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One of the main challenges in the realization of time-delayed bilateral teleoperators is the stable adaptation of transparency when
the remote environmental dynamics are time-varying. In this paper, we propose a bilateral control strategy that passively adjusts the
transparency of the system when the slave robot transitions between two different environments. The proposed controller exploits
the effect that the wave impedance (a design parameter of the passivity-based scattering transformation) has on transparency
without comprising closed-loop stability, regardless of time-varying communication delays. To properly adjust transparency, the
control scheme smoothly switches the wave impedance parameter between a low value, ideal for freemotion, and a sufficiently large
value, suited for hard-contact tasks.We show that, by adopting this strategy, the transmitted impedance to the operator approximates
more closely the environmental impedance value. Furthermore, we theoretically provemaster-slave position coordination and force
tracking under different scenarios. Simulation results illustrate the effectiveness of the proposed control strategy.

1. Introduction

A bilateral teleoperator is a dual robotic system that enables
a human operator to manipulate, sense, and physically
interact with a remote environment. It consists of a local,
human-controlled master robot energetically coupled via
a communication channel with a remote slave robot. Ide-
ally, the coupling between master and slave robots should
be transparent to the operator, meaning that the operator
should feel as if he or she is directly active in the remote
location [1]. This requires the system to faithfully transmit
the environmental impedance to the human operator [1] or,
alternatively, to equate the positions and forces at the master
and slave sides [2]. Unfortunately, a perfectly transparent
bilateral teleoperation system cannot be realized without
compromising stability due to the presence of time delays in
the communication channel [3].

Challenges to the realization of stable and transparent
teleoperators have been well documented in the literature
[1, 3–6]. Particularly, one of the main challenges faced by
bilateral teleoperators is how to adjust transparency when
the mechanical and dynamical properties of the remote
environment change over time. For example, consider the

teleoperation system of Figure 1. The remote environment
transitions from a section of zero impedance (where the
slave robot is free to move) to a restricted, hard-contact
section of high impedance (i.e., the wall). Typically, the
transmitted impedance to the human operator would be
tuned according to one of the two environmental impedance
values or a trade-off between both. In the case where large
impedance is transmitted to the operator, the teleoperation
system will feel sluggish or misleadingly heavy during free
motion [7]. If, on the other hand, low impedance value is
chosen, substantial discrepancies between the position of
the master and slave robots will appear when interacting
with the wall (see Figure 1) [8]. In either case, the human
operator will lose the ability to accurately feel and identify
the mechanical and dynamical properties of the remote envi-
ronment.Therefore, it is important to adjust the transparency
of the teleoperation system according to the current remote
environmental dynamics [7].

2. Background and Contributions

2.1. Related Work. Prompted by the need for transparent yet
stable time-delayed teleoperators, several control frameworks

Hindawi Publishing Corporation
Journal of Robotics
Volume 2015, Article ID 861425, 13 pages
http://dx.doi.org/10.1155/2015/861425



2 Journal of Robotics

qm

qs
No wall

Master robot
(local site)

Slave robot
(remote site)

Stiff wall

Figure 1: Example of a master-slave teleoperation system. If the
transmitted impedance to the human operator is not sufficiently
large, the operator will feel a softer remote environment and may
still continue themotion of themaster robot despite the slave robot’s
position being locked by the wall.

have been proposed (refer to [9, 10] for a review of
control schemes and a comparison of different methods).
Arguably, two of the most dominant control approaches are
passivity-basedmethods, which include the wave-based scat-
tering transformation [11, 12], and traditional proportional-
derivative (PD) controllers [13–15]. Yet, most of these control
frameworks fail to transmit faithful impedance to the opera-
tor when the environmental dynamics are unknown or time-
varying. For instance, in passive wave-based architectures
[12], transparency depends highly on a control parameter,
namely, the wave impedance. For free motion, the ideal wave
impedance should be infinitesimal, such that the increase
of inertia induced by the delay is barely perceived by the
operator. In contrast, for stiff or hard-contact environments,
the desired wave impedance should be infinitely large, such
that a stiff environment is felt by the operator [16]. Compro-
mising the value of the wave impedance to best satisfy both
scenarios tends to lead to a teleoperation system that feels
sluggish in free motion with substantial position errors when
interacting with stiff environments. These position errors,
also referenced as position drifts [8], cause the operator
to erroneously interpret the actual position of the slave
(e.g., see Figure 1). A similar effect is experienced when
tuning traditional proportional-derivative (PD) architectures
where control gains are limited by stability constrains and,
consequently, position errors arise while in contact motion
[6, 8].

Time-varying compensation of position errors during
contact tasks, which aimed to improve static transparency,
has been addressed previously in [17] via a wave-based
scheme that introduces the notion of a variable rest length.
The role of the variable rest length is to modify the desired
target position according to the position drift and applied

forces so that the master-slave position error converges to
zero. A similar approach based on the variable rest length
is presented in [18], where an energy tank replaces the
dissipative element in the wave scattering transformation
for impedance matching so that the energy is stored rather
than dissipated. The stored energy is then used to adequately
change the variable rest length without relying on the opera-
tor’s energy as done in [17]. In both of the above methods, the
communication delay must be known and constant in order
to perform the position compensation.

In [19], a delay-independent, wave-based control frame-
work was proposed where the wave impedance passively
switches between an arbitrary small value, ideal for free
motion, and an arbitrary large value, suited for stiff environ-
ments. The idea of modifying the wave impedance according
to the remote environment was previously explored in [20].
However, the switching policy of [20] requires themechanical
and control systems to dissipate a certain amount of energy
(proportional to the difference in impedance values) to
execute a stable transition. The work of [19] has been prelim-
inarily extended to the case of time-varying communication
delays [21].

Other recent compensation methods not based on wave-
based scattering transformation include the work in [22–24].
In [22], a two-layer approach is proposed where the first layer
is designed to improve the transparency of the system based
on the knowledge of the task and environment, while the
second layer guarantees that passivity is preserved. In [23],
a switching two-channel control architecture is developed
for linear systems with constant delays. The overall control
architecture switches between two controllers that are indi-
vidually optimized for free and hard-contact motion. Finally,
in [24], a switching control strategy for linear teleoperators is
presented; however, it does not take into account the presence
of communication delays.

2.2. Contributions. The main contribution of the paper is
the proof of the system’s closed-loop stability regardless of
the variability of the wave impedance and communication
delays as well as the state convergence analysis for several
special cases. The paper formally extends and unifies the
time-varying wave impedance control architecture of [19, 21]
to bilateral teleoperators with time-varying communication
delays. We start by introducing the passivity-based scattering
transformation with position information [25] and analyze
how the wave impedance and the delay affect transparency
for two different remote environments: one with a zero
impedance and another with high impedance. Among our
findings, we illustrate how canwe exploit thewave impedance
to improve the transparency of the teleoperation system.
Using this knowledge, we then propose an update strategy
that smoothly adjusts the wave impedance value according to
the current environmental dynamics without compromising
the stability of the closed-loop system. In contrast to [19], the
transitions between wave impedance values can be executed
arbitrarily fast. Finally, we remove the need of transmitting
remote contact information to the master robot by updating
the wave impedance at the slave side rather than at the
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master side and prove stability and position coordination
under different scenarios. Simulation results with a nonlinear
teleoperator validate the proposed control architecture.

2.3. Notation. As standard notation, let R𝑛 be the 𝑛-
dimensional Euclidean space and let C = C([−𝑟, 0],R𝑛) be
the space of continuous functions taking the interval [−𝑟, 0]
into R𝑛 for 𝑟 ≥ 0. If x is a continuous function defined in
the interval [−𝑟, 𝛼), where 𝛼 > 0, then x

𝑡
will denote an

element of C for each 𝑡 in [0, 𝛼) defined by x
𝑡
:= x(𝑡 + 𝜃),

𝜃 ∈ [−𝑟, 0] [26]. Similarly, the 2-norm of a vector x =

[𝑥
1
, . . . , 𝑥

𝑛
]
𝑇 will be defined as ‖x‖ := √𝑥

2

𝑖
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
and

the minimum and maximum eigenvalues of a square matrix
𝐴 as 𝜎(𝐴) and 𝜎(𝐴), respectively. Finally, we say that a 𝑛-
dimensional piecewise continuous function x : [0,∞) →

R𝑛 belongs to L
2
if ‖x(𝑡)‖L

2

= √∫

∞

0

‖x(𝜃)‖2𝑑𝜃 < ∞ and
to L
∞

if ‖x(𝑡)‖L
∞

= sup
𝑡≥0

‖x(𝑡)‖ < ∞. For simplicity, we
will omit time dependence of signals except when considered
necessary.

