
Research Article
Muskmelon Maturity Stage Classification Model Based on CNN

Huamin Zhao , Defang Xu , Olarewaju Lawal , and Shujuan Zhang

College of Agricultural Engineering, Shanxi Agricultural University, Taigu County, Jinzhong City, Shanxi Province 030801, China

Correspondence should be addressed to Olarewaju Lawal; olarewajulawal@yahoo.com

Received 22 August 2020; Revised 26 January 2021; Accepted 7 August 2021; Published 17 August 2021

Academic Editor: Yaoyao Wang

Copyright © 2021 Huamin Zhao et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to quickly and accurately judge the maturity of muskmelon is very important to consumers and muskmelon sorting staff.
+is paper presents a novel approach to solve the difficulty of muskmelon maturity stage classification in greenhouse and other
complex environments. +e color characteristics of muskmelon were used as the main feature of maturity discrimination. A
modified 29-layer ResNet was applied with the proposed two-way data augmentation methods for the maturity stages of
muskmelon classification using indoor and outdoor datasets to create a robust classification model that can generalize better. +e
results showed that code data augmentation which is the first way caused more performance degradation than input image
augmentation—the second way. +is established the effectiveness of the code data augmentation compared to image aug-
mentation. Nevertheless, the two-way data augmentations including the combination of outdoor and indoor datasets to create a
classification model revealed an excellent performance of F1 score ∼99%, and hence the model is applicable to computer-based
platform for quick muskmelon stages of maturity classification.

1. Introduction

Muskmelon fruit offers essential nutrients and several health
benefits to man. It matures more quickly in moist and warm
weather than in cool conditions. +e color of muskmelon
fruit turns from green to yellow during maturity stages,
making it very difficult for those visually impaired people,
supermarket or grocery workers, farm workers, children,
and so on to classify their maturity stages. Generally, the
wide variety, irregular shape, color, and texture character-
istics have always been a relatively complicated problem
associated with fruit classification [1]. For example, fruits’
visual inspection requires trained employers that are familiar
with the unique characteristics of fruits for classification [2],
which are labor-intensive and relatively expensive. +ere-
fore, a classificationmodel that is applicable to mobile phone
and automatic sorting system is required to replace the
traditional way of classification. +is will promote self-in-
spection, speedy inspection, packaging, and transportation
systems of muskmelon.

Deep learning with convolutional neural networks
(CNNs) is a tool widely used for image analysis and image
classification, allowing recognition and detection of objects
wherever they are positioned in an image. Also, it can extract

complex features automatically and directly from the input
images [3]. Anatya et al. [4] used CNN to study the maturity
classification model of apple, mango, and other five fruits.
+e results of the classification accuracy of the retrieval of 50
images have a precision value of 88.93%. Saranya et al. [5]
studied the classification method of banana maturity based
on CNN. +e CNN model was trained with overall vali-
dation accuracy of 96.14%. Tu et al. [6] studied tomato
detection and maturity classification model based on Fast-
RCNN and RGB-D images, which achieves 92.71% detection
accuracy and 91.52% maturity classification accuracy. Liu
et al. [7] also studied the maturity classification model of
tomato. Yueju et al. [8] studied the detection of immature
mango based on yolov2. In addition, Parvathi and Tamil
Selvi [9]. studied the maturity classification model of co-
conut, Huanghua pears [10], fresh tea shoot [11], and other
agriculture products by using the method of deep learning
and obtained good accuracy. +e above research results
show that deep learning has excellent performance in fruit
maturity classification. +e CNN architecture consists of
convolutional layer, pooling layer, ReLU layer, fully con-
nected layer, and loss layer. +e core block of CNN is
convolutional layer, which consists of filters (or kernels) to
detect different types of features from the input image and

