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The paper presents path planning of dual arm free flying space robot using smooth functions of time. Kinematic and dynamic
modeling of dual arm free flying space robot is presented first. Using kinematic model, the Jacobian of the system has been derived,
and using dynamic model, equations of motion are derived. A path planning methodology for planar system is developed using
smooth function of time such as polynomials. Due to nonholonomic behaviour of the manipulator in the zero gravity environment
linear and angular momentum is conserved. The proposed method yields input trajectories that drive both the manipulator and
the base to a desired configuration. Joint torque curves can be obtained by introducing this joint trajectory curves in equation of
motion of the space robot.

1. Introduction

Space introduces a complicating factor to a robotic system
that is not apparent on Earth; that is, the manipulator base
is not fixed in space and zero or microgravity environment
exists. This introduces a high degree of dynamic complexity.
Moreover, in the free flying atmosphere as the space craft
actuators are turned off, the robot base has six degrees of
freedom and is nonholonomic in nature. In the free flying
mode, the motion of manipulator will generate reaction
forces, moments on its base, and its manipulator coupling
points. If no compensation is made, the robot will not attain
its target since the coupling has a significant effect on the
kinematics, dynamics, and control of the robot.

Path planning of free flying space robot considering
nonholonomic nature of base can be done by bidirectional
approach and checking its stability by defining Lyapunov
function as in [1]. Yoshida et al. [2, 3] have developed the
equation of motion for multiple arm free flying robotic
system and torque optimization for its redundant arms.They
also provided an overview of its dynamics and control which
was verified on ETS-VII. Papadopoulos and Moosavian
[4] have used barycentric vector method for studying the
dynamic behavior of multiarm space robots during chase and

capture operations. Papadopoulos et al. [5] also developed
a path planning methodology for single arm planar free
floating space manipulator systems defining joint angles as
a smooth function of polynomials.In order to overcome the
difficulty that the dynamic equations of dual arm space robot
system cannot be linearly parameterized, Chen and Guo
[6] modelled the system as underactuated and asymptotic
stability of adaptive control scheme is proved with Lyapunov
method.Huang et al. [7] derive the impact dynamic equations
according to the dynamic model of space robot system and
proposed a genetic algorithm (GA) based on approach to
search the optimal configuration of space robot at capturing
moment in order tominimize or avoid the impact. Sagara and
Taira [8] presented cooperative manipulation of a floating
object by space robots. They also discussed application
of a tracking control method using the transpose of the
generalized Jacobian matrix. The dynamics control of a dual
arm space robot installed on a free flying spacecraft without
base position and orientation control holding a single object
was discussed by Zhao et al. [9] and Siciliano and Khatib
[10], and Merzouki et al. [11] presented a brief of different
modelling methods and control strategies for space robots.

This paper proposes the path planning of dual arm planar
space robot as a function of polynomial. It is motivated by
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Figure 1: Schematic diagram of dual arm free flying space robot.

the work presented in [5]. To achieve this Jacobian [12] of
dual arm free flying space robot is derived by representing
its link lengths as a function of inertia parameters like mass.
Equation of motion of system is derived and validated by
simulation results carried out in Simulink, thus validating
the model. Finally, the path planning strategy is validated by
simulation results using MATLAB.

2. Kinematic and Dynamic Modeling of Dual
Arm Free Flying Space Robot

The free flyingmanipulator has total 𝑘𝑛+6 degree of freedom
(DOF) with 𝑛 number of links in each 𝑘 number of arms
where base is having six DOF [13]. Let us consider the case
of dual arm (𝑘 = 2) free flying manipulator mounted on a
base and consists of dual links (𝑛 = 2) in each arm as shown
in Figure 1. Manipulator arms are assumed to be connected
by revolute joints. Also the arms are attached on a base with
the help of revolute joints. One of these arms is calledmission
arm (𝑚) which is used to accomplish the space mission, and
the other is the balance arm (𝑏) which is used to balance
the reaction motion due to the motion of the mission arm.
The balance arm can also be used to accomplish the mission
like the mission arm if given an appropriate trajectory to its
end effector. The system center of mass (CM) remains fixed
in space and the frame is considered as inertial frame. Let
𝜃
𝑚

1
, 𝜃𝑚
2
, 𝜃𝑏
1
, and 𝜃𝑏

2
be the joint angles of the joints attached

to mission and balance arm. The momentum constraints are
imposed due to dynamical coupling between themanipulator
and the base. As we know in the absence of external forces
or torque, linear and angular momentum of the system is
conserved. In such a situation, the initial linear and angular
momentum of the system is assumed to be zero.