3. Problem Formulation

3.1. Modeling the Teleoperators. We address the task of
remotely controlling an 𝑛-degree-of-freedom (DOF) slave
robot coupled bilaterally to an 𝑛-DOFmaster robot through a
time-delayed communication channel. The master and slave
robots have nonlinear Euler-Lagrangian dynamics given by

𝑀
𝑚
(q
𝑚
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𝑚
+ 𝐶
𝑚
(q
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𝑠
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𝑠
+ 𝜏
𝑠
,

(1)

where q
𝑖
= q
𝑖
(𝑡) ∈ R𝑛 are the generalized coordinates,

𝑀
𝑖
(q
𝑖
) ∈ R𝑛×𝑛 are the bounded, positive definite inertia

matrices, 𝐶
𝑖
(q
𝑖
, q̇
𝑖
) ∈ R𝑛×𝑛 are the centrifugal and Coriolis

matrices, g
𝑖
(q
𝑖
) are the gravitational forces, f
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𝑖
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are the human and environmental forces, and 𝜏
𝑖
= 𝜏
𝑖
(𝑡) ∈ R𝑛

are the control inputs for the master (𝑖 = 𝑚) and slave robots
(𝑖 = 𝑠). Due to its Euler-Lagrangian dynamic structure, the
𝑗𝑘th element of 𝐶
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𝑖
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where 𝑞𝑙
𝑖
stands for the 𝑙th element ofq

𝑖
.Therefore, (1) satisfies

the well known passivity property

�̇�
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In addition, we assume that 𝑀
𝑖
(q
𝑖
) is upper and lower

bounded, which in turns implies that ‖𝐶
𝑖
(q
𝑖
, q̇
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3.2. Control Objectives. Our control goal is to design the
inputs 𝜏

𝑖
such that stability and transparency of the close-

loop system in (1) are achieved. Explicitly, we would like 𝜏
𝑖

to enforce position coordination for finite delays, that is,

q
𝑚
(𝑡) − q

𝑠
(𝑡) → 0 (4)

and static force reflection, that is,

f
𝑚
(𝑡) → −f

𝑠
(𝑡) (5)

as q̇
𝑖

→ 0, independently of the structure of the remote
environment. Furthermore, we would like the operator to
perceive low and high impedances when interacting with free
and rigid environments, respectively.

3.3. Assumptions. In the following analysis we make the
assumption that delays on the transmission lines frommaster
to slave, 𝑇

𝑚
(𝑡), and from slave to master, 𝑇

𝑠
(𝑡), are finite (i.e.,

∃𝑇 > 0 such that 𝑇
𝑚
(𝑡) + 𝑇

𝑠
(𝑡) ≤ 𝑇) but not necessarily equal

and/or constant. Furthermore, we assume that the slave robot
is equipped with force/torque sensors (or contact/proximity
sensors) that can measure contact information.

4. Bilateral Control Framework

In this sectionwewill develop the bilateral control framework
to guarantee stability and transparency. First, we will address
the problem of stability through the passivity formalism
since, in general, passivity is a sufficient condition for the
stability of serially connected systems. Then, we will proceed
to guarantee transparency-based objectives.

Definition 1 (see [27]). A system with input x and output y is
said to be passive if

∫

𝑡

0

x𝑇y 𝑑𝜃 ≥ −𝜅
2

+ ]2 ∫
𝑡

0

x𝑇x 𝑑𝜃 + 𝜌
2

∫

𝑡

0

y𝑇y 𝑑𝜃 (6)

for some 𝜅, ], 𝜌 ∈ R. Moreover, it is said to be lossless if
equality persists and ] = 𝜌 = 0, input strictly passive if ] ̸= 0,
and output strictly passive if 𝜌 ̸= 0.

In order to passivize and hence stabilize the teleoperator,
we propose the design of the control inputs as

𝜏
𝑖
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whereΛ ∈ R𝑛×𝑛 and𝐾
𝑖
∈ R𝑛×𝑛 are, without loss of generality,

diagonal positive definite constant matrices and 𝜏
𝑖
= 𝜏
𝑖
(𝑡) ∈

R𝑛 are the coordination control inputs to be designed. Then,
the dynamic equations of the system in (1) reduce to

𝑀
𝑖
(q
𝑖
) ̇r
𝑖
+ 𝐶
𝑖
(q
𝑖
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where r
𝑖
(𝑡) = q̇

𝑖
(𝑡) + Λq

𝑖
(𝑡).

Remark 2. Note that the control law in (7) assumes complete
knowledge of the dynamics of the master and slave robot.
In [25, 28], a passivity-based adaptive law is suggested for
the case where the parameters are unknown. Such approach
can be easily extended to our proposed control framework
without altering the main results presented herein.

We are now left to design the control inputs 𝜏
𝑖
such that

the communication channel is passivized independently of
the delay and that position convergence and force tracking of
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the teleoperation system are guaranteed. With this in mind,
we propose the use of the scattering transformation and wave
variables u

𝑖
and k

𝑖
[11, 12]. For the slave side, the outputs of

the scattering transformation are computed as

k
𝑠
(𝑡) = (2𝐵

𝑠
(𝑡))
−1/2

(𝐵
𝑠
(𝑡) r
𝑠𝑑
(𝑡) − 𝜏

𝑠
(𝑡)) , (9)

r
𝑠𝑑
(𝑡) = (2𝐵

−1

𝑠
(𝑡))

1/2

u
𝑠
(𝑡) − 𝐵

−1

𝑠
(𝑡) 𝜏
𝑠
(𝑡) , (10)

where 𝐵
𝑠
(𝑡) ∈ R𝑛×𝑛, the wave impedance, is a bounded,

diagonal, time-varying, positive definite matrix that will
be designed under transparency concerns; and u

𝑠
(𝑡) =

𝛾
𝑠
(𝑡)u
𝑚
(𝑡 − 𝑇

𝑚
(𝑡)) is the incoming wave variable from the

master’s scattering transformation scaled by some positive
semidefinite scalar function 𝛾

𝑠
. Then, the coordination con-

trol input can be computed as

𝜏
𝑠
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𝑠
(𝑡) (r
𝑠𝑑
(𝑡) − r

𝑠
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Likewise, for the master side, the outputs of the scattering
transformation are computed as

u
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for some positive semidefinite function 𝛾
𝑚
. Analogous to the

slave case,

𝜏
𝑚
(𝑡) = 𝐵

𝑚
(𝑡) (r
𝑚𝑑

(𝑡) − r
𝑚
(𝑡)) . (14)

The reader can easily verify that using the scattering transfor-
mation and the coordination control inputs (11) and (14), (10)
and (13) reduce to

2r
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(𝑡) = (𝛾
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(𝑡) Γ (𝑡) r
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−1/2.

Now, let us show that the scattering transformation
with the appropriate choice of 𝛾

𝑖
guarantees the passivity

of the communication channel independently of delays and
variance of the wave impedance. Manipulating (9) to (14),
we obtain that the power equation for the communication
channel is given by

− (𝜏
𝑇

𝑚
r
𝑚𝑑

+ 𝜏
𝑇

𝑠
r
𝑠𝑑
) =

1
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𝑚
− k2
𝑚
+ k2
𝑠
− u2
𝑠
) , (17)

where the negative sign at the left side of the equation is
owed to the power inflow. Integrating (17)with respect to time
yields the total energy on the communication channel; that is,
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Figure 2: Flow of information between master and slave robots.