Hindawi
Journal of Robotics
Volume 2021, Article ID 8828340, 12 pages
https://doi.org/10.1155/2021/8828340

mailto:olarewajulawal@yahoo.com
https://orcid.org/0000-0001-9310-325X
https://orcid.org/0000-0003-3895-7628
https://orcid.org/0000-0003-0011-6313
https://orcid.org/0000-0002-2509-7975
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8828340


later pass forward. Pooling layer is placed in-between suc-
cessive convolutional layers to reduce the number of pa-
rameters and computation in the network, while ReLU layer
is the activation function that sets negative values to zero.
Fully connected layer (flatten) forms the last few layers in the
network by taking the output result from the convolutional
or pooling layer to reach a classification decision. Finally,
loss layer is applied to show the deviation between predicted
(output) and true labels. +e CNN image classification
methods such as AlexNet [12], VGGNet [13], ResNet [14],
and so on are mainly used for extracting features, thus
achieving an accuracy sometimes exceeding human-level
performance. +ese image classifiers classify a single object
in the image, output a single category per image, and give the
probability of matching a class [15]. Recently, Chung and Tai
[16] reported 95% accuracy on Fruits 360 dataset produced
based on EfficientNet [17], a pretrained CNN. Duong et al.
[18] also used EfficientNet and Mixnet to establish fruit
recognition system based on Fruits 360. On the same dataset,
Muresan and Oltean[19] recorded an average performance
of 99.31% accuracy on training set and 93.59% accuracy on
test set of ten different CNN configurations. Nevertheless,
deep learning exploratory studies on muskmelon stages of
maturity are rarely available.

He et al. [14] developed the state-of-the-art ResNet,
which introduces skip connection or shortcut connection as
shown in Figure 1 to solve drop-off from saturated accuracy
for deeper CNN. +e 1× 1 convolution layer is added to the
start and end of the network. With this, the number of
connections (parameters) can reduce, while the performance
of the network is not so degrading. ResNet consists of
convolutional and identity blocks and also uses batch
normalization [20]. ResNet is also an excellent image
classification network, semantic segmentation, and object
detection compared to VGGNet, GoogLeNet [21] etc. Dif-
ferent ResNets include ResNet34, ResNet50 composed of 26
million parameters, ResNet101 with 44 million parameters
of 101 layers, and ResNet152 with 152 layers. Meanwhile,
ResNet50 and ResNet101 are used widely in object detection
models. Wang et al. [22] used ResNet and ResNeXt to detect
the internal mechanical damage of blueberries using
hyperspectral transmittance data type and achieved F1 score
and average accuracy of 89.52%/89.05% and 88.44%/87.84%,
respectively for ResNet/ResNeXt. Mahajan and Chaudhary
[23] explored ResNet for image categorical classification and
reported 93.57% accuracy for 18-layer CNN which was
better than 34-layer and 50-layer CNNs at 91.58% and
92.67%, respectively. However, seldom studies provide two-
way data augmentation on muskmelon stages of classifi-
cation based on ResNet. +e first way is a CNN code
augmentation, while the second way is the input image
augmentation.

In deep learning, an effective data augmentation method
is required for more learning data in order to obtain a better
and well-generalizedmodel.+is data augmentation method
is based on possible ways of images captured by a camera.
+ough data augmentation methods may cause a decrease in
the accuracy, they constituted an increase in the number of
training data and reduction of overfitting. Mikołajczyk and

Grochowski [24] proposed data augmentation for improv-
ing deep learning in image classification problem that was
validated on three medical case studies, while Tsuchiya
et al.’s [25] experimental results tested on road damage
classification and detection show that data augmentation
method can increase accuracy efficiently and effectively.
However, research studies involving CNN-ResNet applica-
tion on two-way data augmentation of muskmelon classi-
fication are limited. +erefore, exploring deep learning on
the muskmelon stages of maturity classification is of great
significance to the automatic muskmelon sorting system.

+e main objective of this paper is to create a robust
classification model that can better generalize indoor and
outdoor muskmelon stages of maturity and that can be
applicable to mobile phone, automatic sorting system, and
so on. +is paper proposed two-way data augmentation
methods for the maturity stages of muskmelon classification
using indoor and outdoor datasets for the classification
model. +e color of muskmelon was used as a distinguishing
feature of maturity stages. +e data augmentation methods
were independently applied to each class of the dataset
including the CNN code augmentation in order to dem-
onstrate the classification effectiveness through modified
ResNet29 architecture application. +e obtained experi-
mental results show some interesting phenomena about the
muskmelon maturity stage classification.

