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Aiming at the problems of slow convergence, easy to fall into local optimum, and poor smoothness of traditional ant colony
algorithm in mobile robot path planning, an improved ant colony algorithm based on path smoothing factor was proposed.
Firstly, the environment map was constructed based on the grid method, and each grid was marked to make the ant colony move
from the initial grid to the target grid for path search. .en, the heuristic information is improved by referring to the direction
information of the starting point and the end point and combining with the turning angle. By improving the heuristic in-
formation, the direction of the search is increased and the turning angle of the robot is reduced. Finally, the pheromone updating
rules were improved, the smoothness of the two-dimensional path was considered, the turning times of the robot were reduced,
and a new path evaluation function was introduced to enhance the pheromone differentiation of the effective path. At the same
time, the Max-Min Ant System (MMAS) algorithm was used to limit the pheromone concentration to avoid being trapped in the
local optimum path. .e simulation results show that the improved ant colony algorithm can search the optimal path length and
plan a smoother and safer path with fast convergence speed, which effectively solves the global path planning problem of
mobile robot.

1. Introduction

With the rapid development of mobile robots, path planning
has become the foundation and core of the research field of
mobile robots. .e path planning technology of mobile
robot is to find an optimal or suboptimal collision-free path
from the beginning to the end in a complex environment
according to certain evaluation criteria, such as the shortest
route, the least turning, the least energy consumption, etc.
[1]. .e traditional algorithms to solve the path planning
problem mainly include artificial potential field algorithm
[2], Dijkstra algorithm [3], and A∗ algorithm [4]. In recent
years, some researchers have adopted bionic intelligent
optimization algorithms to solve the problem of path
planning. .ese bionic intelligent optimization algorithms
mainly include ant colony algorithm [5], genetic algorithm
[6], particle swarm optimization algorithm [7], immune

algorithm [8], simulated annealing algorithm [9], and the
combined optimization algorithm among the algorithms
[10–12].

Among the above path planning methods, ant colony
algorithm has strong robustness and search ability, which
was first proposed by the famous Italian scholar Dorigo in
1992 [13]. As a heuristic algorithm, it simulates the foraging
process of the ant colony and obtains the solution path
jointly planned by the ants. It has the characteristics of
positive feedback, parallel computation, and easy fusion.
However, there are still problems such as slow convergence
rate and easy to fall into local optimum in robot path
planning. Many scholars have improved the traditional ant
colony algorithm. Cao et al. proposed to build an initial
pheromone model to avoid blind search and improve the
convergence speed of the traditional ant colony algorithm
[14]. Bai et al. designed ant colony algorithm with a negative
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feedback mechanism to avoid falling into the local optimal
solution [15]. Zhang et al. proposed to construct a new
heuristic function to make the pheromone volatile factor
adapt to change and to ensure rapid convergence of ants
even when searching the path comprehensively [16]. Ma and
Mei integrated the search strategy of ant colony algorithm
and hop search algorithm, introduced the decrease coeffi-
cient of potential field resultant force, introduced the sim-
plified hop search algorithm to update the initial
pheromone, and proposed the ant colony algorithm based
on potential field hop [17].

Most of the above improved ant colony algorithms are
devoted to optimizing the path length and improving the
efficiency of pathfinding. Few scholars consider the prob-
lems such as too large turning angle and too many turning
times of the whole path, leading to the increase of robot
running time and energy consumption when looking for the
next mobile node. In view of this, this paper proposes an
improved ant colony algorithm based on two-dimensional
path smoothing factor for mobile robot path planning.

2. Environmental Modeling and Basic Ant
Colony Algorithm

2.1. Environmental Modeling. .e commonly used robot
environment modeling methods include grid method,
viewable space method, free space method, geometric in-
formation method, and topological map method [18]. In this
paper, the grid method is selected to model the two-di-
mensional motion space of the mobile robot, as shown in
Figure 1.

In order to ensure that the mobile robot does not collide
with the edge of the obstacle during the movement and
ensure the smooth progress of each turn, the size of the
obstacle is properly expanded in this paper, and then a
certain safe distance is reserved. .e safe distance is the
radius of the mobile robot, and the robot can be simplified as
a particle to deal with [19].

.e grid number is used to represent the specific po-
sitions of robots and obstacles, in which the white grid is the
free grid, representing the passable area, while the black grid
is the obstacle area, which is impassable for mobile robots.
.e movement of the robot can be regarded as the transfer
from the center of the current grid to the center of the next
grid. .e transferable grid is the grid of eight directions
adjacent to the current grid. .e eight adjacent grid steering
labels are shown in Figure 2.