Note that the energy is independent of the value of the wave
impedance. It, however, depends on the characteristics of the
delay and the choice of 𝛾

𝑖
.

4.1. Time Constant Delays. Let us consider first the case of
constant communication delays, that is, 𝑇

𝑚
(𝑡) = 𝑇

𝑚
and

𝑇
𝑠
(𝑡) = 𝑇

𝑠
. Define 𝛾

𝑚
(𝑡) = 𝛾

𝑠
(𝑡) = 1, for all 𝑡 ≥ 0. Returning

to (18) we obtain that

− ∫

𝑡

0

(𝜏
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(𝜃) 𝑑𝜃 ≥ 0

(19)

which yields that the communication channel is passive (for
𝜅 = 0) independently of arbitrary large constant delays.

4.2. Time-Varying Delays. We have demonstrated that the
use of the conventional wave scattering transformation (for
𝛾
𝑖
(𝑡) = 1) guarantees the passivity of the communication

channel independently of the value of the wave impedance
when the delays are constant. The problem arises due to
the compression/expansion of the transmitted wave variables
when the delays are time-varying. To guarantee that the
communication is passive, we must guarantee that the output
energy is not greater than the energy coming into the
communication channel. A sufficient condition for passivity
is then given by the following two inequalities:

∫
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Therefore, wewill design 𝛾
𝑠
and 𝛾
𝑚
such that (20) are satisfied.

To this end, we propose to transmit the total energy of the
incoming wave variables along with the wave variables (see
Figure 2 for a pictorial representation) and to design two
energy filters. The equations governing 𝛾

𝑠
and 𝛾

𝑚
are given

by

𝛾
𝑖
=

{
{
{

{
{
{

{

1, if 𝐸
𝑖
≥ 𝛽
𝑖
,

2𝛽
2

𝑖
𝐸
2

𝑖

𝐸
4

𝑖
+ 𝛽
4

𝑖

, otherwise,
(21)
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Figure 3: Bode magnitude plot of transmitted impedance 𝑍
𝑡
(𝑠) for the free motion case. (a) ‖𝑍

𝑡
(𝑗𝜔)‖ plotted for different delays when

𝐵 = 1 [N ⋅m/s] is fixed. (b) ‖𝑍
𝑡
(𝑗𝜔)‖ plotted for different wave impedances when 𝑇 = 0.1 [s] is fixed.

where 𝛽
𝑖
are positive constants for 𝑖 ∈ {𝑚, 𝑠} and

𝐸
𝑚
= ∫

𝑡−𝑇
𝑠
(𝑡)

0

k2
𝑠
(𝜃) 𝑑𝜃 − ∫

𝑡

0

k2
𝑚
(𝜃) 𝑑𝜃,

𝐸
𝑠
= ∫

𝑡−𝑇
𝑚
(𝑡)

0

u2
𝑚
(𝜃) 𝑑𝜃 − ∫

𝑡

0

u2
𝑠
(𝜃) 𝑑𝜃

(22)

are the energy stored (also called energy reservoirs) in the
communication channels. Note that the energy is never
negative, since 𝐸

𝑖
→ 0 ⇒ 𝛾

𝑖
→ 0, and thus, the outgoing

wave variable also converges to zero. Therefore, (20) are
satisfied for all 𝑡 and the communication channel is passive.

Up to now, we have designed the control inputs 𝜏
𝑖

based on passivity concerns. We are yet to tune the control
law such that transparency is achieved for both free and
restricted environments. To this end, we will exploit the effect
of the wave impedance on position convergence and force
reflection.

5. Tuning of the Wave Impedance

5.1. Effect of the Wave Impedance on Transparency. Accord-
ing to [1], transparency is achieved when the transmitted
impedance to the operator 𝑍

𝑡
is equal to the environmental

impedance 𝑍
𝑒
. This implies that the human operator should

feel very little resistance or impedance when the slave robot is
in free motion (i.e., 𝑍

𝑒
= 0) and should feel a higher stiffness

or impedance when the motion of the slave is restricted (i.e.,
𝑍
𝑒
is large). In this section, we will show how the wave

impedance and the delay affect 𝑍
𝑡
in comparison to 𝑍

𝑒
. We

evaluate two different scenarios: one for which the slave robot
can move freely in space and another in which the slave

robot is in contact with a stiff surface. For simplicity, we
reduce the dynamics of the master and slave robot to 1-DOF
linear systems and let Λ = 1[1/s]. We assume that the wave
impedance 𝐵

𝑖
= 𝐵 and the roundtrip delay 𝑇 = 𝑇

𝑚
+ 𝑇
𝑠
are

constant and that f
𝑚
≈ 𝜏
𝑚
and r
𝑠
≈ r
𝑠𝑑
. The later implies that

the dynamics of the robots are negligible, as in [29].
Now, let us consider the scattering transformation equa-

tions given in (9) to (14). Using the Laplace transform we can
compute the transmitted impedance to the operator as

𝑍
𝑡
(𝑠) =

L {f
𝑚
(𝑡)}

L {q̇
𝑚
(𝑡)}

= 𝐵

𝑠 + 1

𝑠

1 + 𝑅 (𝑠) 𝑒
−𝑠𝑇

1 − 𝑅 (𝑠) 𝑒
−𝑠𝑇

, (23)

where 𝑠 = 𝑗𝜔 denotes the Laplace variable and

𝑅 (𝑠) =

𝑍
𝑒
(𝑠) − 𝐵

𝑍
𝑒
(𝑠) + 𝐵

, 𝑍
𝑒
(𝑠) =

L {f
𝑠
(𝑡)}

L {q̇
𝑠
(𝑡)}

. (24)

To evaluate the effect of the delay and the wave
impedance, we will plot the magnitude of𝑍

𝑡
for two different

𝑍
𝑒
. For the handling of the exponential in (23), we will use

a Padé approximation of order 𝑁
𝑃
= ⌈6𝜋𝑓

𝑃
𝑇⌉, where 𝑓

𝑃
is

the maximum frequency for which the Padé approximation
of order 𝑁

𝑝
yields an accurate representation of the delay

[29]. For simplicity, we choose a low frequency of𝑓
𝑝
= 10Hz.

This frequency is only a few tens lower than the typical human
kinesthetic sense bandwidth [30].

Figure 3 depicts the Bode magnitude plot of𝑍
𝑡
(𝑠) for dif-

ferent delays (𝑇
𝑘
= 10
𝑘−5

[s]) and different wave impedance
values (𝐵

𝑘
= 10
𝑘−1

[N ⋅ s/m]), when 𝑍
𝑒
(𝑠) = 0 and 𝑘 ∈

{1, 2, 3, 4}. Ideally, 𝑍
𝑡
(𝑠) should be equal to 𝑍

𝑒
(𝑠) and its

magnitude in dB should diverge to −∞. However, note from
Figure 3(a) that𝑍

𝑡
(𝑠) is lower bounded for all frequencies and
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Figure 4: Bode magnitude plot of transmitted impedance 𝑍
𝑡
(𝑠) for the constrained motion case, 𝑍

𝑒
(𝑠) = 𝑘

𝑒
/(Λ + 𝑠). (a) ‖𝑍

𝑡
(𝑗𝜔)‖ plotted for

different delays when 𝐵 = 1 [N ⋅m/s] is fixed. (b) ‖𝑍
𝑡
(𝑗𝜔)‖ plotted for different wave impedances when 𝑇 = 0.1 [s] is fixed.

it increases as the delay increases. Similarly, from Figure 3(b)
we can observe that 𝑍

𝑡
decreases as the wave impedance 𝐵

decreases. Therefore, lower impedance closer to 𝑍
𝑒
can be

transmitted to the human operator by decreasing the value
of the wave impedance.

The transmitted impedance to the operator when the
slave robot contacts a hard surface with a stiffness constant
of 𝑘
𝑒
= 10
6

[kg/s2] (i.e., 𝑍
𝑒
(𝑠) = 𝑘

𝑒
/(Λ + 𝑠)) is illustrated

in Figure 4. Observe from Figure 4(a) that 𝑍
𝑡
(𝑠) is in gen-

eral lower than 𝑍
𝑒
(𝑠) and it continues to decreases as the

roundtrip delay increases. Similarly, note from Figure 4(b)
that 𝑍

𝑡
(𝑠) is in general lower than 𝑍

𝑒
(𝑠) for all values of 𝐵.