The symbols required for the formulation of equations
and in Figure 1 are defined as follows:

𝑏: superscript used to indicate parameter for balance
arm,

Frame 𝐼: inertia frame,
Frame 𝑖: 𝑖th body frame or 𝑖th link frame of manipu-
lator for 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛 and for the base frame 𝑖 = 0,
𝑚: superscript used to indicate parameter for mission
arm,
𝑚
𝑖
: mass of 𝑖th body (kg),

𝑚
𝑇
: total mass of the system (kg),

r
𝑖
: distance from CM of 𝑖th link to the preceding joint

represented in the inertia frame,
s
𝑖
: distance from CM of 𝑖th link to the subsequently

joint represented in the inertia frame,
I
𝑖
: inertia matrix of 𝑖th link with respect to inertia

frame,
p∗: position vector of CM of the end effectors with
respect to inertia frame,
p∗CM: position vector of CMof the systemwith respect
to inertia frame,
R
𝑖
: rotation matrix of 𝑖th link with respect to the base

frame,
J∗
𝑛
: Jacobian matrix with 𝑛 number of links in the

manipulator,
M∗: generalized inertia matrix,
C∗: centrifugal and Coriolis term,
0: joint variables and base variables,
E
3
: identity matrix,

p
𝑐𝑖
: position vector of CM of 𝑖th link with respect to

inertia frame,
r
𝑐0
: position vector of CM of base with respect to

inertia frame,
r
𝑐𝑖
: distance between the CM of links,
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s
0
: position vector of the first joint between the link

and the base with respect to the CM of base in the
inertia frame.

For free flying robotic manipulator the Denavit-Harten-
berg formulation is presented in Ellery [14]. The desired end
effector position formission armwith respect to inertia frame
is

(p∗)𝑚 = p∗CM +
R𝑚
0
s𝑚
0
𝑚
𝑚

0𝑛+1

𝑚
𝑇

−
R𝑏
0
s𝑏
0
𝑚
𝑏

0𝑛+1

𝑚
𝑇

+

𝑛

∑

𝑖=1

(R𝑚
𝑖
𝜆
𝑚

𝑖
) −

𝑛

∑

𝑖=1

(R𝑏
𝑖
𝜇
𝑏

𝑖
)

−
[𝑚
𝑚

𝑛+1
R𝑚
𝑛+1

r𝑚
𝑛+1
+ 𝑚
𝑏

𝑛+1
R𝑏
𝑛+1

r𝑏
𝑛+1
]

𝑚
𝑇

,

(1)

where 𝜆𝑚
𝑖
= [(𝑚

𝑚

0𝑖
+ 𝑚
𝑏

1𝑛+1
) (kinematic parameter)𝑚

𝑖
−

𝑚
𝑚

𝑖
𝑟
𝑚

𝑖
]/𝑚
𝑇
, 𝜇𝑏
𝑖
= [(𝑚

𝑏

(𝑖+1)(𝑛+1)
) (kinematic parameter)𝑏

𝑖
+

𝑚
𝑏

𝑖
𝑟
𝑏

𝑖
]/𝑚
𝑇
.

The desired end effector position for balance arm with
respect to inertia frame is

(p∗)𝑏 = p∗CM +
R𝑏
0
s𝑏
0
𝑚
𝑏

0𝑛+1

𝑚
𝑇

−
R𝑚
0
s𝑚
0
𝑚
𝑚

0𝑛+1

𝑚
𝑇

+

𝑛

∑

𝑖=1

(R𝑏
𝑖
𝜆
𝑏

𝑖
) −

𝑛

∑

𝑖=1

(R𝑚
𝑖
𝜇
𝑚

𝑖
)

−
[𝑚
𝑏

𝑛+1
R𝑏
𝑛+1

r𝑏
𝑛+1
+ 𝑚
𝑚

𝑛+1
R𝑚
𝑛+1

r𝑚
𝑛+1
]

𝑚
𝑇

,

(2)

where 𝜆𝑏
𝑖
= [(𝑚

𝑏

0𝑖
+ 𝑚
𝑚

1𝑛+1
) (kinematic parameter)𝑏

𝑖
−

𝑚
𝑏

𝑖
𝑟
𝑏

𝑖
]/𝑚
𝑇
, 𝜇𝑚
𝑖
= [(𝑚

𝑚

(𝑖+1)(𝑛+1)
) (kinematic parameter)𝑚

𝑖
+

𝑚
𝑚

𝑖
𝑟
𝑚

𝑖
]/𝑚
𝑇
:

𝑝
∗

CM =
(∑
𝑛+1

𝑖=0
𝑚
𝑖
𝑝
∗

𝑐𝑖
)

𝑚
𝑇

. (3)

Jacobian allows conversion of differential motions or veloci-
ties of individual joints to differential motions or velocities of
point of interest in workspace.The free flyer Jacobian requires

only the replacement of kinematic link parameters of the
terrestrialmanipulatorswith kinematic-dynamic parameters,
that is, representing link lengths and joint offset as a function
of mass.