2. Materials and Methods

2.1. Dataset Preparation. +e images of muskmelon were
identified with respect to their maturity stages and captured
using a digital camera with a resolution of 3968× 2976 from
Wanghaizhuang village, Houcheng township, Taigu county,
Shanxi Province, China. +e samples of “xingtian-24””
muskmelon in different maturity stages of the same variety
in the greenhouse had no defects. +e maturity stages of
muskmelon fruit that turns from green to yellow were
classified as 0: green, 1: white, and 2: yellow. +e images
collected from the greenhouse termed as outdoor dataset
were resized to 416× 416 pixels and divided into 75%
training set, 20% valid set, and 5% test set according to each

Conv layer 1

Conv layer 2

Conv layer 3

x

F(x)

relu
H(x)=F(x)+x

relu

relu

Figure 1: Shortcut connection structure in ResNet.

2 Journal of Robotics



class. After the completion of outdoor image capture, the
muskmelon fruits were harvested and sent to the laboratory
for indoor image capture. +e Shengyue SY8031 autofocus
camera and 5500K LED lampwere used for the indoor image
acquisition as shown in Figure 2. In order to prevent color
deviation while taking images, the camera was adjusted to
the white balance of the LED lamp. Meanwhile, a black cloth
was spread on the surface of an adjustable lifting table in the
photo-studio chamber, and then the muskmelon was placed
on the table, where the front and back side images were
captured. +e reason for capturing the indoor image was to
have a true image of muskmelon that is separated from its
background for proper classification. Just like the outdoor
dataset, the indoor dataset was also divided into 75%
training set, 20% valid set, and 5% test set. Table 1 provides
details of the outdoor and indoor datasets, and their cor-
responding sample image is shown in Figure 3. For the
completion of Table 1 dataset, the training set for outdoor
dataset was added to the indoor dataset in their corre-
sponding classes. +e same process was also applied to valid
set and test set.+is is to enhance the model usage for indoor
and outdoor.

+is study applied two-way data augmentation methods
to increase the generality of the classification model so as to
learn more robust features. +e first way used CNN code
augmentation displayed in Table 2 from Ker-
as—ImageDataGenerator [26]. Meanwhile, the second way
augmented randomly the input images from the dataset by
thirteen image augmentation methods [27] of three tiers as
stated in Table 3 and displayed in Figure 4. +e image
augmentationmethod augments 75% training set of both the
outdoor and indoor datasets. +e image augmentation
methods were selected based on possible ways of images
from a camera and the various environmental conditions
that the classification model could operate. +e main idea is
to create a robust classification model that can better gen-
eralize and that can be applicable in computer-based plat-
form.+e dataset for all image augmentations is presented in
Table 4 including the combined dataset from augmented
indoor and outdoor datasets. +e addition of A-indoor and
A-outdoor datasets was carried out in the same way as
shown in Table 1. Finally, the out-indoor dataset (Table 1)
was added to their corresponding one in A-out-indoor
dataset (Table 4) in order to create All dataset shown in
Table 5.

2.2. ResNet Architecture. +e idea of ResNet was adopted
based on its skip connections between layers that add the
outputs from previous layers to the outputs of stacked layers.
According to [13], training of much deeper networks
constitute an increase in classification performance. 29-layer
ResNet was used in this paper to solve the degradation
problem of networks, accelerate the training speed, and
promote the faster network convergence. Figure 5 shows the
modified 29-layer ResNet in detail. ResNet 29–layer was
chosen based on the input image resolution 128×128 pixels
feed into the network and its convergence of loss and ac-
curacy toward achieving an excellent result [28]. Notably,

the last fully connected layer played a role as a classifier,
which calculated and output the scores of muskmelons.

2.3.ModelTraining andEvaluation. +e classification model
was trained and tested on Windows 10 with the following
specification: Intel ® Core™ i7-8700 CPU @ 64 bit 3.20GHz,
16GB RAM, NVIDIA Quadro M4000 GPU, CUDA v10.2,
cuDNN v7.6.5. +e ResNet received an input image size of
128×128× 3. +e stochastic gradient descent (SDG) opti-
mizer was employed in this study because it requires less
memory with computation taking only one point at once.
+e learning rate of SDG optimizer was set to a constant of
1× 10−2, momentum of 0.9 and categorical cross-entropy
was used as a cost function. In addition, the code aug-
mentation methods mentioned in Table 2 were included in
the model network. +e models were trained for 50 epochs
according to the constructed datasets and structured as
shown in Figure 6. Figure 6 shows the 14 datasets trained in
this paper. With code means that the network used to train
the dataset contains Table 2 information, while the dataset
that contains A prefix (A−) means with image augmentation
(Table 3). +e performance of classifiers was evaluated using
equation (1). Precision is simply the ratio of the number of
correctly predicted muskmelons to the total number of
predicted muskmelons, Recall is the ratio of the number of
correctly predicted muskmelons to the total number of