It, however, improves as the wave impedance is increased.
Therefore, a higher wave impedance enhances the trans-
parency of the system when the slave robot is in contact with
a stiff environment.

5.2. Tuning the Wave Impedance. The previous frequency
analysis suggests the use of arbitrarily small wave impedance
when the slave robot is free to move and an arbitrarily large
wave impedance when the slave robot is in contact with a
hard environment. In practice, this requires us to alternate
𝐵
𝑖
between a relatively small value 𝐵min and a relatively large

value 𝐵max. To this end, we propose the update law for the
diagonal 𝑗𝑗th entry of the wave impedancematrix to be given
as

�̇�
𝑗𝑗

𝑠
(𝑡) =

{

{

{

𝛽

𝑗

(𝑡) , if 




𝑓
𝑗

𝑠
(𝑡)






> 0

−𝛽
𝑗

(𝑡) , otherwise,
(25)

where 𝑓
𝑗

𝑠
is the 𝑗th component of f

𝑠
and 𝛽

𝑗

and 𝛽
𝑗 are

nonnegative, bounded scalar functions that drive 𝐵𝑗𝑗
𝑠
to 𝐵𝑗𝑗max

and 𝐵
𝑗𝑗

min, respectively. The motivation behind (25) is to
smoothly drive the wave impedance toward its two ideal
values. In simulations it was observed that faster transitions
(or larger jumps) may end up adding unwanted, stable
oscillations to the transient response (see Section 7).

6. Stability Analysis

The two foremost goals of a bilateral teleoperation control
system are to guarantee closed-loop stability and to provide
a satisfactory level of transparency regardless of communica-
tion delays. Accordingly, we now show the effectiveness of the
proposed control law in guaranteeing both objectives under
different scenarios. First, we prove closed-stability of the sys-
tem under time-constant and time-varying communication
delays when the environment and the human operator are
assumed to be passive systems.Then, we relax the assumption
on the human operator by considering the interaction of the
slave robot with a hard environment.

Proposition 3. Consider the teleoperation system in (1) with
control law (7), (11), and (14). Let𝑇

𝑚
(𝑡) = 𝑇

𝑚
and𝑇
𝑠
(𝑡) = 𝑇

𝑠
be

constant and assume that the human and remote environment
are passive with respect to r

𝑖
, that is, ∃𝜅

𝑖
∈ R such that

−∫

𝑡

0

f𝑇
𝑖
r
𝑖
𝑑𝜃 ≥ −𝜅

2

𝑖
, 𝑓𝑜𝑟 𝑖 = {𝑚, 𝑠} . (26)

Then, the closed-loop teleoperation system is stable, all signals
are bounded, and the system achieves position coordination
and static force reflection in the sense of (4) and (5).
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Proof. Let x = [q𝑇
𝑚
, q𝑇
𝑠
, r𝑇
𝑚
, r𝑇
𝑠
, f𝑇
𝑚
, f𝑇
𝑠
]
𝑇 and define x

𝑡
= x (𝑡 +

𝜃) ∈ C, 𝜃 ∈ [−𝑇
𝑚
− 𝑇
𝑠
, 0]. Consider the following positive

definite function:

𝑉 (𝑡, x
𝑡
) = H

𝑚
+H
𝑠
+ 𝜅
2

𝑚
+ 𝜅
2

𝑠
− ∫

𝑡

0

(f𝑇
𝑚
r
𝑚
+ f𝑇
𝑠
r
𝑠
) 𝑑𝜃

− ∫

𝑡

0

(𝜏
𝑇

𝑚
r
𝑚𝑑

+ 𝜏
𝑇

𝑠
r
𝑠𝑑
) 𝑑𝜃,

(27)

where H
𝑖
= (1/2)r𝑇

𝑖
𝑀
𝑖
(q
𝑖
)r
𝑖
+ (1/2)q𝑇

𝑖
Λ𝐾
𝑖
q
𝑖
≥ 0 for 𝑖 ∈

{𝑚, 𝑠}. Note that r
𝑚𝑑

, 𝜏
𝑚
, r
𝑠𝑑
, and 𝜏

𝑚
are all functions of r

𝑚

and r
𝑠
. Taking the time derivative of (27) we obtain

�̇� (𝑡, x
𝑡
) = f𝑇
𝑚
r
𝑚
+ 𝜏
𝑇

𝑚
r
𝑚
− q̇𝑇
𝑚
𝐾
𝑚
q̇
𝑚
+ f𝑇
𝑠
r
𝑠
+ 𝜏
𝑇

𝑠
r
𝑠

− q̇𝑇
𝑠
𝐾
𝑠
q̇
𝑠
− f𝑇
𝑚
r
𝑚
− f𝑇
𝑠
r
𝑠
− 𝜏
𝑇

𝑚
r
𝑚𝑑

− 𝜏
𝑇

𝑠
r
𝑠𝑑

= − (r
𝑚𝑑

− r
𝑚
)
𝑇

𝐵
𝑚
(r
𝑚𝑑

− r
𝑚
) − q̇𝑇
𝑚
𝐾
𝑚
q̇
𝑚

− (r
𝑠𝑑
− r
𝑠
)
𝑇

𝐵
𝑠
(r
𝑠𝑑
− r
𝑠
) − q̇𝑇
𝑠
𝐾
𝑠
q̇
𝑠
≤ 0.

(28)

Since �̇�(𝑡, x
𝑡
) ≤ 0 for all x

𝑡
, we can conclude that the

closed-loop teleoperation system is stable and that 𝑉(𝑡, x
𝑡
) ≤

𝑉(0, x
𝑡
) < ∞, which implies that r

𝑚
, r
𝑠
, q
𝑠
, and q

𝑚
are

bounded. The latter also implies that q̇
𝑚
and q̇

𝑠
are bounded.

Moreover, from the fact that ∫𝑡
0

�̇�(𝜙, x
𝜙
)𝑑𝜙 ≤ ∞, we conclude

that q̇
𝑚
, q̇
𝑠
∈ L
2
and 𝜏
𝑖
∈ L
∞
(where we applied the fact that

𝑀
𝑖
, 𝐶
𝑖
, g
𝑖
, and 𝐵

𝑖
are all bounded). Consequently, we obtain

that q̈
𝑖
∈ L
∞
. Then, using Barbalat’s lemma [31] we can

conclude that q̇
𝑖
(𝑡) → 0 as 𝑡 → ∞. Similarly, by using

similar arguments, we can show that ̇r
𝑚
and ̇r
𝑠
are bounded

and that r
𝑠𝑑
(𝑡) − r

𝑠
(𝑡) = (1/2)(r

𝑚
(𝑡 − 𝑇

𝑚
) − r
𝑠
(𝑡)) belongs to

L
2
. Therefore, we can apply Barbalat’s lemma and conclude

that r
𝑚
(𝑡 − 𝑇

𝑚
) − r
𝑠
(𝑡) → 0. Since q̇

𝑖
→ 0 and 𝑇

𝑚
is finite,

we can conclude that q
𝑚
(𝑡) − q

𝑠
(𝑡) → 0 as 𝑡 → 0.

In order to prove the last statement, let us consider the
system in steady-state condition, that is, q̈

𝑖
(𝑡) = q̇

𝑖
(𝑡) = 0 and

𝐵
𝑚
(𝑡) = 𝐵

𝑠
(𝑡). Then, we have that (8) reduces to

2f
𝑚
= −𝐵
𝑚
Λ (q
𝑠
− q
𝑚
) , 2f

𝑠
= −𝐵
𝑠
Λ (q
𝑚
− q
𝑠
) (29)

which yields that f
𝑚
= −f
𝑠
and the proof is complete.

