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This paper concerns the problem of dynamical identification for an industrial robot manipulator and presents an identification
procedure based on an improved cuckoo search algorithm. Firstly, a dynamical model of a 6-DOF industrial serial robot has been
derived. And a nonlinear friction model is added to describe the friction characteristic at motion reversal. Secondly, we use a
cuckoo search algorithm to identify the unknown parameters. To enhance the performance of the original algorithm, both chaotic
operator and emotion operator are employed to help the algorithm jump out of local optimum. Then, the proposed algorithm has
been implemented on the first three joints of the ER-16 robot manipulator through an identification experiment. The results show
that (1) the proposed algorithm has higher identification accuracy over the cuckoo search algorithm or particle swarm optimization

algorithm and (2) compared to linear friction model the nonlinear model can describe the friction characteristic of joints better.

1. Introduction

Modern industry is increasingly oriented towards the pro-
duction of small batches of a large variety of products,
asking for flexibility and automation in the manufacturing
systems [1, 2]. Additionally, the increasing quality standards,
international competition, and economic reasons put higher
requirements on reliability and accuracy and especially on
the speed of production processes. In this context, industrial
serial robot manipulators have become an indispensable
means of automation to increase productivity and flexibility
of production units. Robots are programmed by teaching the
sequence of the attitude and position which are necessary
to execute the desired task. To reach a sufficient accuracy,
this teaching is mostly done on-site and relies on a good
repeatability, rather than on a good absolute accuracy. To
improve the operation accuracy, a precise dynamical model
is essential for accurate offline programming.

In the academic aspect, a typical manipulator identifi-
cation procedure consists of dynamic modelling, excitation
trajectory design, data collection, signal preprocess, param-
eter identification, and model validation [3]. When a priori
knowledge is available about the robot system, parametric

models can be derived based on the laws of physics and
mechanics resulting in a set of differential equations. The
unknown dynamical parameters have a physical meaning
and can be identified by several approaches. Atkeson et al.
[4] used the least square method (LS) to implement the
load estimation of dynamical parameters on a PUMA600
robot. According to weighted least squares method (WLS),
Gautier and Poignet [5] proposed a dynamical identification
approach only from the torque data, without other sensors.
Grotjahn et al. [6] used the two-step method to execute
the friction and rigid body identification of robot dynamics.
Considering the effect of measurement noise, Olsen and
Petersen [7] used the maximum likelihood estimating (MLE)
method for parameters identification of an industrial robot
with a statistical framework. Recently, some novel dynamical
identification methods for robot manipulators have been
reported using intelligence algorithms. For instance, Bingiil
and Karahan [8] integrated the particle swarm optimization
(PSO) algorithm with LS algorithm to estimate the dynamical
parameters of Staubli RX-60 robots. In the identification
experiment, the velocity and acceleration are measured by
three high-speed cameras, and the joint torques are measured
by six load cell sensors. Without velocity and acceleration


http://orcid.org/0000-0002-3613-134X
https://doi.org/10.1155/2018/8219123

sensors, Ding et al. [9] used the motor current and joint
positions to calculate the torques, velocity, and acceleration of
joints and proposed an artificial bee colony algorithm (ABC)
to obtain the unknown dynamical parameters. Nevertheless,
when handling complicated and high-dimensional param-
eters identification problems, the flaw that the premature
convergence can make those intelligence computation algo-
rithms stuck in a local optimum.

As known, the friction is a major source of disturbances
affecting motion quality. Therefore, it must be included
as an additional component in robot modelling. In robot
identification applications, a model including Coulomb and
viscous friction is frequently applied [10, 11]. With such linear
model, the parameters estimation is significantly simplified.
However, this friction model is not capable of describing the
experimentally measured friction characteristic, especially
the static model at joint reversal. Aiming at these problems,
we add a nonlinear friction model into the dynamical model
ofa 6-DOF industrial serial manipulator and use an improved
cuckoo search (ICS) algorithm for dynamical identification.
The idea of the method is to measure the positions and
gravitational torques of different joints through designing
Fourier series as excitation trajectories. The collected values
are used to calculate the dynamical parameters based on
ICS. In ICS, considering the outstanding performance of
chaotic operator and emotion operator, these improved
operators are used to enhance the performance of the classical
CS. And the comparison of three different identification
methods, CS, PSO, and ICS, illustrated the superiority of
our proposed algorithm in the application of dynamical
identification.