1

2

3

4

5

6

Figure 2:Muskmelon image acquisition setup for indoor dataset. 1:
computer; 2: tripod; 3: camera; 4: photo studio; 5: LED light bar; 6:
lifting platform.

Table 1: Dataset details without data augmentations.

Dataset Class Training set Valid set Test set Total

Outdoor
Green 310 70 20 400
White 658 173 44 875
Yellow 907 257 61 1225

Indoor
Green 216 69 15 300
White 841 233 56 1130
Yellow 1261 316 83 1660

Out-Indoor
Green 507 158 35 700
White 1491 414 100 2005
Yellow 2195 546 144 2885

Journal of Robotics 3



muskmelons in the dataset, and F1 score is the trade-off
between recall and precision to show the comprehensive
performance of the trained models.

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

Accuracy �
TP + TN

TP + TN + FP + FN
,

F1 score � 2 ×
precision × recall
precision + recall

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.

3. Results and Discussion

3.1. Evaluation Metrics. +e obtained loss rate curve of the
valid set was similar to the training set, with lower error at 50
epochs, indicating the high stability of outdoor and indoor
muskmelon. Outdoor of Figure 7(a) and indoor of
Figure 7(c), that is, without code augmentation, showed an
excellent performance of almost 100% valid accuracy with
minimum valid loss. +e confusion matrix of classification
results also showed an excellent performance of 100%
prediction in both Figures 7(a) and 7(c), where 0 is green, 1 is

white, and 2 is yellow. However, the performance of
Figure 7(c) is more stable than that of Figure 7(a) due to their
image feature background being different.+e incorporation
of code augmentation into the network constituted the low
stability found in Figures 7(b) and 7(d) with shown missed
prediction in their corresponding confusion matrix. Nev-
ertheless, Figure 7(d) is more stable than Figure 7(b). +is is
as a result of difference in their background images. +e
obtained findings of Figure 8 trended similarly as Figure 7,
except that Figure 8 contained image augmentation. +e
number of missed predictions in the confusion matrix for
indoor is more than outdoor, where Figure 8(c)>Figure 8(a)
for without code augmentation and Figure 8(d)>Figure 8(b)
for with code augmentation. +is is an indication of outdoor
images adjusting to the external features or background
images compared to indoor images. In other words, two-way
augmentations of outdoor performed better than indoor.

Similarly, the obtained results of combined outdoor and
indoor dataset without image augmentation showed that it
can better perform in terms of confusion matrix than com-
bined outdoor and indoor datasets with image augmentation.
Apart from Figure 9(a) having without code and image
augmentation that showed 100% prediction, the number of
missed predictions in Figure 9(b)<Figure 9(c)<Figure 9(d).
+is further confirmed the two-way augmentations consti-
tuting performance degradation. With reference to the

Outdoor

Indoor

(a)

Outdoor

Indoor

(b)

Outdoor

Indoor

(c)

Figure 3: Sample of image in outdoor and indoor datasets. (a) Green. (b) White. (c) Yellow.

Table 2: Details of code augmentation method.

No. Details of method1

1 Rotation range 20
2 Zoom range 0.15
3 Width shift range 0.2
4 Height shift 0.2
5 Shear range 0.15
6 Horizontal flip
7 Vertical flip
1Source: ImageDataGenerator [26].

Table 3: Details of image augmentation method.

No. Details of method1

1 imgcorruptlike.spatter (severity� 3)
2 imgcorruptlike.GaussianNoise (severity� 2)
3 imgcorruptlike.GaussianBlur (severity� 2)
4 imgcorruptlike.motionBlur (severity� 3)
5 imgcorruptlike.contrast (severity� 2)
6 imgcorruptlike.brightness (severity� 2)
7 imgcorruptlike.saturate (severity� 2)
8 HorizontalFlip (0.5)
9 Affine (rotate� (−45, 45))
10 ShearY ((−30, 20))
11 Rain (speed� (0.1, 0.3))
12 Clouds()
13 Rain (drop_size� (0.15, 0.20))
1Source: imgaug [27].