The above proposition shows that if the human operator
and the environment are modeled as passive systems, the
coupling of the overall system is stable and the teleoperator
achieves position and force tracking. Note that the result
does not impose restrictions on 𝐵

𝑖
other than being positive

and finite. In the next statement, we will relax the positive
condition on𝐾

𝑖
by restricting the update rate of 𝐵

𝑖
.

Proposition 4. Let𝐾
𝑖
= 0 and let 𝐵

𝑖
be governed by (25), with

�̇�
𝑠
(𝑡) < Λ𝐵

𝑠
(𝑡) for all 𝑡. Then, Proposition 3 holds.

Proof. The proof follows similar to the one presented in [19]
for Theorem 4.1. It requires the construction of a different
Lyapunov function with 𝐵

𝑚
as an state variable.

Let us now generalize the above results to the case of time-
varying delays.

Proposition 5. Consider the teleoperation system in (1) with
control law governed by (7), (11), (14), (21), and (25). Suppose
that 𝑇

𝑚
(𝑡) and 𝑇s(𝑡) are time-varying and finite. Furthermore,

assume that the human and remote environment are passive
with respect to r

𝑖
, that is, ∃𝜅

𝑖
∈ R such that (26) holds. Then,

the closed-loop teleoperation system is stable, the coordination
error is bounded, and the velocities converge to zero.

Proof. Consider the Lyapunov candidate function in (27).
Taking its time derivative yields (28), fromwhich we can con-
clude (using same arguments as in the proof of Proposition 3)
that the closed-loop system is stable, that all signals are
bounded, and that q̇

𝑖
, r
𝑚

− r
𝑚𝑑

, and r
𝑠
− r
𝑠𝑑

converge to
zero.

Proposition 6. Assume that 𝛽𝑗(𝑡), 𝛽
𝑗

(𝑡) ≤ 𝑐, 𝑇
𝑚
(𝑡) + 𝑇

𝑠
(𝑡) ≤

𝑇, and |
̇

𝑇
𝑖
| ≤ d for some 𝑐, 𝑇, 𝑑 ≥ 0. Then, the coordination

error converges to a ball of radius (𝑐𝑇/𝐵min)‖q𝑚‖. Moreover, if
∃𝑡
⋆
such that 𝛾

𝑚
(𝑡) = 𝛾

𝑠
(𝑡) = 1 for all 𝑡 ≥ 𝑡

⋆
, then, the system

achieves position coordination and static force reflection in the
sense of (4) and (5).

Proof. Consider (27) and its time-derivative (28). Since
∫

𝑡

0

�̇�(𝜙, x
𝜙
)𝑑𝜙 ≤ ∞, we have that 2(r

𝑚𝑑
(𝑡) − r

𝑚
(𝑡)) =

𝛾
𝑚
(𝑡)𝑟
𝑠
(𝑡−𝑇
𝑠
(𝑡))− r

𝑚
(𝑡) and 2(r

𝑠𝑑
(𝑡)− r

𝑠
(𝑡)) = 𝛾

𝑠
(𝑡)Γ(𝑡)𝑟

𝑚
(𝑡−

𝑇
𝑚
(𝑡))−r

𝑠
(𝑡) belong toL

2
, where we used (16) and (15). From

Proposition 5, we also have that q
𝑖
, q̇
𝑖
, and q̈

𝑖
are bounded,

which, together with |
̇

𝑇
𝑖
| ≤ 𝑑, implies that ̇𝛾

𝑖
, ̇r
𝑖𝑑
, and ̇r

𝑖
are

all bounded. Using then Barbalat’s lemma, we can conclude
that r

𝑚
− r
𝑚𝑑

and r
𝑠
− r
𝑠𝑑

converge to zero. Since q̇
𝑖
→ 0

(from Proposition 5), we also obtain that 𝛾
𝑚
(𝑡)q
𝑠
(𝑡 − 𝑇

𝑠
(𝑡)) −

q
𝑚
(𝑡) → 0 and 𝛾

𝑠
(𝑡)Γ(𝑡)q

𝑚
(𝑡−𝑇
𝑚
(𝑡))−q

𝑠
(𝑡) → 0. Given that

𝑇
𝑖
are finite, we finally have that 𝛾

𝑚
q
𝑠
→ q
𝑚
and 𝛾
𝑠
Γq
𝑚

→

q
𝑠
.
Now, let us assume that the energy filters (22) are

initialized at a nonzero value. This assumption does not
violate the passivity of the communication channel according
to Definition 1. Then, we have that 𝛾

𝑖
∈ (0, 1]. Similarly,

note that 0 ≤ Γ(𝑡) ≤ 1 + 𝑐𝑇/𝐵min for all 𝑡, since both �̇�
𝑠

and 𝑇
𝑖
are bounded. Using the latter two statements yields

that either q
𝑚
(𝑡) → q

𝑠
(𝑡) → 0, which implies (4), or

that 𝛾
𝑚
(𝑡)𝛾
𝑠
(𝑡)Γ(𝑡) → 1, which implies that q

𝑚
(𝑡) − q

𝑠
(𝑡)

converges to a ball of radius (𝑐𝑇/𝐵min)‖q𝑚‖. Hence, the proof
for the first statement is complete.

To prove the second statement, let us assume that 𝛾
𝑚
(𝑡) =

𝛾
𝑠
(𝑡) = 1 for all 𝑡 ≥ 𝑡

⋆
. Then, from the previous conclusion,

we obtain that q
𝑠
(𝑡) = 𝛾

𝑚
(𝑡)q
𝑠
(𝑡) → q

𝑚
(𝑡) as 𝑡 → ∞, which

implies position coordination in the sense of (4). Similarly,
since steady-state conditions imply that q̈

𝑖
(𝑡), q̇
𝑖
(𝑡) → 0, and

𝐵
𝑚
(𝑡) → 𝐵

𝑠
(𝑡), we can show that (8) reduces to

2f
𝑚
= −𝐵
𝑚
Λ (q
𝑠
− q
𝑚
) , 2f

𝑠
= −𝐵
𝑠
Λ (q
𝑚
− q
𝑠
) (30)

which yields that f
𝑚
= −f
𝑠
and the proof is complete.

Up to now, we have shown the stability of the teleopera-
tion systemwhen both human and environment aremodeled
as passive systems. We also showed that the coordination
error between master and slave robots converges to zero if
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(1) the time-delay is constant or if (2) the time delay is time-
varying and ∃𝑡

⋆
such that 𝛾

𝑖
(𝑡) = 1 for all 𝑡 ≥ 𝑡

⋆
. The latter

condition implies that 𝐸
𝑖
(𝑡) ≥ 𝛽

𝑖
for all 𝑡 ≥ 𝑡

⋆
. Therefore, let

us examine the behavior of the energy reservoirs in (22).
In general, we have that the delayed wave variables are

compressed during periods for which the delay decreases
and stretched during periods for which the delay increases.
Therefore, since 0 ≥ 𝛾

𝑖
≥ 1, the energy reservoirs (22)

will increase/decrease when the delay decreases/increases.
However, as soon as an energy reservoir decreases below
its threshold value 𝛽

𝑖
, the scale factor 𝛾

𝑖
goes below unity

attenuating the energy extracted from the energy reservoir.
This means that the proposed energy control strategy tends
to favor the buildup of stored energy in the communication
channel. In practice, this strategy leads to the buildup of
sufficiently large energy such that 𝐸

𝑖
≥ 𝛽
𝑖
for all future time.

Let us now relax the assumption of passivity on the
human operator by considering the interaction of the slave
robot with a hard surface. In the following, we will model the
human operator’s and environmental forces as

f
𝑚
= 𝜂
𝑚
− 𝜌
2

𝑚
r
𝑚
, f

𝑠
= −𝜌
2

𝑠
r
𝑠
, (31)

where 𝜌
𝑖
are constants and 𝜂

𝑚
is an arbitrary bounded force,

that is, ∃𝜂 ∈ (0,∞) such that ‖𝜂
𝑚
(𝑡)‖ ≤ 𝜂 for all 𝑡 ≥ 0.