This article is organized as follows. The dynamical model
with a nonlinear friction model of a robot manipulator is
given in Section 2. For the unknown dynamical parameters,
the improved cuckoo search algorithm is introduced to real-
ize the parameters estimation in Section 3. Then, the design
of excitation trajectory, data collection, and preprocessing are
presented in Section 4. Later, an ER-16 robot is used as a
test platform for identification experiment, and the results are
analyzed in Section 5. In addition, the superiority of linear
and nonlinear friction model has been compared through the
model validation in Section 6. Finally, Section 7 discussed the
key findings and prospective research target.

2. Dynamic Modelling

According to the literature [12], a n-DOF serial manipulator
is described as a kinematic chain of several rigid bodies.
Hence, we can utilize the Newton-Euler method to deduce
the dynamical model of the manipulator:

T=7+M(q§4+C(q9) +G(q, @

where joint torque 7, joint position q, joint velocity ¢, and
joint acceleration q are n-dimensional vector. 7 ; denotes the
n-dimensional joint friction vector. M(q) represents n x n
inertial matrix, C(q, q) is a n-dimensional vector including
Coriolis and centrifugal forces, and G(q) is n-dimensional
gravity vector.
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Equation (1) except for friction torques can be rewritten as
alinear form if using the modified Newton-Euler parameters
[13] or the barycentric parameters [11]:

Ts = q)s (q’ q’ q) 05’ (2)

where @ only contains the motion data, which can be treated
as nx 10n identification matrix or observation matrix. 0, is the
barycentric parameter vector. This conversion vastly reduces
the complexity of parameters identification. In addition, the
dynamical parameters of link i are governed by the form

i T
i
05 = [Ixxi> Ixyi’ Ixzi’ Iyyi’ Iyzi> Izzi’ M7 i miryi’ UCTPPD mi] > (3)

where Iy; ({ = x,,2) is the inertial tensor of the link i.
Similarly, m; is the mass of the link i and mry; is the inertia
moment.

Generally, the identification matrix @, in (2) is not full of
rank, that is, not all dynamical parameters give contribution
to the joint torques. In the literature [14], some methods
like case-by-case analysis or singular value decomposition
are adopted to eliminate the redundant parameters. And the
barycentric parameter vector 6, can be replaced by a vector
of minimal barycentric parameters € R? with p < 13n.
Hence, (2) can be transformed into another form

7=0(q.4.90, (4)

where @ denotes the nx p observation or identification matrix
and p is the number of minimal barycentric parameters.

Except for the dynamical parameters in (2), there also
exists friction torques and extra torques caused by inertias
of motor rotors. In general, the inertias of motor rotors are
provided by manufacturers, and corresponding torques can
easily be compensated to the dynamical model. As for joint
friction model, it is regarded as a complex nonlinear model.
To simplify the model, the Coulomb and viscous friction
were used to describe the friction model. But the researchers
found [15] that the friction torques of some joints exceeded
their full speed range, and the simple friction model could
not cover the characteristics, especially at motion reversal. A
better description of the joint friction characteristics may be
based on the following nonlinear equations:

T; = fo+ fosign(q;) + £,4; + foatan (£,q;), (5)

where f, is the zero drift error of friction torque, f, is the
Coulomb friction coefficient, f, is the viscous friction coeffi-
cient, and f, and f; are the experiential friction coeflicients.
It should be noted that this model has a discontinuity at zero
velocity.

In summary, using the nonlinear friction model yields the
whole dynamical model of the 6-DOF robot as

T:®(q)q)q)e+1f3 (6)

where T ; denotes the 5# friction torques vector and 57 is the
number of friction coeflicients. Obviously, the classical least
square method could not solve the above nonlinear equation.
Hence, applying an intelligence algorithm for solving this
problem may be a feasible method.
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FIGURE 1: A tent map.