4 Journal of Robotics



(a) (b) (c) (d) (e) (f )

(g) (h) (i) (j) (k) (l)

(m) (n)

Figure 4: Sample of image augmentation in outdoor and indoor datasets. (a) Original. (b) Spatter. (c) Noise. (d) Blur. (e) Motion.
(f ) Contrast. (g) Brightness. (h) Saturate. (i) Flip. (j) Affine. (k) Shear. (l) Rain. (m) Clouds. (n) Rain drops.

Table 4: Dataset details for data augmentations.

Dataset Class Training set Valid set Test set Total

A-Outdoor
Green 1560 416 104 2080
White 3375 947 228 4550
Yellow 4814 1237 319 6370

A-Indoor
Green 1182 300 78 1560
White 4418 1164 294 5876
Yellow 6450 1750 432 8632

A-Out-Indoor
Green 2765 693 182 3640
White 7790 2115 521 10426
Yellow 11246 3006 750 15002

Table 5: All dataset with data augmentations.

Dataset Class Training set Valid set Test set Total

All
Green 3248 875 217 4340
White 9326 2484 621 12431
Yellow 13422 3571 894 17887

1×1, 16

3×3, 16

1×1, 64
L. ReLU

L. ReLU

L. ReLU
x2

1×1, 32

3×3, 32

1×1, 128
L. ReLU

L. ReLU

L. ReLU
x3

1×1, 64

3×3, 64

1×1, 256
L. ReLU

L. ReLU

L. ReLU
x4

A
ve

ra
ge

 p
oo

l, 
3–

d 
fc

128×128

5×
5,

 3
2,

 st
ri

de
 2

3×
3 

m
ax

 p
oo

l, 
st

ri
de

 2

64×64 32×32 16×16 8×8

Conv1 Conv2_x Conv3_x Conv4_x

ResNet
29–Layer

Figure 5: Modified 29-layer ResNet.

Journal of Robotics 5



Outdoor dataset

Indoor dataset

No code

code

No code

code

No code

Code

No code

Code

No code

Code 

No code

Code 

No code

Code

Out–indoor
dataset

A–Outdoor
dataset

A–Indoor dataset

A–Out–Indoor
dataset

All dataset

Figure 6: Model training structure.

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Outdoor

Predicted label

Tr
ue

 la
be

l

70 0 0

0 173 0

0 0 257

0 1

0

1

2

2

Train accuracy
Train loss
Val accurary
Val loss

(a)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Outdoor-Code argument

Predicted label

Tr
ue

 la
be

l

70 0 0

0 172 1

0 2 255

0 1

0

1

2

2

(b)

Figure 7: Continued.

6 Journal of Robotics



1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4
A

cc
ur

ar
y 

&
 L

os
s

Indoor

Train accuracy
Train loss
Val accurary
Val loss

Predicted label
Tr

ue
 la

be
l

69 0 0

0 233 0

0 0 316

0 1

0

1

2

2

(c)

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Indoor-Code argument

Train accuracy
Train loss
Val accurary
Val loss

Predicted label

Tr
ue

 la
be

l

69 0 0

0 230 3

0 0 316

0 1

0

1

2

2

(d)

Figure 7: No image argumentation results for (a) outdoor without code, (b) outdoor with code, (c) indoor without code, and (d) indoor with
code.

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Outdoor-Image argument

Predicted label

Tr
ue

 la
be

l

416 0 0

0 939 8

0 0 1237

0 1

0

1

2

2

(a)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Outdoor-Image & Code argument

Predicted label

Tr
ue

 la
be

l

412 2 2

2 909 36

1 10 1226

0 1

0

1

2

2

(b)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Indoor-Image argument

Predicted label

Tr
ue

 la
be

l

300 0 0

0 1154 10

0 4 1746

0 1

0

1

2

2

(c)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Indoor-Image & Code argument

Predicted label

Tr
ue

 la
be

l

300 0 0

50 1011 103

4 4 1742

0 1

0

1

2

2

(d)

Figure 8: Image argumentation results for (a) outdoor without code, (b) outdoor with code, (c) indoor without code, and (d) indoor with
code.