Now, consider

J∗
𝑛
= [

J
𝑇𝑖

J
𝑅𝑖

]

6×𝑘𝑛

. (4)

J
𝑇𝑖
is 3 × 𝑘𝑛 the Jacobian matrix for linear velocity of link 𝑖.

J
𝑅𝑖
is 3 × 𝑘𝑛 the Jacobian matrix for angular velocity of link 𝑖.
For mission and balance arm Jacobian is

(J∗
𝑛
)
𝑚

=

𝑛

∑

𝑖=1

𝑖

∑

𝑗=1

𝜕R𝑚
𝑖

𝜕𝜃𝑚
𝑗

𝜆
𝑚

𝑖
−

𝑛

∑

𝑖=1

𝑖

∑

𝑗=1

𝜕R𝑏
𝑖

𝜕𝜃𝑏
𝑗

𝜇
𝑏

𝑖

(J∗
𝑛
)
𝑏

=

𝑛

∑

𝑖=1

𝑖

∑

𝑗=1

𝜕R𝑏
𝑖

𝜕𝜃𝑏
𝑗

𝜆
𝑏

𝑖
−

𝑛

∑

𝑖=1

𝑖

∑

𝑗=1

𝜕R𝑚
𝑖

𝜕𝜃𝑚
𝑗

𝜇
𝑚

𝑖
.

(5)

The brief concept of equation of motion of a free flying
space robot as a multibody system which is presented else-
where [7] is

M∗0̈ + C∗ = 𝜏, (6)

whereM∗ is generalised inertia matrix, C∗ is centrifugal and
Coriolis term, 0 is joint and base variables, and 𝜏 is external
forces/moments on base and joint torques of the arm. The
joint and base variable 0 is given by

0 = [𝑋
0
𝑌
0
𝑍
0
𝜃
0𝑥
𝜃
0𝑦
𝜃
0𝑧
𝜃
𝑚

1
𝜃
𝑚

2
𝜃
𝑏

1
𝜃
𝑏

1
]
𝑇

, (7)

where (𝑋
0
𝑌
0
𝑍
0
) are the base coordinates and

(𝜃
0𝑥
𝜃
0𝑦
𝜃
0𝑧
) are base orientations. The generalised

inertia matrixM∗ is given by

M∗ = [
𝑀Base 𝑀Coup

𝑀
𝑇

Coup 𝑀Arms
]

(6+𝑘𝑛)×(6+𝑘𝑛)

, (8)

where𝑀Base = 𝑅
6×6 = inertia matrix of base.𝑀Arms = 𝑅

𝑛×𝑛 =
inertia matrix of manipulator arms.𝑀Coup = 𝑅

6×𝑛 = coupling
inertiamatrix between base and robotmanipulators. 𝑛 is total
number of links in an arm.

These matrices can be given by

𝑀base =
[
[
[

[

𝑚
𝑇
E
3

−𝑚
𝑇
P̃
0𝑐𝑚

𝑚
𝑇
P̃
𝑐𝑚
𝐼
0
+ [

𝑛

∑

𝑖=1

(I
𝑖
)]

𝑚

+ [

𝑛

∑

𝑖=1

(I
𝑖
)]

𝑏

−

𝑛

∑

𝑖=1

(𝑚
𝑖
P̃
𝑐𝑖
P̃
0𝑐𝑖
)
𝑚

−

𝑛

∑

𝑖=1

(𝑚
𝑖
P̃
𝑐𝑖
P̃
0𝑐𝑖
)
𝑏

]
]
]

]
6×6

𝑀Arms = [
𝑛

∑

𝑖=1

(J𝑇
𝑅𝑖
I
𝑖
J
𝑅𝑖
+ 𝑚
𝑖
J𝑇
𝑇𝑖
J
𝑇𝑖
)
𝑚

+

𝑛

∑

𝑖=1

(J𝑇
𝑅𝑖
I
𝑖
J
𝑅𝑖
+ 𝑚
𝑖
J𝑇
𝑇𝑖
J
𝑇𝑖
)
𝑏

]

𝑘𝑛×𝑘𝑛
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𝑀Coup =

[
[
[
[
[

[

[

𝑛

∑

𝑖=1

𝑚
𝑖
J
𝑇𝑖
]

𝑚

+ [

𝑛

∑

𝑖=1

𝑚
𝑖
J
𝑇𝑖
]

𝑏

[

𝑛

∑

𝑖=1

(I
𝑖
J
𝑅𝑖
+ 𝑚
𝑖
P̃
𝑐𝑖
J
𝑇𝑖
)]

𝑚

+ [

𝑛

∑

𝑖=1

(I
𝑖
J
𝑅𝑖
+ 𝑚
𝑖
P̃
𝑐𝑖
J
𝑇𝑖
)]

𝑏

]
]
]
]
]

]
6×𝑘𝑛

.