The human operator’s model simulates a nonpassive system
where the human exerts a bounded force on the master robot
but his/her action is resisted by his/her own passive dynamic
component −𝜌2

𝑚
r
𝑚
. The environment is modeled as a strictly

passive system (e.g., a hard surface) with 𝜌 = 𝜌
𝑠
.

Proposition 7 (see [21]). Consider the teleoperation system in
(1) with control law governed by (7), (11), (14), (21), and (25).
Let the human operator and environment bemodeled as in (31).
Assume that𝑇

𝑚
(𝑡) and 𝑇

𝑠
(𝑡) are time-varying and finite.Then,

the system is input-to-state stable [31] and the positions and
velocities are uniformly ultimately bounded.

Proof. Let x = [q̇𝑇
𝑚
, q̇𝑇
𝑠
, r𝑇
𝑚
, r𝑇
𝑠
]
𝑇 and y = [q𝑇

𝑚
, q𝑇
𝑠
, r𝑇
𝑚
, r𝑇
𝑠
]
𝑇.

Both vectors are related through a linear diffeomorphism,
that is, x = Ty, whereT ∈ R4𝑛×4𝑛 is a nonsingular, bounded
matrix [32]. Therefore, x = 0 ⇔ y = 0 and x ∈ L

∞
⇔ y ∈

L
∞
. Note also that r

𝑚𝑑
, 𝜏
𝑚
, r
𝑠𝑑
, and 𝜏

𝑚
are all functions of

r
𝑚
and r
𝑠
.

Now, define x
𝑡
= x(𝑡 + 𝜃) ∈ C, 𝜃 ∈ [−𝑇, 0] and consider

the following function:

𝑉 (𝑡, x
𝑡
) = H

𝑚
+H
𝑠
− ∫

𝑡

0

(𝜏
𝑇

𝑚
r
𝑚𝑑

+ 𝜏
𝑇

𝑠
r
𝑠𝑑
) 𝑑𝜃 (32)

which is positive for all x
𝑡

̸= 0 and radially unbounded.
Taking its time derivative yields

�̇� (𝑡, x
𝑡
) = 𝜂
𝑇

𝑚
r
𝑚
− 𝜌
2

𝑚
r𝑇
𝑚
r
𝑚
− 𝜌
2

𝑠
r𝑇
𝑠
r
𝑠

− q̇𝑇
𝑠
𝐾
𝑠
q̇
𝑠
− (r
𝑚𝑑

− r
𝑚
)
𝑇

𝐵
𝑚
(r
𝑚𝑑

− r
𝑚
)

− q̇𝑇
𝑚
𝐾
𝑚
q̇
𝑚
− (r
𝑠𝑑
− r
𝑠
)
𝑇

𝐵
𝑠
(r
𝑠𝑑
− r
𝑠
)

(33)

which can be bounded by

�̇� (𝑡, x
𝑡
) ≤ 𝜂





r
𝑚





− 𝜌
2

𝑚





r
𝑚






2

− 𝜌
2

𝑠





r
𝑠






2

− 𝜎 (𝐾
𝑚
)




q̇
𝑚






2

− 𝜎 (𝐾
𝑠
)




q̇
𝑠






2

.

(34)

Next, define 𝜖 = min{𝜌2
𝑚
, 𝜌
2

𝑠
, 𝜎(𝐾
𝑚
), 𝜎(𝐾

𝑠
)} and let 𝜖

0
∈ (0, 𝜖)

be an arbitrarily small positive constant. We can then upper
bound (34) as �̇�(𝑡, x

𝑡
) ≤ 𝜂‖x

𝑡
‖ − (𝜖 − 𝜖

0
)‖x
𝑡
‖
2

− 𝜖
0
‖x
𝑡
‖
2 and

obtain that

�̇� (𝑡, x
𝑡
) ≤ −𝜖

0





x
𝑡






2

, ∀




x
𝑡





≥

𝜂

𝜖 − 𝜖
0

. (35)

Therefore, we can conclude that the system,with state variable
x
𝑡
, is input-to-state stable with ultimate bound given by 𝜂/(𝜖−

𝜖
0
). Since boundedness of x implies boundedness of y, we

also conclude that the positions and velocities are uniformly
ultimately bounded.

Next, we will evaluate the case where the human operator
exerts a bounded force without a passive component, that is,
𝜌
𝑚

= 0. Essentially, this exemplifies any admissible scenario
for the human operator.

Proposition 8. Consider the teleoperation system in (1) with
control law governed by (7), (11), (14), (21), and (25). Let the
human operator and environment be modeled as in (31) for
𝜌
𝑚

= 0. Assume that 𝑇
𝑚
(𝑡) and 𝑇

𝑠
(𝑡) are time-varying and

finite and that ̇
𝑇
𝑠
∈ (−∞, 1). Then, the system is input-to-state

stable and the positions and velocities are uniformly ultimately
bounded.

Proof. Suppose that ∃𝛿 ≤ 𝛿 < 1 such that 𝛿 ≤
̇

𝑇
𝑠
(𝑡) ≤ 𝛿 for

all 𝑡 ≥ 0 and consider the following positive definite, radially
unbounded function:

𝑉 (𝑡, x
𝑡
) = H

𝑚
+H
𝑠
+ 𝜌
2

0
∫

𝑡

𝑡−𝑇
𝑠
(𝑡)

r𝑇
𝑠
r
𝑠
𝑑𝜃

− ∫

𝑡

0

(𝜏
𝑇

𝑚
r
𝑚𝑑

+ 𝜏
𝑇

𝑠
r
𝑠𝑑
) 𝑑𝜃,

(36)

where 𝜌2
0
= 𝜌
2

𝑠
/(1 − 𝛿) − 𝜌

2

1
> 0 for some small enough 𝜌

1
> 0

(note that such 𝜌
0
and 𝜌
1
exist as long as ̇

𝑇
𝑠
∈ (−∞, 1)). The

time-derivative of (36) can be computed as

�̇� (𝑡, x
𝑡
) = f𝑇
𝑚
r
𝑚
+ 𝜏
𝑇

𝑚
r
𝑚
− q̇𝑇
𝑚
𝐾
𝑚
q̇
𝑚
+ f𝑇
𝑠
r
𝑠
+ 𝜏
𝑇

𝑠
r
𝑠

+ 𝜌
2

0
(1 −

̇
𝑇
𝑠
) (r𝑇
𝑠
r
𝑠
− r𝑇
𝑠
(𝑡 − 𝑇

𝑠
) r
𝑠
(𝑡 − 𝑇

𝑠
))

− q̇𝑇
𝑠
𝐾
𝑠
q̇
𝑠
− 𝜏
𝑇

𝑚
r
𝑚𝑑

− 𝜏
𝑇

𝑠
r
𝑠𝑑

(37)

which after some manipulation can be bounded as

�̇� (𝑡, x
𝑡
) ≤ 𝜂
𝑇

𝑚
r
𝑚
− q̇𝑇
𝑚
𝐾
𝑚
q̇
𝑚
− 𝜌
2

1
r𝑇
𝑠
r
𝑠
− q̇𝑇
𝑠
𝐾
𝑠
q̇
𝑠

− 𝜌
2

2
r𝑇
𝑠
(𝑡 − 𝑇

𝑠
) r
𝑠
(𝑡 − 𝑇

𝑠
)

− (r
𝑚𝑑

− r
𝑚
)
𝑇

𝐵
𝑚
(r
𝑚𝑑

− r
𝑚
)

− (r
𝑠𝑑
− r
𝑠
)
𝑇

𝐵
𝑠
(r
𝑠𝑑
− r
𝑠
)
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≤ 𝜂




r
𝑚





− 𝜎 (𝐾

𝑚
)




q̇
𝑚






2

− 𝜌
2

1






r𝑇
𝑠







2

− 𝜌
2

2






r𝑇
𝑠
(𝑡 − 𝑇

𝑠
)







2

− 𝜎 (𝐾
𝑠
)




q̇
𝑠






2

−

𝜎 (𝐵
𝑚
)