3. Identification Algorithm

3.1. Introduction to Chaos Theory. Chaos theory is epito-
mised by the so-called “buttery” detailed by Lorenz [16].
He discovered that tiny changes in an initial state would
make a radically different final result and typically rendering
long-term prediction impossible. Chaotic map has ergodic
and stochastic properties, which is regarded as a bounded
nonlinear system with deterministic dynamical behavior.
Moreover, it has a very sensitive dependence on initial
conditions. There are many forms about chaotic map, such
as tent map, Gauss map, logistic map, and tent map [17].
Considering the high robustness and stability of tent map, we
choose it to generate the chaotic sequence. The description of
the tent map is written as

2yx,, 0<x,<05
X1 = (7)
2y(1-x,) 05<x,<I1,

where 7 is iterations and y denotes a positive number. The
value of x,, is updated with the initial condition x,, € (0,1). A
tent map for y = 0.65 after 500 iterations is shown in Figure 1.
As the value of nincreases, x,,,; gets a new value. In this paper,
the parameter y is chosen as 0.6 after many trials.

3.2. Basic Principles of CS. The Cuckoo search algorithm (CS)
is a new metaheuristic algorithm formulated by Professor
Yang and Deb in 2009 [18]. It is a swarm intelligence type of
algorithm inspired by the behaviors of cuckoos, consisting of
locating nests, laying eggs, and the Lévy flight. With a simple
structure and a few control parameters, CS has been widely
used in practical engineering optimization problems. There
are three basic rules in CS. (1) Each cuckoo chooses a random
nest to lay an egg once. (2) Only the best nests with a high
quality of eggs would be retained to the next generations. (3)
A host cuckoo has a probability of P, € [0,1] to detect the
egg of another cuckoo in its own nest. Through the switching
coefficient P,, CS can subtly combine a global search and a
local search.

The local search can be described as the following formu-
lation, which gains an insight into CS search mechanisms:

Xt :xf+ocs®H(Pu—e)®(x;—x,i), (8)
where xj. and x; are two different random solutions, H(-)
represents a Heaviside function, the symbol “®” represents
point-to-point multiplication, ¢ is a random parameter which
satisfied a uniform distribution, s is step size, and « is a scaling
coefficient over zero.

For the global search, the process is controlled by a Lévy
flight behavior. The mathematical formula for this behavior is

described as follows:
Xt = xf +aL (s, 1)

AT (A)sin (A/2) 1 ©)
T

b
51+A

L(s,A) =

where L(s,A) is a Lévy flight function that complicates
integration, A represents the power coeflicient, and I'(A) =
_[OO —t A-1
, € tdt
The basic steps of CS are presented as follows.

Step 1 (parameters initialization). The initial positions of
nests are randomly generated from

x;; = Ib; + rand (0, 1) (Ubj - lbj)’ (10)

wherei € {1,...,FN}, j € {1,..., D}, FN is the position size,
D is the dimensionality of unknown dynamical parameters,
and [b; and ub; are the lower and upper limits in the solution
space.

Step 2 (objective value calculated). In this paper, CS searched
for the dynamical identification by minimizing the objective
function written as follows:

N
F; = %,Zl (51 “Tli - Tpli” +0, "TZi - TPZi“ a
P

# 83 [rsi = 7ps )

where F, is the objective function, N is the data length, and
Ty (& = 1,2, 3) denotes joint torques measured from the first
three joints. Similarly, 7,;; (§ = 1,2,3) denotes predicted
torques calculated by the identified model. §; (& =1,2,3)is
a weight coeflicient between 0 and 1.

Step 3. Through (8)-(9), the nest positions can be updated.
After generating a group of new nest positions, the superior
positions are retained to the next generation by comparing
the objective value between the original positions and the
postupdate nest positions.

Step 4. A random number of uniform distributions r € [0, 1]
is compared with P,. If r > P,, then the located nest is
changed randomly. Otherwise, the nest remains unchanged.