In the grid environment, it is assumed that grid S and
grid G are the starting point and end point of robot motion,
respectively. .e problem to be solved in path planning is to
search a series of ordered free grid nodes from S to G. In
order to simplify the construction of the path search al-
gorithm, the following provisions are made for the grid
environment as shown in Figure 1.

(1) Taking the upper-left corner of the grid map as the
starting point, the grids are numbered in the order
from top to bottom and from left to right. At this
time, each grid has a corresponding coordinate

called the grid coordinate, and the grid position in
row i and column j is marked G(i, j). .en, the
obstacle matrix is expressed as follows:

G(i, j) �
1, obstacles in the grid of row i and column j,

0, no obstacles in the grid of row i and column j.


(1)

(2) Taking the lower-left corner of the grid map as the
coordinate origin, the x-axis positive direction is
defined as from left to right, and the y-axis positive
direction is defined as from bottom to top. At this
time, the corresponding coordinates of the grid are
called the origin coordinates of the grid. Assuming
that the number of rows on the grid map is M, the
mapping relationship between the origin coordinates
(x, y) and the grid coordinates (i, j) is expressed as
follows:

i � M + 0.5 − y,

j � x + 0.5.
 (2)

2.2. BasicAntColonyAlgorithm. Ant colony algorithm is to
simulate the process of ant population from the starting
point to find the target point to obtain food. In the process
of searching for food, ants will release a certain amount of
pheromones in their path, and the ant colony uses these
pheromones to communicate with each other. When
more and more ants pass through a certain path, the
pheromone concentration of this path will be higher, and
other ants will have a greater probability to choose this
path, which plays a positive feedback role, but it is also
easy to lead to the occurrence of local optimum or
deadlock [20].

If there are multiple unvisited grids, the probability of an
ant choosing the next grid from the current grid is deter-
mined by the distance between them and the pheromone
concentration [21, 22]. .e state transition probability is
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Figure 1: Environment model of grid method.
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ij(t) �

τij(t) 
α ∗ ηij(t) 

β

s∈allowedk
τis(t) 

α ∗ ηis(t) 
β, if j ∈ allowedk,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

ηij(t) �
1

dij
, (4)

where τij(t) is represents the pheromone concentration
from grid i to grid j at time t; ηij(t) is the heuristic infor-
mation from grid i to grid j, indicating the degree of ex-
pectation of ants from grid i to grid j; it is usually the
reciprocal of the distance between two grids, ηij(t) � 1/dij. α
is the pheromone factor and β is the heuristic factor, re-
spectively, indicating the concentration of pheromone and
the relative importance of heuristic information. allowedk

represents the grid set that can be selected by ant k in the
next step at t time.

When all ants complete a traversal, the pheromone
concentration on the path will be updated by evaporating the
original pheromone and increasing the pheromone accu-
mulated by ants. .e pheromone updating formula is

τij(t + 1) � (1 − ρ) · τij(t) + Δτij

Δτij � 
m

k�1
Δτk

ij,

Δτk
ij �

Q

Lk

, ant k passed through path(i, j),

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where ρ is the pheromone volatility coefficient, ρ ∈ (0, 1).
Δτij represents the increment of the pheromone from grid i
to grid j in this iteration. Δτk

ij represents the amount of
pheromone released by the ant k from grid i to grid j in this

iteration. Q represents the intensity of pheromone, which is
a constant. Lk represents the path length of the ant k in this
iteration.

3. Improved Ant Colony Algorithm for
Path Planning

In the traditional ant colony algorithm, the initial phero-
mone values of each grid are the same, and there is no
obvious difference between the heuristic values, so the search
time is often long, the algorithm convergence speed is slow,
and it is difficult to find the global optimal solution [23]. At
the same time, in the grid map, the path planned by the basic
ant colony algorithm may have more turns, poor smooth-
ness of the path, and consume a lot of energy of the robot. In
order to improve the performance of the original ant colony
algorithm and overcome its defects, the following im-
provements were made in this paper.