(9)

I
𝑖
is the inertia tensor for the 𝑖th link:

I
𝑖
=
[
[
[

[

0.5 (−𝐼
𝑥𝑥
+ 𝐼
𝑦𝑦
+ 𝐼
𝑧𝑧
) 𝐼

𝑥𝑦
𝐼
𝑥𝑧

𝐼
𝑥𝑦

0.5 (𝐼
𝑥𝑥
− 𝐼
𝑦𝑦
+ 𝐼
𝑧𝑧
) 𝐼

𝑦𝑧

𝐼
𝑥𝑧

𝐼
𝑦𝑧

0.5 (𝐼
𝑥𝑥
+ 𝐼
𝑦𝑦
− 𝐼
𝑧𝑧
)

]
]
]

]

(10)

For dual arm free flying space robot,

p
0𝑐𝑚
= [p∗
𝑐𝑚
− r
𝑐0
]
3×1
, p

0𝑐𝑖
= [p
𝑐𝑖
− r
𝑐0
]
3×1

(11)

P̃
𝑐𝑚
, P̃
𝑐𝑖
, P̃
0𝑐𝑚

, and P̃
0𝑐𝑖

are the 3 × 3 skew symmetric matrix
of position vectors p∗

𝑐𝑚
, p
𝑐𝑖
, p
0𝑐𝑚

, and p
0𝑐𝑖
, respectively.

We have assumed that there is no external force acting on
the system; therefore, the centrifugal and Coriolis term is

C∗ = Ṁ∗0̇, (12)

where Ṁ∗ is the derivative of generalized inertia matrix.

3. Path Planning for Dual Arm Free Flying
Space Robot

The angular momentum conservation cannot be integrated
to analytically yield the spacecraft orientation as a function
of the system’s configuration. The nonintegrability property
of angular momentum introduces nonholonomic character-
istics to free floating systems. For simplicity we consider the
planar case of the dual armmodel; that is, 𝑘𝑛+1DOF system
in which base is having one DOF about 𝑧 direction 𝜃

0
. In

this section the path planning for single arm as in [5] is
implemented for dual arm case.

The linear and angular momentum conservations for
both mission and balance arms are represented by the
following equations:

𝐷
0

̇𝜃
0
+ 𝐷
1

̇𝜃
𝑚

1
+ 𝐷
2

̇𝜃
𝑚

2
= 0

𝐷
0

̇𝜃
0
+ 𝐷
3

̇𝜃
𝑏

1
+ 𝐷
4

̇𝜃
𝑏

2
= 0,

(13)

where𝐷
0
,𝐷
1
,𝐷
2
,𝐷
3
, and𝐷

4
are functions of system inertial

parameters. For mission arm effect of 𝜃𝑏
1
and 𝜃𝑏
2
is neglected,

hence the scleronomic constraint can be written in the form

𝐷
0
(𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) 𝑑𝜃
0
+ 𝐷
1
(𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) 𝑑𝜃
𝑚

1

+ 𝐷
2
(𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) 𝑑𝜃
𝑚

2
= 0.

(14)

For balance arm effect of 𝜃𝑚
1
and 𝜃𝑚

2
is neglected, hence the

scleronomic constraint can be written in the form

𝐷
0
(𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) 𝑑𝜃
0
+ 𝐷
3
(𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) 𝑑𝜃
𝑏

1

+ 𝐷
4
(𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) 𝑑𝜃
𝑏

2
= 0.

(15)

The coefficients of the nonholonomic constraint become

𝐷
0
(𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) = 𝐷

0
(𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) = Δ

0
,

𝐷
1
(𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) = Δ
𝑚

1
+ Δ
𝑚

3
cos (𝜃𝑚

1
− 𝜃
𝑚

2
) ,

𝐷
2
(𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) = Δ
𝑚

2
+ Δ
𝑚

3
cos (𝜃𝑚

1
− 𝜃
𝑚

2
) ,

𝐷
3
(𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) = Δ
𝑏

1
+ Δ
𝑏

3
cos (𝜃𝑏

1
− 𝜃
𝑏

2
) ,

𝐷
4
(𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) = Δ
𝑏

2
+ Δ
𝑏

3
cos (𝜃𝑏

1
− 𝜃
𝑏

2
) ,

(16)

whereΔ’s are the function of inertia, length, andmasses of the
links and base.