4





𝛾
𝑚
(𝑡) r
𝑠
(𝑡 − 𝑇

𝑠
) − r
𝑚






2

,

(38)

where 𝜌2
2
= 𝜌
2

0
(1 −𝛿) ≤ 𝜌

2

0
(1 −

̇
𝑇
𝑠
) is a positive constant. Now,

using (16) and combining terms we obtain that

�̇� (𝑡, x
𝑡
) ≤ 𝜂





r
𝑚





− 𝜎 (𝐾

𝑚
)




q̇
𝑚






2

− 𝜌
2

1






r𝑇
𝑠







2

− 𝜌
2

2
(1 − 𝛾

2

𝑚
)






r𝑇
𝑠
(𝑡 − 𝑇

𝑠
)







2

− 𝜎 (𝐾
𝑠
)




q̇
𝑠






2

−




𝑐
1
r
𝑠
(𝑡 − 𝑇

𝑠
) − 𝑐
2
r
𝑚






2

− (

1

4

𝜎 (𝐵
𝑚
) − 𝑐
2

2
)




r
𝑚






2

≤ 𝜂




r
𝑚





− 𝜎 (𝐾

𝑚
)




q̇
𝑚






2

− 𝜌
2

1






r𝑇
𝑠







2

− 𝜎 (𝐾
𝑠
)




q̇
𝑠






2

− (

1

4

𝜎 (𝐵
𝑚
) − 𝑐
2

2
)




r
𝑚






2

,

(39)

where

𝑐
1
= 𝛾
𝑚
√𝜌
2

2
+

1

4

𝜎 (𝐵
𝑚
), 𝑐

2
=

𝜎 (𝐵
𝑚
)

4√𝜌
2

2
+ (1/4) 𝜎 (𝐵

𝑚
)

.

(40)

If we define 𝜀 = min{𝜌2
1
, (1/4)𝜎(𝐵

𝑚
) − 𝑐
2

2
, 𝜎(𝐾
𝑚
), 𝜎(𝐾

𝑠
)} > 0

and let 𝜀
0
∈ (0, 𝜀), we obtain that

�̇� (𝑡, x
𝑡
) ≤ 𝜂





x
𝑡





− (𝜀 − 𝜀

0
)




x
𝑡






2

− 𝜀
0





x
𝑡






2 (41)

and, consequently, �̇�(𝑡, x
𝑡
) ≤ −𝜀

0
‖x
𝑡
‖
2, for all ‖x

𝑡
‖ ≥ 𝜂/(𝜀−𝜀

0
).

The latter implies that the system, with state variable x
𝑡
, is

input-to-state stable with ultimate bound given by 𝜂/(𝜀 −

𝜀
0
). Since boundedness of x implies boundedness of y, we

also conclude that the positions and velocities are uniformly
ultimately bounded.

7. Simulations

To demonstrate the performance of the proposed bilateral
control, we present a simulation example with a set of two
identical 2-DOFplanar revolute-jointmanipulators [10], akin
to the pair shown in Figure 1. The nonlinear dynamics of the
manipulators (1), with the gravitational torques neglected due
to the system’s planar configuration, are given by

𝑀
𝑖
(q
𝑖
) = [

𝛼
𝑖
𝜁
𝑖

𝜁
𝑖

𝛾

] , 𝐶
𝑖
(q
𝑖
, q̇
𝑖
) = [

𝜆
𝑖
̇𝑞
2

𝑖
𝜆
𝑖
( ̇𝑞
1

𝑖
+ ̇𝑞
2

𝑖
)

−𝜆
𝑖
̇𝑞
1

𝑖
0

]

(42)

for 𝛼
𝑖
= 81.6 + 9.19 cos(𝑞2

𝑖
) [10
−2

⋅ N ⋅ m2], 𝜁
𝑖
= 4.63 +

4.59 cos(𝑞2
𝑖
) [10
−2

⋅ N ⋅ m2], 𝛾 = 4.63 [10
−2

⋅ N ⋅ m2], and
𝜆
𝑖
= −4.59 sin(𝑞2

𝑖
) [10
−2

⋅kg ⋅m3]. The task space coordinates
of the manipulators’ end-effectors can be obtained from the
joint coordinates as 𝑥

𝑖
= 𝑙
1
cos(𝑞1
𝑖
) + 𝑙
2
cos(𝑞1
𝑖
+ 𝑞
2

𝑖
) and

𝑦
𝑖
= 𝑙
1
sin(𝑞1
𝑖
) + 𝑙
2
sin(𝑞1
𝑖
+𝑞
2

𝑖
)where (𝑥

𝑖
, 𝑦
𝑖
) are the Cartesian

coordinates of the robots and 𝑙
1

= 0.3 [m] and 𝑙
2

= 𝑙
1

represent the lengths of the robots’ first and second links,
respectively. The communication delays between master and
slave are assumed to be given as 𝑇

𝑚
(𝑡) = 0.5 + 0.2 cos(5𝑡) [s]

and 𝑇
𝑠
(𝑡) = 0.5 + 0.2 sin(5𝑡) [s] for a maximum round-trip

delay of 𝑇 = 1 + (√2/5) [s].
The environment is modeled as a stiff wall located at 𝑥

𝑤
=

−0.075 [m] with a reaction force given by

𝑓
𝑤

=

{

{

{

−2.5 × 10
3

�̇�
𝑠
− 5 × 10

4

(𝑥
𝑠
− 𝑥
𝑤
) [N] , if 𝑥

𝑠
≤ 𝑥
𝑤

0 [N] , otherwise.
(43)

Since the force is applied at the slave’s end-effector, the
equivalent environmental torque at the robot’s joints can be
obtained from f

𝑠
= 𝐽
𝑇

(q
𝑠
)[𝑓
𝑤
, 0]
𝑇, where 𝐽𝑇(q

𝑠
) is the slave

robot’s Jacobian matrix [28]. The human operator, on the
other hand, is modeled as a bounded P-type controller 𝑓𝑖

𝑚
=

sat
−25,25

{150(𝑞
𝑖

𝑑
− 𝑞
𝑖

𝑚
)} where q

𝑑
∈ R2 is the desired joint-

trajectory given by

q
𝑑
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

[

𝜋

4

sin( 𝜋

10

𝑡) , 𝜋 sin( 𝜋

10

𝑡)]

𝑇

,

if 𝑡 ∈ [0, 20) [s]

[𝜋 (

𝑡 − 20

5

) ,

𝜋

4

(

𝑡 − 20

5

)]

𝑇

,

if 𝑡 ∈ [20, 25) [s]

[𝜋,

𝜋

4

]

𝑇

, if 𝑡 ∈ [25, 60) [s]

[𝜋 −

5𝜋

4

(

𝑡 − 60

10

) ,

𝜋

4

(1 −

𝑡 − 60

10

)]

𝑇

,

if 𝑡 ∈ [60, 70) [s]

[−

𝜋

4

, 0]

𝑇

, if 𝑡 ≥ 70 [s]

(44)

and sat
𝑥,𝑥

{𝑥} is the saturation function [31] with 𝑥 and 𝑥 as
lower and upper limits. The gains for the controller are 𝐾

𝑖
=

2 [N/m], Λ = 1 [1/s], and 𝛽
𝑖
= 0.05 [J]. We assume that the

desired wave impedance values for the free motion and hard-
contact motion scenarios are 𝐵11min = 𝐵

22

min = 10 [N ⋅ s/m] and
𝐵
11

max = 𝐵
22

max = 250 [N ⋅ s/m], respectively. We then simulate
the response of the teleoperation system with the proposed
controller using constant wave impedance equal to 𝐵min and
time-varying wave impedance value. For the time-varying
wave impedance case, we choose the following update law
𝛽(𝑡) = 0.05(𝐵max −𝐵

𝑠
(𝑡)) + 0.3(𝐵max −𝐵

𝑠
(𝑡))
1/4

+ 0.02(𝐵max −

𝐵
𝑠
(𝑡))
3/2 and 𝛽(𝑡) = 0.05(𝐵

𝑠
(𝑡) −𝐵min) +0.3(𝐵𝑠(𝑡) −𝐵min)

1/4

+

0.02(𝐵
𝑠
(𝑡) − 𝐵min)

3/2.
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Figure 5: System response for 𝐵
𝑚,𝑠

= 10 [N ⋅ s ⋅m].