3.1. Improve Heuristic Information. In the traditional ant
colony algorithm, the heuristic information ηij(t) is the
reciprocal of the distance between adjacent grids, so the
heuristic weight difference of ants in adjacent grids is not
obvious, whichmakes the heuristic function does not play an
obvious role in the ant transfer decision, making the search
efficiency of the algorithm relatively low. In addition, when
the robot passes through a group of obstacles, if only the
shortest path is regarded as the main factor, it will cause the
turning angle of the robot to be too large and easy to deviate
from the punctuation, which will greatly increase the time
and energy consumption.

.erefore, this paper adds the steering angle to the
heuristic information of ant colony algorithm and combines
the direction information of the starting point and the target
point to improve the heuristic information, so that the
mobile robot can move to the target point and choose a path
with smaller turning angle as far as possible. By improving
the heuristic function, the purpose of ant colony search is
increased, and the probability of falling into the local optimal
solution is reduced..e improved heuristic information is as
follows:

ηm
ij (t) � φm

ij (t) + c
m
ij (t), (6)

φm
ij (t) �

dig

dij + djg

,

c
m
ij (t) � 1 −

N
m
pi(t) − N

m
ij (t)





8
,

(7)

where φm
ij (t) represents the direction information of the ant

m from grid i to grid j at time t and guides the ant to move to
the adjacent grid in the direction of the end point, 0<ϕ≤ 1.
dij indicates the distance from the current grid i to the next
grid j, djg indicates the distance from the current grid j to the
end grid g. cm

ij (t) represents the turning angle of the ant m
from grid i to grid j at time t, guiding the ant to choose the
path with small turning angle, 1/8≤ c≤ 1. Nm

pi(t) represents
the turn label of the ant from the previous grid p to the
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Figure 2: Direction of robot motion.
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current grid i, and Nm
ij (t) indicates the turning label of the

ant from the current grid i to the next grid j. When ϕ � 1,
c � 1, the heuristic information is the largest, which indi-
cates that the robot does not turn and moves to the terminal
with the optimal path.

3.2. Improve Pheromone Update Rule

3.2.1. Improve Pheromone Increment. When the traditional
ant colony algorithm is used to solve the problem of robot
path planning, it usually takes the path length as the only
reference to evaluate the path quality. However, in the actual
scene of robot walking, in order to improve the flexibility
and safety of robot walking, not only the length of the path,
but also the turning times of the robot in the whole path
should be considered. In addition, when the obstacles in a
certain area are densely distributed, the frequent turning of
the robot in a short time should be avoided. .erefore,
considering the smoothness of the two-dimensional path of
the robot, a new path evaluation function was introduced to
enhance the pheromone differentiation of the effective path,
so as to improve the smoothness of the search path, improve
the security of the robot, and reduce the energy
consumption.

Δτk
ij �

Q

Sk

, (i, j) ∈ visitedk,

0, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Sk � xLk + yTk , (9)

where Sk is the evaluation function of the path traveled by
the ant k, and the pheromone is allocated according to the
evaluation function. .e smaller the evaluation function is,
the better the path is, and the more pheromone is released
on this path, attracting more ants to search for this path. Lk

is the path length of the ant k. Tk is the turning times of the
ant k on the path, representing the smoothness of the path;
the smaller the Tk, the better the smoothness of the path.
Where x is the path length adjustment coefficient and y is
the times of turns adjustment coefficient, which are ap-
propriately valued according to the required path
properties.

3.2.2. Pheromone Restriction. After several iterations, the
value of pheromone on one path may be much larger than or
much smaller than other paths, which makes the search
unable to continue and leads to premature convergence. In
order to prevent this extreme situation, the value range of the
pheromone is limited to τmin to τmax by referring to the
MMAS algorithm [24, 25].

τij(t) �

τmax, if τij(t)> τmax,

τmin, if τij(t)< τmin,

τij(t), else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

4. Application of Improved Ant Colony
Algorithm in Path Planning

.e improved ant colony algorithm is applied to path
planning. .e specific steps are as follows:

Step 1. Environment modeling: .e moving space
environment of the robot was modeled by the grid
method. .e starting point, ending point, and obstacle
position of the robot were represented by grid coor-
dinates, and all ants were placed at the starting point of
the robot.
Step 2. Initialize the parameters. .e starting position S,
the target position G, the number of ants m, the
maximum number of iterations NCmax, the current
number of iterations NC, the pheromone importance
factor α, the heuristic information importance factor β,
the pheromone volatility coefficient ρ, the strength of
the pheromone Q, the path length adjustment coeffi-
cient x, and the turning times adjustment coefficient y.
Step 3. Calculate heuristic information. According to the
current position of the ant, the heuristic information is
calculated according to equation (6), combining with the
information of turning angle and direction.
Step 4. Select path. Calculate the probability of ants
moving from the current grid to the non-tabu grid
according to equation (3), select the next grid by
roulette method, and update the tabu table.
Step 5. Determine whether all ants have reached the
target grid. If so, record each ant’s path, length of the
path, and times of turns. Otherwise, return to Step 3.
Step 6. Calculate pheromone increments. .e path
evaluation function is calculated according to formula
(9), and the pheromone increment is calculated
according to formula (8).
Step 7. Update the pheromone. .e pheromone is
updated according to equation (5), and the amount of
pheromone is limited by equation (10).
Step 8. Record all the information of the ant’s path.
Compare the optimal path of each iteration to find the
current global optimal path.
Step 9. Determine whether the algorithm reaches the
maximum number of iterations; then the algorithm
terminates and outputs the optimal path; otherwise,
repeat Steps 3 to 8.

.e flowchart of the improved ant colony algorithm path
planning is shown in Figure 3.

5. Experimental Results and Analysis

In order to verify the effectiveness of the improved ant
colony algorithm (IACA), in this paper, the simulation
experiment is carried out in MATLAB R2016A. .e com-
puter operating system is Windows10, AMD processor, the
main frequency is 2.0GHz, and 8G memory. .e moving
environments of mobile robots are 20× 20, 30× 30, and
50× 50 grid maps, respectively. At the same time, in order to
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verify the superiority of the proposed algorithm, the results
obtained by the proposed algorithm are compared with
those obtained by Ant System algorithm (AS) [13] and Ant
Colony System algorithm (ACS) [26–28] in the same en-
vironment. In addition, in order to verify the stability of the
improved ant colony algorithm, the three algorithms are
simulated for 10 times and the experimental results are
shown in Table 1..e relative parameters were set as follows:
α� 1, β� 6, ρ� 0.1, Q� 10, x� 1, y� 1, the number of ants
m� 50, and the maximum number of iterations
NCmax � 200. .e starting point S is in the upper-left corner
and the end point G is in the lower-right corner.

5.1. 20× 20 Grid Environment. First, in a simple grid envi-
ronment of 20× 20, the simulation results of the three al-
gorithms in the path planning research are shown in Figure 4.

In the experiment, it is found that in the 20× 20 grid
environment, all the three algorithms can search the shortest
feasible path in the running process, so that the mobile robot
can move safely from the starting point to the end point.
However, the path planned by AS algorithm and ACS al-
gorithm has a large number of turns and poor smoothness of
the path, leading to multiple turns when the robot moves a
short distance, and frequent turns in a short time are not
conducive to the safety of the robot..e improved algorithm
has obvious advantages in the number of turns, the planned
path is smoother, and the convergence speed is fast.

5.2. 30× 30 Grid Environment. In order to further verify the
reliability of the improved algorithm in this paper, the grid
map was expanded to 30× 30 with more obstacles, and the
simulation was carried out again. .e simulation results of
the three algorithms in the path planning research are shown
in Figure 5.

It can be seen from Figure 5 that when the scale of the
grid map expands and the obstacles increases, the AS al-
gorithm and the ACS algorithm cannot adapt well to the
global path planning of this kind of relatively complex
environment and the optimal path lengths planned are 50.8
and 51.2, respectively. However, the algorithm in this paper
can still perform well, and the optimal path found is 49.6,
which effectively shortens the path length compared with the
former two algorithms. Figure 5(c) shows the convergence
curve about the three algorithms (30× 30); it can be seen that
the algorithm in this paper converges faster and has the
shortest path length when the environment is complicated.
Figure 5(b) shows the turns times curve about the three
algorithms (30× 30); it can be seen that the turn times of the
optimal path of the algorithm in this paper are significantly
lower than that of the AS algorithm and the ACS algorithm.

5.3. 50× 50 Grid Environment. In order to further verify the
adaptability of the improved algorithm in the large-scale grid
map (50× 50), the three algorithms were simulated in this
scale map. .e path planning is shown in Figure 6.

It can be seen from Figure 6(c) that in large-scale grid
map, the time consumption of all three algorithms increases,
the AS algorithm and ACS algorithm are easy to fall into the
local optimum. As can be seen from Figure 6(b), in the grid
map with many obstacles, AS algorithm and ACS algorithm
make a lot of turns when searching the optimal path. It can
be seen from Figure 6(a) that the improved algorithm has
obvious advantages, which not only reduces the number of
turns and increases the smoothness of the path, but also has
faster convergence speed than AS algorithm and ACS al-
gorithm and can find the optimal path.

It can be seen from the data in Table 1 that the path
length planned by the improved ant colony algorithm is
shorter in the environment of large scale, more obstacles and
relatively complex (50× 50). Compared with AS algorithm,
the number of iterations required to converge to the optimal
solution is reduced by about 61. Moreover, the times of turns
in the optimal path is reduced from 37 in AS algorithm and
53 in ACS algorithm to 4. .e smoothness of the path is

Parameters initialization

Whether the maximum
iterations are reached

Output the optimal path

All ants reach the target grid N

Start

Environmental Modeling

Calculate heuristic information

Select the path and update the tabu table

Calculate pheromone increment 

Update the pheromone

Record all the information of the ant's path

End

Y

N

Y

Figure 3: Flowchart of improved ant colony algorithm path
planning.
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Table 1: Comparison of the results of the three algorithms in path planning.

Grid map Algorithm Optimal path length Average path length Minimum number of iterations Turn times of optimal path

20× 20
AS 32.60 32.76 81 6
ACS 32.60 33.00 56 10
IACA 32.60 32.60 35 2

30× 30
AS 50.80 51.20 84 9
ACS 51.20 51.55 65 17
IACA 49.60 49.90 61 5

50× 50
AS 93.80 97.00 174 37
ACS 98.60 100.60 97 53
IACA 89.60 90.20 113 4
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Figure 4: Results of path planning about three algorithms (20× 20). (a) Path planning in three algorithms (20× 20). (b) .e turns times
curve about three algorithms (20× 20). (c) .e convergence curve about three algorithms (20× 20).
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significantly improved and effectively avoids large-scale
turns of the robot behavior.

In summary, when the environment becomes relatively
complex, the search path of traditional algorithms becomes
more tortuous, the optimization ability is not ideal, and it is
easy to fall into a local optimal solution. .ere are certain

limitations in path planning in a complex environment. .e
improved algorithm can quickly and effectively find the
optimal path even in a complex environment, and the
planned path has fewer turns and better path smoothness.
.e effectiveness and superiority of the algorithm have been
further proved.
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curve about three algorithms (30× 30). (c) .e convergence curve about three algorithms (30× 30).
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6. Conclusion

Path planning is a key technology for robots to move in
complex environments. As a bionic algorithm, ant colony
algorithm can effectively realize the path planning of robot.
Aiming at the problems of slow convergence speed, low
search efficiency, and poor path smoothness of traditional
ant colony algorithm in path planning, this paper improves
the ant colony algorithm by improving the heuristic in-
formation, introducing a new path evaluation function,
considering the smoothness of two-dimensional path, and

updating the effective path with pheromone differentiation.
.e simulation results of path planning in three different
grid environments show that the improved algorithm has
better path planning, faster convergence speed, fewer turns,
and smoother path, which reduces the energy loss of mobile
robot and makes it move to the target point safely and
quickly. It effectively proves the effectiveness and adapt-
ability of the algorithm in complex environment.

Microfluidics is a technology that integrates the basic
operation units such as sample preparation, reaction, sep-
aration, and detection in the process of biological, chemical,
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Figure 6: Results of path planning about three algorithms (50× 50). (a) Path planning in three algorithms (50× 50). (b) .e turns times
curve about three algorithms (50× 50). (c) .e convergence curve about three algorithms (50× 50).
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and medical analysis into a micron-scale chip to automat-
ically complete the whole process of analysis [29, 30]. Digital
microfluidic biochip (DMFB) takes discrete microdroplets
as the unit and realizes a variety of basic manipulation or
processing of droplets, such as generation, transportation,
merging, mixing, separation, storage, and detection, through
a droplet driving mode. Droplet path planning is one of the
core steps of advanced synthesis of DMFB. It aims to plan
the moving path of a group of droplets and requires droplets
to correctly perform the reaction process of biochemical
detection and analysis. Each droplet is interpreted as a point
robot moving in a discrete two-dimensional configuration
space. Under this assumption, path planning of the droplets
becomes a motion planning problem with multiple moving
robots [31–34]. .erefore, in the future research, we will
further try to use ant colony algorithm to solve the droplet
path planning and scheduling problem of DMFB.
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