Step 5. The termination condition of the CS is determined. If
the condition is satisfied, then the optimal solution becomes
an output. Otherwise, Step 3 is repeated.



3.3. Improved Operator. In general, the parameter « in Lévy
flight is the key factor to affect the convergence of CS. Due
to the infinite variance and mean, the classical CS algorithm
may have a premature search process. To overcome this
problem, the tent map is used to generate a chaotic sequence
for parameter «. In that case, the algorithm searches the
new position in the neighborhood of the current optimal
position. Meanwhile, a new emotional acceptance criterion is
used to prevent the algorithm from getting trapped into local
optima.

In the ICS, two cuckoos’ emotions (positive and negative)
can be described as follows:

S {F (x;)-F (xj)}

So

e=-kln

(12)

IF « < e Then positive Else negative,

where e represents the function of cuckoo’s emotion, k is a
constant, S is the stimulus function, S, is a stimulus threshold,
and F is the objective function. It should be noted that k is
selected as1and S = e*.

4. Design of Exciting Trajectories
and Data Preprocess

It is essential to consider these conditions before designing
an identification experiment, that is, (1) whether the exci-
tation trajectory is sufficient to provide fast and accurate
parameters estimation and (2) whether the processing of the
experimental data is simple and yields stable and accurate
results. In fact, the imprecise modelling and measurement
noise are assumed to be an additive frequently distributed
zero-mean stochastic disturbance, causing bias errors and
uncertainty in the dynamical identification. To reduce the
effect of the disturbance, an appropriate excitation trajectory
must be designed carefully.

The choice of parameterization for the excitation tra-
jectory is a very important issue. It directly determines the
number of parameters in the optimization problem and the
effort needed to calculate velocity and acceleration from the
joints positions measurements. The first considerations on
finding excitation trajectory for the dynamical identification
of manipulator were proposed by Armstrong [19]. Then,
Grotjahn and Daemi [20] proposed an interpolated trajectory
consisting of two parts, part I overcame the given boundary
conditions and part II overcame the homogeneous boundary
conditions. Furthermore, Gautier [21] used fifth-order poly-
nomials to obtain smooth joint trajectories to be executed
by the manipulator, and the polynomial coefficients are fixed
by imposing continuity constraints between the trajectory
segments. In this paper, we adopt a finite Fourier series which
was proposed by Swevers et al. [22] as excitation trajectories.
The trajectory for joint i of a manipulator is designed as

N N
q;(t) = qo + Zai’k sin (kwft) + Zb,k cos (kwft) , (13)
k=1 k=1

where q;, is the offset term and w; is the fundamental
pulsation of the Fourier series. This Fourier series specifies
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a periodic function with period Ty = 2m/w;. Each Fourier
series contains 2N + 1 parameters, and a;;, b are the
amplitudes of the trigonometric functions. It should be noted
that although this trajectory is hard to implement on an
industrial setup, this parameterization has several advan-
tages. It is possible to calculate the velocity and acceleration
in the frequency domain, which avoids phase distortions.

The antinoise ability and convergence speed of an identi-
fication experiment are related to the constraints of the exci-
tation trajectory. It should be noted that the configurations
of measurements must correspond to a good conditional
simplified identification matrix, since the corresponding
input/output represents some limitations. In literature [23],
the constraints of an excitation trajectory are given as

min cond (®)

Gmin < 9 (B) < Gmaxs
19 (B < dimax
13 (B < Gimax
w(q(B)) c W,
Tonin < ©(4(8),4(B).4(B)) 6 < Tpnas

where g,;, and ¢, are the lower and upper of the joint
positions, ¢, and §,.. are the upper of velocity and
acceleration, f3 is optimal trajectory parameters, W, is the
available workspace of robot, and 7, is the maximum joint
torque.