Journal of Robotics 7



Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4
A

cc
ur

ar
y 

&
 L

os
s

Indoor & Outdoor

Predicted label
Tr

ue
 la

be
l

158 0 0

0 414 8

0 0 546

0 1

0

1

2

2

(a)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Indoor & Outdoor-Code argument

Predicted label

Tr
ue

 la
be

l

158 0 0

0 413 1

0 2 544

0 1

0

1

2

2

(b)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Indoor & Outdoor-Image argument

Predicted label

Tr
ue

 la
be

l

690 2 1

0 2105 10

0 6 3000

0 1

0

1

2

2

(c)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

Indoor & Outdoor-Image & Code argument

Predicted label

Tr
ue

 la
be

l

683 8 2

4 2064 47

3 62 3000

0 1

0

1

2

2

(d)

Figure 9: Combined outdoor and indoor results for (a) out-indoor without code, (b) out-indoor with code, (c) out-indoor image
augmentation without code, and (d) out-indoor image augmentation with code.

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

All-No code argument

Predicted label

Tr
ue

 la
be

l

875 0 0

4 2464 16

0 2 3571

0 1

0

1

2

2

(a)

Train accuracy
Train loss
Val accurary
Val loss

1050 15 20 25 30 35 40 45 50
Epochs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
cc

ur
ar

y 
&

 L
os

s

All-code argument

Predicted label

Tr
ue

 la
be

l

876 4 4

1 2457 26

0 26 3547

0 1

0

1

2

2

(b)

Figure 10: All combined results for (a) image augmentations without code and (b) image augmentations with code.

8 Journal of Robotics



obtained confusion matrix results, the code augmentation
caused more performance degradation than the image aug-
mentation. Figure 10 for all combined datasets proved the
effect of code augmentation, where the number of missed
predictions observed in Figure 10(b) is more than that of
Figure 10(a). In addition, the code augmentation is respon-
sible for more instability compared to image augmentation.
Nevertheless, the findings of All dataset can generalize very
well to muskmelon stages of maturity classification.

+e average performance results for precision, recall, and F1
score are shown in Table 6. +e F1 score of indoor and out-
indoor datasets with and without code augmentation was noted
to be 100% compared to other datasets. +is explains that the
extracted image feature without background found in indoor,
while outdoor and indoor combination are complimenting each
for the obtained results in out-indoor dataset.+e without code
augmentation of F1 score for all the dataset is 100%, while with
code augmentation of F1 score varied from dataset to dataset.

Table 6: Average performance evaluation results.

Dataset Class Precision (%) Recall (%) F1 score (%)

Outdoor Code 99 99 99
No code 100 100 100

Indoor Code 100 100 100
No code 100 100 100

Out-Indoor Code 100 100 100
No code 100 100 100

A-Outdoor Code 98 98 98
No code 100 100 100

A-Indoor Code 95 95 95
No code 100 100 100

A-Out-Indoor Code 98 98 98
No code 100 100 100

All Code 99 99 99
No code 100 100 100

Figure 11: Visualization results of the tested model created from All dataset with code augmentation.

Journal of Robotics 9



+e least F1 score of 95% was noticed in A-indoor with code
augmentation, similar to Figure 8(d) results. Just like Figure 10,
the All dataset displays an excellent average performance.

3.2. Computer-Based Application. +e created models from
all the datasets were tested on their corresponding test set for
visualization purpose. Figure 11 shows the visualization
findings of model created from All dataset with code aug-
mentation. +e figure justified the performance with good
predictions. Meanwhile, the created models were converted
to model.tflite and model_unquant.tflite using TensorFlow
and Keras package for mobile application. Figure 12 is the
outcome of converted model created from All dataset with
code augmentation. Figure 12(a) shows green muskmelon,
Figure 12(b) shows white muskmelon, Figure 12(c) shows
yellow muskmelon, and Figure 12(d) shows the inference
time of classification from the tested converted model. It is
an indication that our models are applicable to any com-
puter-based applications. Apart from themobile application,
the computer-based application can be interfaced with
electrical, mechanical system, and so on in order to perform
other task such as the automatic sorting system.