Figure 5 illustrates the motion, force, and energy stored
by the teleoperation system when low constant wave
impedance value is used. Observe that the slave robot tracks
the motion of the master robot with relatively small error
during the free motion section of the experiment (i.e., for 𝑡 ∈
[0, 24] [s] and 𝑡 ≥ 64 [s]). However, as soon as the slave robot
impacts the wall, the master-slave error starts increasing due
to the ability of the human operator to still manipulate the
master robot with little effort while the position of the slave
robot is locked. In fact, note from Figure 5(c) that the torques
exerted by the operator during the hard-contact portion of
the experiment (𝑡 ∈ [24, 64] [s]) do not exceed 10 [N ⋅

m] and do not differ significantly from the torques exerted
by the operator during the free motion section. This is an
adverse effect of using small wave impedance value when
the environmental impedance is high: the operator looses
the ability to properly perceived the higher environmental
impedance. On the other hand, observe that force reflection
is rapidly achieved during the hard-contact experiment
and that the passivity-based control properly stores enough
energy to guarantee asymptotic position convergence despite
time-varying delays (see Figure 5(d)).

Figure 6 illustrates simulation results when the proposed
time-varying wave impedance strategy is employed. Observe
from Figures 6(a) and 6(b) that the behavior of the tele-
operation system is similar to the previous case during the
free motion section, as it should be expected due to the
use of the same wave impedance value. The main difference

occurs during the hard-contact motion scenario. Note that
the master-slave error starts decreasing until converging to
a relatively small value as the wave impedance value starts
increasing (see Figure 7). As seen in Figure 6(c), the human
operator is also able to perceive higher resistance during the
restricted section of the experiment, properly transmitting
higher environmental impedance. This can be interpreted
as in improvement on transparency when compared to the
previous example. In addition, note that force reflection is
eventually achieved and that the proposed controller satisfac-
torily builds enough energy to guarantee asymptotic position
convergence despite time-varying delays (see Figure 6(d)). It
is worth mentioning that the transitions between impedance
values may exhibit some unwanted behaviors such as larger-
yet stable-transient oscillations. Therefore, the choice of
switching functions (25) needs to be carefully studied.

For sake of comparison, Figure 8 plots the master-slave
coordination error for different wave impedance values. Note
that our proposed control approach assimilates satisfactorily
the ideal behavior of using constant lower impedance while
the slave is in free motion and the behavior of using larger
impedance once the slave robot makes contact with the
wall. Furthermore, note that the position drift during hard-
contact decreases by 86% when using the proposed control
strategy.

Likewise, the average transmitted impedance and static
stiffness to the humanoperatorwhile in free and hard-contact
motion scenarios, respectively, are illustrated in Figure 9 for
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where [𝑡
𝑎
, 𝑡
𝑏
] = [7, 14] [s] and [𝑡

𝑐
, 𝑡
𝑑
] = [40, 60] [s]

correspond to intervals of time where ‖q̇
𝑚
‖ and ‖q

𝑚
− q
𝑠
‖

were nearly constant and did not cross zero. In general,
lower values of impedance and larger values of stiffness
are desirable. Observe, from Figure 9, that the best overall
results are obtained when time-varying wave impedance is
employed, with the lowest transmitted impedance values
during freemotion and a relatively large static stiffness during
hard contact.
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Figure 8: Master-slave coordination error for constant wave
impedances𝐵min = 10,𝐵ave = 130, and𝐵max = 250 and time-varying
wave impedance 𝐵tv = [10, 250].

8. Conclusion

One of the main challenges in the realization of time-
delayed bilateral teleoperators is how to adjust transparency
without compromising closed-loop stability. In this paper, we
presented a closed-loop stable wave-based bilateral control
architecture that properly adjusts the transparency of the tele-
operation system, regardless of the presence of time-varying
communication delays. We studied the effect that the wave
impedance has on transparency and, based on our findings,
we then developed an update policy that smoothly adapts
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Figure 9: Impedance versus static stiffness perceived by the human
operator during free motion and hard contact, respectively. Lower
values of impedance and higher values of stiffness are desirable.

the wave impedance value according to the current environ-
mental dynamics. In contrast to our previous work [19], the
transitions between impedance values can be performed at
arbitrarily fast rates. In addition, we proved that the proposed
control framework guarantees asymptotic convergence of
the velocities and boundedness of the coordination error
if the human operator and environment are passive. Then,
we relaxed the passivity assumption on the human operator
by allowing any bounded human model and showed that
the master-slave position error and velocities are ultimately
bounded. Furthermore, we illustrated via simulations the
effectiveness of the control strategy and compared its perfor-
mance against the use of different constant wave impedance
values under time-varying environmental dynamics. The
simulation results demonstrated that the proposed control
architecture can transmit more faithfully the environmental
impedance value to the human operator. Future research
directions include the consideration of more diverse remote
dynamics, including nonpassive environments.
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stable PD controller for bilateral teleoperators,” IEEE Transac-
tions on Robotics, vol. 24, no. 3, pp. 753–758, 2008.

[15] D. Lee and K. Huang, “Passive-set-position-modulation frame-
work for interactive robotic systems,” IEEE Transactions on
Robotics, vol. 26, no. 2, pp. 354–369, 2010.

[16] S. Hirche and M. Buss, “Human-oriented control for haptic
teleoperation,” Proceedings of the IEEE, vol. 100, no. 3, pp. 623–
647, 2012.

[17] P. Arcara and C. Melchiorri, “Comparison and improvement
of control schemes for robotic teleoperation systems with
time delay,” in Advances in Control of Articulated and Mobile
Robots, B. Siciliano, O. Khatib, and F. Groen, Eds., vol. 10
of Springer Tracts in Advanced Robotics, pp. 39–60, Springer,
Berlin, Germany, 2004.

[18] C. Secchi, S. Stramigioli, and C. Fantuzzi, “Position drift
compensation in port-Hamiltonian based telemanipulation,”
in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’06), pp. 4211–4216, IEEE,
Beijing, China, October 2006.
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[24] C. A. López Mart́ınez, R. van de Molengraft, and M. Steinbuch,
“High performance teleoperation using switching robust con-
trol,” in Proceedings of the World Haptics Conference (WHC ’13),
pp. 383–388, Daejeon, Republic of Korea, April 2013.

[25] N. Chopra, M. W. Spong, and R. Lozano, “Adaptive coordi-
nation control of bilateral teleoperators with time delay,” in
Proceedings of the 43rd IEEEConference onDecision and Control
(CDC ’04), pp. 4540–4547, Paradise Island, Bahamas,December
2004.

[26] J. K. Hale, “A stability theorem for functional-differential
equations,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 50, pp. 942–946, 1963.

[27] A. van der Schaft, L2-Gain Stability and Passivity Techniques in
Nonlinear Control, Springer, London, UK, 2000.

[28] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Model-
ing and Control, JohnWiley & Sons, New York, NY, USA, 2006.

[29] S. Hirche and M. Buss, “Human perceived transparency with
time delay,” in Advances in Telerobotics, M. Ferre, M. Buss, R.
Aracil, C. Melchiorri, and C. Balaguer, Eds., Springer Tracts
in Advanced Robotics, pp. 191–209, Springer, Berlin, Germany,
2007.

[30] K. S.Hale andK.M. Stanney, “Deriving haptic design guidelines
from human physiological, psychophysical, and neurological
foundations,” IEEEComputer Graphics andApplications, vol. 24,
no. 2, pp. 33–39, 2004.

[31] H. K. Khalil, Nonlinear Systems, Prentice Hall, Englewood
Cliffs, NJ, USA, 2002.

[32] M. W. Spong, R. Ortega, and R. Kelly, “Comments on ‘Adaptive
manipulator control: a case study’ by J Slotine and W. Li,” IEEE
Transactions on Automatic Control, vol. 35, no. 6, pp. 761–762,
1990.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