When the robot joints repeatedly track the excitation
trajectories with the PID controllers, motor current and
joints positions can be sampled in the time domain. The
motor current can be transformed into joint torques with a
simple torque constant. Since there are measurement noises
in experiments, it is necessary to preprocess the collection
data before identification. In order to remove outliers and
attenuate the effect of interference signal, a five-point triple
smoothing method is adopted to smooth the raw data
according to the following equation [24]:

(14)

1
=2 [69y) +4 (¥, + y4) = 6¥3 = 5]

_ 1
72 = 35 (200 +35) + 27y, +12y; = 8y,]
_ 1
Yi= 35 [=3 (Jica + Yis2) + 12 (¥icy + i) + 17y]
7m—1 (15)
1
= g [2 (ym—4 + ym) - 8ym—3 + 12ym—2 + 27ym—1]
Vim
= % [_ym—4 + 4(ym—3 + ym—l) - 6ym—2 + 69ym] >

wherei = 3,...,m—2,Y = [y, %,,..., V] is the sampled

raw data, and Y = [¥,,..., 7m]T is the data for identification
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after preprocessing. The more the number of using (15) is, the
smoother the curves will be. It should be noted that excessive
use (15) to smooth the raw data can lead to the error of the
parameters identification enlarging.

Due to the shortage of speed sensor and acceleration
sensor, the velocity and acceleration of joints cannot be
measured directly. The calculation of the joint velocities and
acceleration can be performed by analytical differentiation of
the measured angles [25]. The velocity and acceleration are
given as follows:

N N
q;(t) = Zai’kkwf cos (kwft) - Zbi’kkwf sin (kwft)
k=1 k=1

N
g; () = Z - ,-‘kkzwf2 sin (kwft) (16)
k=1

N
- Zb,-,kkzwfz cos (kwft) ,
k=1

For the analytical differentiation, the measured encoder
readings are first approximated with the least square method,
as a finite sum of trigonometric functions. This approxima-
tion corresponds to frequency domain differentiation com-
bined with frequency domain windowing. Firstly, the discrete
Fourier transform of the preprocessing encoder readings
is calculated and the excited frequency curves are selected
by frequency domain windowing. Then, the selected curves
are multiplied with the frequency response of a pure single
and double differentiator, that is, multiplied with jw and
~w?, with w being the frequency in radians per second. The
obtained frequency spectra are then transformed back into
time domain using the inverse discrete Fourier transform,
yielding joint velocity and acceleration. The application of
a Fourier series gives a trajectory which is continuously
differentiable up to any order. And it can avoid the excitation
of unknown dynamic effects. It is clear that the finite Fourier
series has several advantages over the classical excitation
trajectories.

5. Parameters Identification

To test the effectiveness and viability of our proposed method,
the identification procedure was implemented on the first
three joints of the ER-16 6-DOF industrial robot manipulator
without payload, as shown in Figure 2. It should be noted
that the values of the dynamical parameters of the first three
joints are much bigger than those of the other three joints. It
is reasonable to ignore the effect of the torques caused by the
4~6 joints [26]. The motion constraints of the ER-16 are given
in Table 1.

We use 5th order Fourier series as the excitation trajecto-
ries in the experiment. The fundament pulsation is 0.05 Hz,
resulting in a period of 25s. The data is sampled with 1Hz.
The excitation trajectories with 0.25 Hz bandwidth are shown
in Figure 3, containing 11 optimal parameters in each joint.
These parameters are listed in Appendix A. Figure 4 shows
the trajectory of the effect center point of the ER-16 in the
workspace.

5
TABLE 1: Motion constraints of robot.

Parameters Joint Min Max
1 —-180 180
q/() 2 -60 60
3 -170 80
1 —145 145
/(s 2 105 105
3 -170 170
1 =50 50
G/(C-s?) 2 —40 40
3 -65 65

1 - 1200

7/(N-m) 2 - 1000
3 - 600

FIGURE 2: ER-16 6-DOF robot manipulator.

Joint position (rad)

0 5 10 15 20 25
Time (s)

—— Joint 1
--- Joint2
-—-— Joint 3

FIGURE 3: Optimized exciting trajectories in joint space.