In general form, Inertia = mass × (radius of gyration)2

Δ
0
= 𝐼
0
,

Δ
𝑚

1
= 𝐼
𝑚

1
+
[(𝑟
𝑚

1
)
2

𝑚
0
𝑚
𝑚

1
+ 𝑚
𝑚

1
𝑚
𝑚

2
(𝑠
𝑚

1
)
2

+ (𝑎
𝑚

1
)
2

𝑚
0
𝑚
𝑚

2
]

𝑚
𝑇

,

Δ
𝑚

2
= 𝐼
𝑚

2
+
[𝑚
𝑚

2
(𝑚
0
+ 𝑚
𝑚

1
) (𝑟
𝑚

2
)
2

]

𝑚
𝑇

,

Δ
𝑚

3
=
[𝑚
𝑚

1
𝑚
𝑚

2
𝑟
𝑚

1
𝑟
𝑚

2
+ 𝑚
0
𝑚
𝑚

2
𝑎
𝑚

1
𝑟
𝑚

2
]

𝑚
𝑇

,

Δ
𝑏

1
= 𝐼
𝑏

1
+

[(𝑟
𝑏

1
)
2

𝑚
0
𝑚
𝑏

1
+ 𝑚
𝑏

1
𝑚
𝑏

2
(𝑠
𝑏

1
)
2

+ (𝑎
𝑏

1
)
2

𝑚
0
𝑚
𝑏

2
]

𝑚
𝑇

,
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Δ
𝑏

2
= 𝐼
𝑏

2
+

[𝑚
𝑏

2
(𝑚
0
+ 𝑚
𝑏

1
) (𝑟
𝑏

2
)
2

]

𝑚
𝑇

,

Δ
𝑏

3
=
[𝑚
𝑏

1
𝑚
𝑏

2
𝑟
𝑏

1
𝑟
𝑏

2
+ 𝑚
0
𝑚
𝑏

2
𝑎
𝑏

1
𝑟
𝑏

2
]

𝑚
𝑇

.

(17)

Here𝑚
0
and 𝐼
0
are mass and inertia of base and𝑚𝑚

1
,𝑚𝑚
2
,𝑚𝑏
1
,

𝑚
𝑏

2
and 𝐼𝑚
1
, 𝐼𝑚
2
, 𝐼𝑏
1
, 𝐼𝑏
2
are masses and inertia of links 1 and 2

of mission and balance arm, respectively. 𝑚
𝑇
is total mass of

the system. 𝑎 is the link lengths of respective links, 𝑙 is the
distance from 𝑗 − 1 joint to center of mass of that link, 𝑟 is the
distance from center of mass to 𝑗th joint. Note that 𝑎 = 𝑙 + 𝑟
for every link.

Therefore, from the above equations we get

𝐼
0
𝑑𝜃
0
+ (Δ
𝑚

1
+ Δ
𝑚

3
cos (𝜃𝑚

1
− 𝜃
𝑚

2
)) 𝑑𝜃
𝑚

1

+ (Δ
𝑚

2
+ Δ
𝑚

3
cos (𝜃𝑚

1
− 𝜃
𝑚

2
)) 𝑑𝜃
𝑚

2
= 0,

𝐼
0
𝑑𝜃
0
+ (Δ
𝑏

1
+ Δ
𝑏

3
cos (𝜃𝑏

1
− 𝜃
𝑏

2
)) 𝑑𝜃
𝑏

1

+ (Δ
𝑏

2
+ Δ
𝑏

3
cos (𝜃𝑏

1
− 𝜃
𝑏

2
)) 𝑑𝜃
𝑏

2
= 0.

(18)

Equation (18) contains three differentials. Path planning
can be done if this form is transformed to the equations
consisting of two differentials. So nonintegrable equations of
the form of (18) can be written as

𝑑𝑢 + V ⋅ 𝑑𝑤 = 0,

𝑑𝑥 + 𝑦 ⋅ 𝑑𝑧 = 0,

(19)

where 𝑢, V, and 𝑤 are properly selected functions of 𝜃
0
, 𝜃𝑚
1
,

and 𝜃𝑚
2
and 𝑥, 𝑦, and 𝑧 are properly selected functions of 𝜃

0
,

𝜃
𝑏

1
, and 𝜃𝑏

2
.