3.3.ComparisonwithOtherModels. Table 7 shows the results
of tested models created from All dataset in Table 6. +e
compared results shows that our ResNet29 model out-
performed other models. +e F1 score of ResNeXt50,
Densenet121, and InceptionV4 is similar to ResNet29 at
99%, but with a larger model size. If the model size is large, it
will consume more computing resources, and the speed of
model is slow. Meanwhile, the size of MobileNet-v2 model is
smaller than that of ResNet29 model, but its test result is not
as good as our ResNet29. +erefore, our modified ResNet29
model has more advantages than other models for musk-
melon maturity stage classification.

4. Conclusions

+e color variation of muskmelon during maturity stages
makes it more difficult for visually impaired people, su-
permarket or grocery workers, and even farm workers to
classify. +is paper proposed two-way data augmentation
methods for the maturity stages of muskmelon classification
using indoor and outdoor datasets to create a robust clas-
sification model that can better generalize. A modified
ResNet of 29 layers was adopted to create the classification

(a) (b) (c) (d)

Figure 12: Muskmelon stages of maturity classification based on converted model through mobile application. (a) Green class. (b) White
class. (c) Yellow class. (d) Inference time.

Table 7: Comparison of classification results of different models.

Model Weight size (MB) Precision (%) Recall (%) F1 score (%)
ResNet29 3.5 99 99 99
VGGNet16 56.3 98 98 98
ResNet18 45.2 95 95 95
ResNet50 90.2 98 98 98
MobileNet-v2 2.1 97 97 97
ResNeXt50 90 99 99 99
DenseNet121 28.5 99 99 99
InceptionV4 161 99 99 99

10 Journal of Robotics



model. +e results showed that code augmentation (first
way) caused more performance degradation than the image
augmentation (second way). +is is to say that code aug-
mentation is more reliable in building a robust model than
image augmentation which calls for future investigation of
classification method. However, the two-way data aug-
mentations including the combination of outdoor and in-
door datasets showed an excellent performance of F1 score
∼99%, which is applicable for computer-based platform for
quick muskmelon stages of maturity classification, such as
mobile phone application and so on.

In addition, although the model proposed in this paper
can achieve better classification effect ofmuskmelonmaturity,
it needs to cooperate with the object detection algorithm to be
better used in automatic sorting/picking equipment. In this
paper, the muskmelon object detection algorithm is not
mentioned, which needs to be studied in the future.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is research was sponsored by the University Science and
Technology Innovation Project of Shanxi, China (project no.
2019L0402), Doctoral Research Project of Shanxi Agricul-
tural University (project no. 2018YJ43), and Excellent
Doctor of Shanxi Province to Jin Work Award Fund Re-
search Projects (project no. SXYBKY2018030).

References

[1] F. Garćıa-Lamont, J. Cervantes, S. Ruiz, and A. López-Chau,
“Color characterization comparison for machine vision-based
fruit recognition,” Intelligent Computing /eories and
Methodologies, vol. 92, pp. 258–270, 2015.

[2] E. O. Olaniyi, O. K. Oyedotun, and A. Khashman, “Intelligent
grading system for banana fruit using neural network arbi-
tration,” Journal of Food Process Engineering, vol. 40, no. 1,
p. 9, 2017.

[3] A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy, “Deep
learning - method overview and review of use for fruit de-
tection and yield estimation,” Computers and Electronics in
Agriculture, vol. 162, pp. 219–234, 2019.

[4] S. Anatya, V. C. Mawardi, J. Hendryli et al., “Fruit maturity
classification using convolutional neural networks method,”
IOP Conference Series: Materials Science, vol. 1007, no. 1,
Article ID 012149, 2020.

[5] N. Saranya, K. Srinivasan, and S. Kumar, “Banana ripeness
stage identification: a deep learning approach,” Journal of
Ambient Intelligence Humanized Computing, vol. 1, 2021.

[6] S. Tu, Y. Xue, Y. Qi, H. Wan, and L. Mao, “Detection of
passion fruits andmaturity classification using red-green-blue
depth images,” Biosystems Engineering, vol. 175, pp. 156–167,
2018.

[7] J. Liu, J. Pi, and L. R. Xia, “A novel and high precision tomato
maturity recognition algorithm based on multi-level deep
residual network,”Multimedia Tools and Applications, vol. 79,
no. 13-14, pp. 9403–9417, 2020.