Identification procedures discussed above are carried out
with ICS algorithm in MATLAB 2016b programming envi-
ronment on an Intel Core i7-3770 PC running Windows 7. No
commercial tools are used. In order to test the performance of
the proposed algorithm, the classical CS algorithm and PSO
algorithm [27] are employed as the comparison. The initial
parameters of the three algorithms are listed in Table 2. All
the algorithms are run three times and the maximal iteration
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FIGURE 5: Evolutionary curves of ICS.

is 200. The best results would be retained. Theoretically, those
results are large probability global optimum. Additionally,
the search scope of the unknown parameters is also listed in
Appendix B.

Figure 5 shows the evolution curves of the above three
algorithms regarding (11). The figure demonstrates that the
objective value increases as the generation iterates with time,
gradually converging to an optimal result. Compared with
CS and PSO, ICS achieves a better result with the higher
objective value after 50 iterations. The optimal objective
value of ICS is 29.0753, whereas those of CS and PSO
are 30.2513 and 31.8865, respectively. Obviously, ICS has
found the optimum with the objective value equal to 29.0753
which is a 4.04% or 9.67% increase with respect to the CS
or PSO. It can be seen from the result that the chaotic
operator can not only avoid the traditional CS being trapped
in a local optimum but also improve its robustness and
efficiency.

The dynamical model of the first three joints contains
15 barycentric parameters and 15 friction parameters. These
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TABLE 2: The initial parameters of the three algorithms.

Algorithm Parameters

cs Population size = 25,
P, =04,a0=0251=15

Ics Population size = 25,

P, =04,a=025A=15
Population size = 25, inertia
PSO weight = 0.5, acceleration
coefficients = 0.2

TABLE 3: Dynamical parameters of ER-16.

Parameter Value
I, (kg'm?) 51.3846
I, (kg:m?) ~24.4871
I, (kgm?) 1.1452
I, (kg:m?) -0.3699
I, (kgm?®) 0.4574
I,,, (kg'm?) 44.5863
m,r,, (kg:m) 32.1287
myr,, (kgm) 5.4040
I (kgm®) 3.1263
L5 (kgm?) 1.9361
I, (kgm?) 0.4849
1,5 (kgm®) 0.6900
I,,; (kg'm?) 11.7725
Mt (kg:m) 5.1317
myr 5 (kg-m) 10.3145
for (N-m) 0.7044
£, (N'm) 3.9877
f,1 (Nm-s/rad) 8.0000
fur (N-m) 32.3929
fur 6.9975
fop (N-m) 53.2922
£, (N'm) -2.8909
f,, (Nm-s/rad) -70.0174
f.2 (N-m) 70.0243
fiz 19.7363
fos (N-m) ~3.4499
£.3 (N'm) 30.6465
f,s (Nm-s/rad) 4.3297
fu3 (N-m) -2.7533
fos 5.0000

parameters identified by our proposed algorithm are listed in
Table 3.

Figure 6 compares the measured torques for the excitation
trajectory with the predicted torques based on the identified
dynamical parameters. The results show that the identified
data by applying the three algorithms have the same trend
as the measured data. Nonetheless, it turns out that the
predicted torques generated by ICS approximate the actual
test torques best.
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FIGURE 6: Comparison of the measured torques and predicted torques.
To verify the precision of the identified model by the TABLE 4: Comparison of the correlation coefficient.
above three algorithms, the correlation coefficient between .
the measured torques 7; and predicted torques 7,,,;, defined as Joint PSO s ICS
the normalized cross-covariance function, is used to estimate 1 97.22% 98.03% 99.07%
how well the identified model can reproduce the measured 2 99.10% 99.27% 99.50%
torques, and the function is defined as 3 99.18% 99.28% 99.67%

_ Zzl\:rl (Ti - ?) (Tmi - ?m)
VEY, (5 =7 Y, (B =)

where 7 = (1/N)YN 7, and 7,, = (1/N) YN, 7, The
closer the correlation coefficient is to unity, the better the
identified model is. While the coefficient is close to zero, the
identified model is poor. From Table 4, we can clearly see
that the correlation coefficient of the identification results
produced by ICS is better than those of other algorithms. It
indicates that the identified procedure based on ICS has a
higher identification precision due to the strong search ability
of ICS.