For mission arm and balance arm the forward transfor-
mation is given by

𝑢 (𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) = Δ

0
⋅ 𝜃
0
+ Δ
𝑚

2
⋅ 𝜃
𝑚

2
− Δ
𝑚

3
⋅ sin (𝜃𝑚

1
− 𝜃
𝑚

2
)

V (𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) = Δ
𝑚

1
+ 2Δ
𝑚

3
⋅ cos (𝜃𝑚

1
− 𝜃
𝑚

2
) ,

𝑤 (𝜃
0
, 𝜃
𝑚

1
, 𝜃
𝑚

2
) = 𝜃
𝑚

1
.

(20)

𝑥 (𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) = Δ

0
⋅ 𝜃
0
+ Δ
𝑏

2
⋅ 𝜃
𝑏

2
− Δ
𝑏

3
⋅ sin (𝜃𝑏

1
− 𝜃
𝑏

2
) ,

𝑦 (𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) = Δ
𝑏

1
+ 2Δ
𝑏

3
⋅ cos (𝜃𝑏

1
− 𝜃
𝑏

2
) ,

𝑧 (𝜃
0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) = 𝜃
𝑏

1
.

(21)

These equations constitute a transformation (𝜃
0
, 𝜃
𝑚

1
,

𝜃
𝑚

2
) → (𝑢, V, 𝑤) for mission arm and (𝜃

0
, 𝜃
𝑏

1
, 𝜃
𝑏

2
) → (𝑥, 𝑦, 𝑧)

for balance arm which is defined at every point of the
configuration space of the system. Moreover, the orientation
𝜃
𝑚

1
and 𝜃𝑏
1
are conserved through the transformation and are

explicitly available for planning; that is, one can directly set a
desired trajectory for 𝜃𝑚

1
and 𝜃𝑏
1
.

Therefore, the planning problem reduces to choosing
functions 𝑓 and 𝑔 given by (22). We choose function 𝑓 as a
fifth-order polynomial and 𝑔 can be forth-order polynomial,
so that while finding coefficients of them the system initial
and final configuration, velocity, and acceleration can be
satisfied:
𝑤 = 𝑧 = 𝑓 (𝑡) = 𝑐

5
𝑡
5

+ 𝑐
4
𝑡
4

+ 𝑐
3
𝑡
3

+ 𝑐
2
𝑡
2

+ 𝑐
1
𝑡 + 𝑐
0
,

𝑢 = 𝑥 = 𝑔 (𝑤) = 𝑏
4
𝑤
4

+ 𝑏
3
𝑤
3

+ 𝑏
2
𝑤
2

+ 𝑏
1
𝑤 + 𝑏
0
,

V = 𝑦 = −𝑔󸀠 (𝑤) = − (4𝑏
4
𝑤
3

+ 3𝑏
3
𝑤
2

+ 2𝑏
2
𝑤 + 𝑏
1
) .

(22)

Here the coefficients (𝑐’s) of polynomial 𝑤 are computed
using the initial and final values of orientation 𝜃𝑚

1
, angular

velocity ̇𝜃
𝑚

1
, and angular acceleration ̈𝜃

𝑚

1
. The coefficients

of polynomial 𝑧 are computed using the initial and final
values of orientation 𝜃𝑏

1
, angular velocity ̇𝜃

𝑏

1
, and angular

acceleration ̈𝜃𝑏
1
. But for mission and balance arm the inverse

transform is defined if and only if the constraints given by
(23) are satisfied:

−1 ≤ (
V − Δ𝑚

1

2Δ𝑚
3

) ≤ 1,

−1 ≤ (
𝑦 − Δ

𝑏

1

2Δ𝑏
3

) ≤ 1.

(23)

These constraints have been implied from 𝜃𝑚
2

and 𝜃𝑏
2

values derived from (24) and (25). For mission arm one uses
initial and final conditions of 𝜃

0
, 𝜃𝑚
1
, and 𝜃𝑚

2
in (20) in order to

find 𝑢int, 𝑢fin, Vint, and Vfin and using the polynomial Equation
(22) we get unknown coefficients 𝑏

3
, 𝑏
2
, 𝑏
1
, and 𝑏

0
for mission

arm. For balance arm one uses initial and final conditions of
𝜃
0
, 𝜃𝑏
1
, and 𝜃𝑏

2
in (21) to find 𝑥int, 𝑥fin, 𝑦int, and 𝑦fin and using

the polynomial equation (22) we get unknown coefficients 𝑏
3
,

𝑏
2
, 𝑏
1
, and 𝑏

0
for balance arm:

𝜃
0
=
1

Δ
0

[
[

[

𝑢 − Δ
𝑚

2
𝑤 − Δ

𝑚

2
cos−1 (

V − Δ𝑚
1

2Δ𝑚
3

)

−Δ
𝑚

3

√1 − (
V − Δ𝑚

1

2Δ𝑚
3

)

2

]
]

]

,

𝜃
𝑚

1
= 𝑤,

𝜃
𝑚

2
= 𝑤 + cos−1 (

V − Δ𝑚
1

2Δ𝑚
3

) .

