression in the
preceding section, but with (39) and (40). We obtain the
optimal cut-of point for the logistic regression model as
c2 � 0.3345, at k � 1.7332.
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Table 3: Home equity loan data.

Loan amount Mortgage Value Reason Job Years Debt-to-income ratio Bad
1.7 30.548 40.32 2 3 9 37.11361 1
1.8 28.502 43.034 2 3 11 36.88489 1
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

4.4 53.091 64.074 1 2 14 39.15808 1

Table 4: Estimate of the model’s parameter for the complete home equity loan data using Bayesian Model 1.

Mean SD Naive SE Time-series SE
β1 1.0722 0.0951 1.504e− 3 0.0191
β2 0.0013 0.0011 1.871e− 5 0.0002
β3 −0.0014 0.0009 1.487e− 5 0.0001
β4 0.0476 0.0331 5.236e− 4 0.0033
β5 −0.0006 0.0156 2.460e− 4 0.0016
β6 −0.0005 0.0022 3.552e− 5 0.0001
β7 −0.0013 0.0016 2.483e− 5 0.0002
v1 2.7346 1.2414 1.963e− 2 0.0272
v2 2.8297 1.2576 1.988e− 2 0.0293
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

σ 3.2491 0.1182 1.870e− 3 0.0120

Table 5: Estimate of the model’s parameter for the complete home equity loan data using Bayesian Model 2.

Mean SD Naive SE Time-series SE
β1 1.0662 0.0892 1.411e− 3 0.0145
β2 0.0011 0.0010 1.557e− 5 0.0002
β3 −0.0012 0.0008 1.251e− 5 0.0001
β4 0.0545 0.0340 5.382e− 4 0.0034
β5 0.0006 0.0160 2.525e− 4 0.0017
β6 −0.0007 0.0024 3.871e− 5 0.0001
β7 −0.0015 0.0016 2.471e− 5 0.0002
v1 2.7025 1.2289 1.943e− 2 0.0296
v2 2.7895 1.2292 1.944e− 2 0.0310
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

σ 3.2693 0.1141 1.804e− 3 0.0138

Table 6: Estimates of the mixture components for the two Bayesian models.

Mean SD Confdence interval

BM1

μ1 3.0230 0.0593 (2.9200, 3.1480)
μ2 3.7240 0.0051 (3.7150, 3.7330)
c1 0.9855 0.0049 (0.9726, 0.9927)
c2 0.0145 0.0049 (0.0072, 0.0274)
σ2 0.0274 0.0012 (0.0256, 0.0297)

BM2

μ1 3.0410 0.0670 (2.9030, 3.1600)
μ2 3.7110 0.0050 (3.7030, 3.7210)
c1 0.9848 0.0053 (0.9735, 0.9915)
c2 0.0152 0.0053 (0.0085, 0.0265)
σ2 0.0269 0.0013 (0.0246, 0.0294)
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Table 7: Estimated probabilities for Bayesian model 1.

vi Loan amount P(Y, λ � 0, vi) P(Y, λ � 1, vi) P(Y | λ � 1) Bad

v1 1.7 0.0000 0.0000 0.0000 1
v2 1.8 0.0000 0.0000 0.0000 1̇
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

v1000 11.7 1.0000 1.0000 0.5000 1

Table 8: Estimates of the probabilities for Bayesian model 2.

vi Loan amount p(Y, λ � 0, vi) p(Y, λ � 1, vi) p(Y | λ � 1) Bad

v1 1.7 0.0000 0.0000 0.0000 1
v2 1.8 0.0000 0.0000 0.0000 1
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

v1000 11.7 1.0000 0.9999 0.4999 1

Table 9: Parameter estimates for the home equity loan data.

Variable Estimate Std. error z value Pr(> |z|)

Intercept 6.9358 0.7013 9.8890 <2e− 16
Loan −0.4115 0.0349 −11.7860 <2e− 16
Mortdue 0.0238 0.0084 2.8110 0.0049
Value −0.0072 0.0069 −1.0440 0.2966
Reason 2 −0.0441 0.2084 −0.2120 0.8323
Job 2 0.8219 0.3824 2.1490 0.0316
Job 3 0.2916 0.3136 0.9300 0.3525
Job 4 0.5350 0.3734 1.4330 0.1520
Job 5 −1.0364 0.5560 −1.8510 0.0642
Job 6 −0.8374 0.7247 −1.1550 0.2479
Years 0.0510 0.0157 3.2400 0.0012
Debtinc −0.0866 0.01466 −5.9350 2.93e− 09

Table 10: Predicted probabilities of good and bad for the home equity loan data.

Loan amount P(Y� 0|X � x) P(Y� 1|X � x) Bad
1.7 0.9847 0.0153 1
1.8 0.9849 0.0151 1
2.4 0.9756 0.0244 0̇
. . . . . . . . . . . .

. . . . . . . . . . . .

11.3 0.6448 0.3552 0

Table 11: Performance metric evaluation for the home equity loan data.

Measures Bayesian model 1 (%) Bayesian model 2 (%) Logistic regression (%)
Sensitivity 68.00 60.67 73.33
Specifcity 68.14 78.29 94.00
Accuracy 64.60 73.00 87.80
Concordance probability 0.4294 0.4750 0.6893
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4.3. Performance Metrics Evaluation. Tis section presents
the performance metrics (specifcity, sensitivity, accuracy,
and concordance probability) used to assess the various
models’ performances on the home equity loan data set.
From the results in Sections 4.1 and 4.2, the values of c1 and
c2 are used to obtain the performance metrics, and the
results are shown in Table 11.

Clearly, the logistic regression model incorporating the
proposed methodology produces the highest test sensitivity,
specifcity, accuracy, and concordance probability values.
Also, of the two Bayesian models, Bayesian model 2 has
greater test specifcity, accuracy, and concordance proba-
bility values than Bayesian model 1. However, Bayesian
model 1 produces a higher test sensitivity value than
Bayesian model 2. Tus, it can be concluded that using
logistic regression with the proposed incorporation of the
error cost of misclassifcation produces better performance
metrics in classifying loans for home equity.

5. Conclusion

Tis paper introduced an approach for estimating the op-
timal cut-of point for classifcation. Te proposed method
modifes univariate discriminant functions by incorporating
the error cost ratio for classifcation. Tus, the mis-
classifcation cost ratios can be systematically adjusted
within some specifed measurement range. A corresponding
cut-of value is subsequently obtained for each unique cost
ratio, and other metrics of performance measures can be
computed. Tree methods of computing the cut-of point
were proposed: a logistic and two Bayesian quantile re-
gressions. A simulation study was conducted to assess the
performance of these models in estimating the concordance
probability and thus the cut-of point. Te results show that
incorporating the error cost of misclassifcation improves
the concordance probability and provides smaller values for
bias and mean square errors. In particular, the logistic re-
gression with the proposed incorporation of the error cost of
misclassifcation provides the best method as it gives con-
cordance probability values close to 1 and smaller values of
bias and mean square error. Te proposed method is il-
lustrated using loan data from the fnance industry.
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