> 17)

6. Validation Experiment

According to literature [9], the peaks in the prediction error
would abruptly increase when the joints reverse. And the

following linear friction model, which includes viscous and
Coulomb friction only, is unable to capture the complex
dynamical friction behavior. With the linear friction model,
the dynamical model of the robot is linear and the unknown
parameters can be identified by the least square method or
intelligence algorithms.
Ty = fcsign (@) + f.9 (18)
In order to validate the accuracy of the dynamical
model with the nonlinear friction model, we used the linear
friction model as a comparison. Similarly, the dynamical
parameters of the two models are identified by the ICS
algorithm. The excitation trajectories and simulation con-
ditions are set the same as those in Section 5. The com-
parison of the measured torques and the predicted torques
based on different friction models is given in Figure 7.
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FIGURE 7: Comparison of the different friction models.

As we have seen, both the predicted torques from linear
and nonlinear dynamical models can match the measured
torques well. Nonetheless, the nonlinear model describes the
friction behavior better for the points of joint inversion,
obviously in Figure 8. The nonlinear friction model can
reduce the error peak, which is beneficial to the design of the
controllers.

7. Conclusions

In this paper, an improved cuckoo search algorithm has been
proposed to solve the dynamical parameters identification
for a robot manipulator with nonlinear friction property.
The dynamical model has been established by Newton-Euler
method and processed into a linear form. Then, a nonlinear
friction model is added to the joint model for realizable
friction compensation at motion reversal. Based on the exper-
imental data collected from identification experiment, we use
a novel identification algorithm ICS including CS methods,

-0.42 -0.21 -0.17 -0.25 -0.25 -0.08 0.43 0.62 0.21

0.15 045 -0.12 -0.35 0.12
-0.24 -0.24 0.23 0.10 -0.09

B =

the chaotic operator, and emotion operator to identify the
unknown parameters of the robot model. Compared to other
two identification algorithms, CS and PSO, the model gen-
erated by using our proposed algorithm matches the actual
torques better. What is more, ICS has a fast convergence speed
and strong search ability. Furthermore, a linear friction model
is used as a comparison to test the effect of the nonlinear
friction model in describing the friction characteristic. The
results show that the nonlinear friction model can restrain the
saltation at motion reversal, resulting in higher identification
accuracy. In the future, we will attempt to study the controller
design based on the identification dynamical model.

Appendix

A. Optimal Trajectory Parameters

The optimal trajectory parameters for the 5th order Fourier
series are listed as follows:

0.49 0.10
0.44 0.67 0.01 0.04 0.01 -0.12
0.21 0.21 0.03 0.93 -0.23 -0.34

(AD)
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FIGURE 8: Comparison of linear and nonlinear models.

B. Search Scope of Dynamical Parameters

The search scope of the unknown parameters is listed in
Table 5.
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TABLE 5: Search scope of dynamical parameters.

Parameter Scope
L., (kgm?) (0,80]
I, (kg:m?) [-40, 40]
Ly (kg~m2) [-10,10]
I, (kgm?) [-5,5]
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I,,, (kg:m?) [-10,10]
m,r,, (kg:m) [0,100]
Myt (kg-m) [-20,20]
I (kg:m?) [-10,10]
Iy, (kgm®) [-10,10]
L.; (kgm?) (-10,10]
I, (kgm®) [-10,10]
L. (kgm?) (-30,30]
Myt (kg:m) [-10,10]
msr,; (kgm) [-20,20]
for (N'm) [-10,10]
for (N-m) [-10,10]
f,1 (Nm-s/rad) [-10,10]
far (N'm) [-30,30]
Jon [-10,10]
fop (N-m) [~100, 100]
feo (N'm) [~10,10]
f,» (Nm-s/rad) [-150,150]
for (N-m) [-100, 100]
Joz [-50,50]
fos (N'm) [-20,20]
fo (N-m) [-50, 50]
f,3 (Nm-s/rad) [-10,10]
fus (N'm) (10, 10]
Jos [-10,10]

China (Grant no. CJ20179017), and Jiangsu Proactive of
Production, Study and Research (BY2016030-03).
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