(24)

Similarly, for balance arm we have

𝜃
0
=
1

Δ
0

[
[

[

𝑥 − Δ
𝑏

2
𝑧 − Δ
𝑏

2
cos−1 (

𝑦 − Δ
𝑏

1

2Δ𝑏
3

)

−Δ
𝑏

3

√1 − (
𝑦 − Δ

𝑏

1

2Δ𝑏
3

)

2

]
]

]

,
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Table 1: Parameters used in simulation of DC motor.

Moment of inertia of rotors (𝐽) 0.01 kgm2

Damping ratio of motors shafts (𝑏) 0.0001Nms
Electromotive force constant (𝐾

𝑡
= 𝐾
𝑒
= 𝐾) 0.01Nm/Amp

Electric resistance of the two motors (𝑅) 0.1 ohm
Electric inductance of motors (𝐿) 0.5H

Table 2: Parameters used in simulating of space robot.

Mass of base (𝑚
0
) 4 kg

Mass of first link of mission and balance arm𝑚𝑚
1
= 𝑚
𝑏

1
0.2942 kg

Mass of second link of mission and balance arm including masses of their grippers𝑚𝑚
2
= 𝑚
𝑏

2
0.2942 kg

Length of first link of mission and balance arm 𝑎𝑚
1
= 𝑎
𝑏

1
0.4m

Length of second link of mission and balance arm 𝑎𝑚
2
= 𝑎
𝑏

2
0.3m

Distance of CM of base to first joint of both the arms (𝑠𝑚
0
) = (𝑠

𝑏

0
) 0.5m

Inertia of first link of mission and balance arm 𝐼𝑚
1
= 𝐼
𝑏

1
0.03 kgm2

Inertia of second link of mission and balance arm including end effectors inertia 𝐼𝑚
2
= 𝐼
𝑏

2
0.02 kgm2

Inertia of base (𝐼
0
) 0.4 kgm2

𝜃
𝑏

1
= 𝑧,

𝜃
𝑏

2
= 𝑧 + cos−1 (

𝑦 − Δ
𝑏

1

2Δ𝑏
3

) .

(25)

The polynomial V is written as a function of 𝑏
4
and the

unknown spacecraft final orientation 𝜃fin
0
. So 𝑏
4
and 𝜃fin

0
are

chosen in such away that it satisfies constraint in (23). Once𝑓
and𝑔 are found, the trajectories or 𝜃

0
, 𝜃𝑚
1
, 𝜃𝑚
2
, 𝜃𝑏
1
, 𝜃𝑏
2
are found

using (24) and (25), which shows the inverse transformation
from 𝑢, V, and 𝑤 to 𝜃

0
, 𝜃𝑚
1
, 𝜃𝑚
2
and from 𝑥, 𝑦, and 𝑧 to 𝜃

0
, 𝜃𝑏
1
,

𝜃
𝑏

2
. It is seen that both the arms have a cumulative effect on

orientation of base 𝜃
0
.

4. Simulation and Results

Dynamic model derived in (6) of space robot is simulated
using MATLAB and Simulink software. Simulation of equa-
tion of motion is obtained by providing step input to four
DC motors located at the four joints of the dual arm robot.
Modelling of DC motor is obtained using the following
equations:

𝐽
𝑑
2

𝜃

𝑑𝑡
2
= 𝑇 − 𝑏

𝑑𝜃

𝑑𝑡
,

𝐿
𝑑𝑖

𝑑𝑡
= −𝑅𝑖 + 𝑉 − 𝑒,

𝑇 = 𝐾
𝑡
𝑖,

𝑒 = 𝐾
𝑒

𝑑𝜃

𝑑𝑡
.

(26)

In the above equation (26), 𝐽 is moment of inertia of rotor,
𝜃 is motor rotation, 𝑇 is motor torque, 𝑏 is damping ratio,

𝐿 is electric inductance of motors, 𝑖 is armature current, 𝑅
is armature resistance, 𝑉 is voltage supplied, 𝑒 is back elec-
tromotive force (emf), and𝐾

𝑡
and𝐾

𝑒
are electromotive force

constants. Table 1 shows the parameters used in simulation of
DC motor. Table 2 shows the parameters used for simulation
of space robot.

End effectors trajectory is obtained by first simulating
joint motions of the robot and then transferring it to its tip
using Jacobian given by (5). To validate equations of motion
of the proposed model, base disturbance caused due to the
effect of mass and inertia of links should be negligible, hence
increasing base mass to 400 kg and inertia to 300 kgm2. The
two links of each arm are made straight and joint between
them is locked by increasing the motor damping 𝐵

2
by 100

times. As expected the two end effectors of mission arm and
balance arm plot a circular trajectory as shown in Figure 2,
with radius equal to the summation of their dynamic link
lengths.

For simulation of path planning parameters used are same
as given in Table 2 and the duration ofmotion is chosen equal
to 10 s. The free-floater has to move its manipulator endpoint
to a new location and at the same time change its spacecraft
attitude to a desired one. Only manipulator actuators are to
be used. Let initial system configuration of mission arm be
(𝜃𝑚
1
, 𝜃
𝑚

2
)
in
≡ (0∘, 30∘) and the final be (𝜃𝑚

1
, 𝜃
𝑚

2
)
fin
≡ (30∘, 60∘).

Let initial system configuration of balance arm be (𝜃𝑏
1
, 𝜃
𝑏

2
)
in
≡

(180∘, 150∘) and the final be (𝜃𝑏
1
, 𝜃
𝑏

2
)
fin
≡ (140∘, 100∘).The initial

system configuration of base is (𝜃
0
)
in
≡ 0∘ and the final is

(𝜃
0
)
fin
≡ 5∘.

This requirement may result in a range of possible 𝑏
4
.

Of these, 𝑏
4
is chosen so that the range of allowable final

spacecraft attitudes is maximized. For this case, for both
the arms 𝑏

4
= 20. Joint torques curves can be obtained by

simplifying (6) to the planar case.
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Figure 2: Plot of𝑋tip v/s 𝑌tip of dual arm space robot for both the arms.
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Figure 3: Path followed by all four joints of both the arms using polynomial approach for (𝜃𝑚
1
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𝑚

2
)
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≡ (0∘, 30∘), (𝜃𝑚

1
, 𝜃
𝑚

2
)
fin
≡ (30∘, 60∘),

(𝜃𝑏
1
, 𝜃
𝑏

2
)
in
≡ (180∘, 150∘), and (𝜃𝑏

1
, 𝜃
𝑏

2
)
fin
≡ (140∘, 100∘).

As shown in Figure 3, the desired configuration is reached
in the specified time. Also, all trajectories are smooth
throughout the motion, and the system starts and stops
smoothly at zero velocities, as expected and shown in Figures
4, 5, and 6. This is an important characteristic of the method
employed and is due to the use of smooth functions, such
as polynomials. As shown in Figure 7, the required torques
can be easily applied by the joint actuators to reach the final
configuration. From Figure 8, total base orientation changes
from 53.27∘ to −6.85∘ which contains the desired 5∘, but the
total base disturbance is around 60∘ which is undesirable.
Increasing or decreasing simulation time and base parame-
ters keeping in mind the singularities has no effect on the

path taken but increases or decreases the torque requirements
and the magnitude of velocities or accelerations. Hence,
increasing the base mass to 10 kg and its inertia to 1 kg-m2
for feasible solution we can minimize total base disturbance
to 10∘ as shown in Figure 9.

5. Conclusions

In this paper dynamic modeling and path planning of
dual arm free flying space robot are presented. Equation of
motion for the case of dual arm free flying is derived and
simulated in Simulink. Results show that if the base mass
and inertia are increased to a certain limit keeping in mind
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Figure 4: Rate of change of joint angles of both the arms.
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Figure 5: End effectors velocity of mission arm.

the singularities, then base disturbance can be decreased
and the end effectors follow the required circular path. A
path planning methodology was implemented for dual arm
free flying space manipulators using smooth and continuous
functions such as polynomials. The desired configuration is
reached in the specified time. Also, all joint trajectories are

smooth throughout the motion, and the system starts and
stops smoothly at zero velocities, as expected. This is an
important feature of the method used and is due to the use
of functions, such as polynomials. The required torques is
small and torque variation is smooth and can be easily be
applied by the joint actuators to reach the final configuration.
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Figure 6: End effectors velocity of balance arm.
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Figure 7: Manipulator torques of both the arms.

From the practical point of view, one should investigate the
applicability of the method to more than two arms and three-
dimensional systems. One can also see the effect of increasing
the degree of polynomial considering uncertainties in inertial
parameters during path planning.
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Figure 8: Base disturbance and base velocity variation with time.
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Figure 9: Base disturbance and base velocity variation with time for increased mass and inertia.
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