[8] X. Yueju, H. Ning, T. Shuqin et al., “Immature mango de-
tection based on improved YOLOv2,” Transactions of the
Chinese Society of Agricultural Engineering, vol. 34, no. 07,
pp. 173–179, 2018.

[9] S. Parvathi and S. Tamil Selvi, “Detection of maturity stages of
coconuts in complex background using Faster R-CNN
model,” Biosystems Engineering, vol. 202, no. 6, pp. 119–132,
2021.

[10] H. J. Liu, C. Y. Wei, W. Han et al., “Determination of
Huanghua Pear’s harvest time based on convolutional neural
networks by visible-near infrared spectroscopy,” Spectroscopy
and Spectral Analysis, vol. 40, no. 9, pp. 2932–2936, 2020.

[11] B. Chen and J. Yan, “Fresh Tea Shoot maturity estimation via
multispectral imaging and deep label distribution learning,”
IEICE - Transactions on Info and Systems, vol. 103, no. 9,
pp. 2019–2022, 2020.

[12] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, vol. 25,
no. 2, 2012.

[13] K. Simonyan and A. Zisserman, “A very deep convolutional
networks for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[14] K. He, X. Zhang, S. Ren et al., “Deep residual learning for
image recognition,” in Proceedings of the 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, June 2016.

[15] A. B. Amjoud and M. Amrouch, “Convolutional neural
networks backbones for object detection, springer, image and
signal processing. ICISP 2020,” Lecture Notes in Computer
Science, vol. 2020, Article ID 4152816, 22 pages, 2020.

[16] T. P. C. Dang andD. V. Tai, “A fruits recognition system based
on a modern deep learning technique,” Journal of Physics
Conference, vol. 1327, Article ID 012050, 2019.

[17] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling
for convolutional neural networks,” 2019, https://arxiv.org/
abs/1905.11946.

[18] L. T. Duong, P. T. Nguyen, C. Di Sipio et al., “Automated fruit
recognition using EfficientNet and MixNet,” Computers and
Electronics in Agriculture, vol. 171, p. 10, 2020.

[19] H. Murean and M. Oltean, “Fruit recognition from images
using deep learning,” Acta Universitatis Sapientiae, Infor-
matica, vol. 10, no. 1, pp. 26–42, 2017.

[20] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, https://arxiv.org/abs/1502.03167.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe et al., “Rethinking the
inception architecture for computer vision,” 2015, https://
arxiv.org/abs/1512.00567.

[22] Z. Wang, M. Hu, and G. Zhai, “Application of deep learning
architectures for accurate and rapid detection of internal
mechanical damage of blueberry using hyperspectral trans-
mittance data,” Sensors, vol. 18, no. 4, p. 14, 2018.

[23] A. Mahajan and S. Chaudhary, “Categorical image classifi-
cation based on representational deep network (RESNET),” in
Proceedings of the 2019 3rd International Conference on
Electronics, Communication and Aerospace Technology
(ICECA), Coimbatore, India, June 2019.

[24] A. Mikolajczyk and M. Grochowski, “Data augmentation for
improving deep learning in image classification problem,”

Journal of Robotics 11

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567


International Interdisciplinary Phd Workshop, vol. 99,
pp. 117–122, 2018.

[25] H. Tsuchiya, S. Fukui, Y. Iwahori, Y. Hayashi,
W. Achariyaviriya, and B. Kijsirikul, “A method of data
augmentation for classifying road damage considering in-
fluence on classification accuracy,” Procedia Computer Sci-
ence, vol. 159, pp. 1449–1458, 2019.

[26] 2020 Keras-cn, available at: https://keras-cn.readthedocs.io/
en/latest/preprocessing/image/.

[27] A. B. Jung, Imgaug, available at: https://github.com/aleju/
imgaug, 2020.

[28] H. AY and N. AY, “Rectifier nonlinearities improve neural
network acoustic models,” in Proceedings of the /e Inter-
national Conference on Machine Learning, Atlanta, Georgia,
USA, May 2013.

12 Journal of Robotics

https://keras-cn.readthedocs.io/en/latest/preprocessing/image/
https://keras-cn.readthedocs.io/en/latest/preprocessing/image/
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug

