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Path planning is one of the most popular researches on mobile robots, and it is the key technology to realize autonomous
navigation of robots. Aiming at the problem that the mobile robot may collide or fail along the planned path in an environment
with random obstacles, a robot path planning scheme that combines the improved A∗ algorithm with an enhanced dynamic
windowmethod is proposed. In the improved A∗ algorithm, in order to improve the algorithm efficiency, so that a single planning
path can pass throughmultiple target points, the search point selection strategy and evaluation function are optimized. In order to
achieve local obstacle avoidance and pursuit of dynamic target points in dynamic and complex environments, an online path
planning method combining enhanced dynamic window algorithm and global path planning information is proposed. ,e
preview deviation angle tracking method is used to successfully capture moving target points. It also improves the efficiency of
path planning and ensures that on the basis of the global optimal path, the random obstacle can be avoided in real time so that the
robot can reach the target point smoothly. ,e simulation results show that compared with other methods, the proposed method
achieves excellent global and local path planning performance, the planned trajectory is smoother, and the search efficiency is
higher in complex environments.

1. Introduction

Mobile robot is an important branch of robotics research
[1]. With the continuous development of the world
economy and technology, mobile robots appear more and
more frequently in scientific research, production envi-
ronment, and daily life [2]. At the same time, with the
development of computers and control technology, the
application fields of mobile robots are becoming more and
more extensive [3].

Mobile robot needs to plan a path from the initial po-
sition to the target position in the work scene. ,e path
should meet a series of requirements such as short length,
high efficiency, and high safety, and it must be able to avoid
static and dynamic obstacles along the way [4]. At the same
time, mobile robots should have certain computing capa-
bilities to calculate the shortest and safest route in real time
to save time and reserve energy [5].

According to the characteristics of mobile robot path
planning, it can be divided into the intelligent search al-
gorithm, artificial intelligence algorithm, geometric model
algorithm, and local obstacle avoidance algorithm [6]. ,e
intelligent search algorithm uses randomly generated initial
solutions or sampling points to approach the optimal so-
lution through multiple iterations. ,e biggest characteristic
of this type of algorithm is randomness, so its solution is not
unique [7]. Algorithms based on artificial intelligence in-
clude methods such as Q learning and deep learning, but
such methods require a large number of different types of
training samples, which limit their practicality in the real
world [8].

,e geometric model-based path planning method is to
construct a geometric model on the basis of known envi-
ronment, then select an appropriate path, and adjust the
feasible solution based on the optimal strategy in real-time
[9]. ,e paths obtained by such methods are all nonsmooth
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paths, so optimization is needed to achieve the smooth
turning of the mobile robot. Such methods include A∗ al-
gorithm, Voronoi graph, and so on. In the global path
planning, the A∗ algorithm will select the square with the
lowest current cost value until the search reaches the end,
thereby planning the path with the lowest total costs.
However, the traditional A∗ algorithm suffers from poor
global optimization capability, and there are too many re-
dundant points and inflection points in the planned path
[10].

,e local obstacle avoidance algorithm is used to en-
hance the obstacle avoidance ability of mobile robots and
improve safety. It aims to move the robot away from ob-
stacles and plan a safe collision-free path. Commonly used
local obstacle avoidance algorithms include artificial po-
tential field method, dynamic window approach (DWA),
and so on [11]. ,e DWA is a method of sampling the
surroundings at the current moment to obtain the robot’s
action state at the next moment. ,is method can quickly
reach the target point while avoiding collisions between the
robot and obstacles in the search space. However, it is highly
dependent on global parameters and is prone to failure in
unknown environments [12].

In order to solve the above problems, this paper proposes
a random obstacle avoidance method for mobile robots that
combines the improved A∗ algorithm with an enhanced
dynamic window approach (EDWA), which takes into ac-
count the smoothness of the planned path and the search
efficiency of the A∗ algorithm. ,en based on the global
planning path information and dynamic environment
changes, the EDWA is used to complete the local path
planning, so as to make up for the shortcomings of the
traditional A∗ algorithm with poor timeliness. ,e proposed
method pursues dynamic obstacles on the basis of global
path planning information, thereby planning the optimal
path and improving real-time performance and flexibility.

,e rest of this paper is organized as follows: the second
part is the related work, which introduces the existing ad-
vanced robot path planning methods. ,e third part is the
improved A∗ algorithm. ,e fourth part is the enhanced
version of the dynamic window method. ,e fifth part is the
experimental part. ,e sixth part is the conclusion.

2. Related Methods

,e A∗ algorithm has the advantages of short planned paths
and fast calculation speed, and it is a widely used global path
planning method. Yuan and Han [13] successfully implement
the improved A∗ algorithm to achieve robot path planning in
a static environment. Yu et al. [14] use an improved Dijkstra
algorithm to complete global path planning, but its local path
search speed is very slow, and a smooth and safe optimal path
cannot be quickly planned. Kaplan et al. [15] introduce an
improved multiorder B-spline curve for path smoothing, but
this method cannot complete the smoothing of the dynamic
path, and the running process is cumbersome. ,e efficiency
of the algorithm is poor. When the environment changes or
the robot is affected by other external factors, the established
path will fail.

Artificial potential field method and DWA are currently
widely used local path planning methods. Aiming at the
problem that the robot is regarded as a single point in most
planning, which leads to the problem of being unable to pass
the narrowband, Kiss and Tevesz [16] propose a global
dynamic window navigation scheme based on model pre-
dictive control in which the weighted objective function is
omitted. Aiming at the energy consumption problem in the
path planning process, Henkel et al. [17] propose an efficient
local path planner suitable for omnidirectional mobile robot
navigation in a dynamic environment. ,e experimental
results show that compared with the DWA algorithm, the
energy consumption is reduced by 9.79%.

In practical applications, robots often encounter unex-
pected obstacles such as unknown obstacles during the
planning process, which may cause the robots to collide.
,erefore, many methods combine the strong obstacle
avoidance ability of local path planning algorithms with
global path planning methods to improve performance.
Aiming at the problem that the classic A∗ algorithm cannot
be applied in a dynamic environment, Zhong et al. [18]
propose a hybrid method combining improved A∗ algo-
rithm and DWA algorithm. Experimental results show that
the path planned by the improved algorithm is smoother and
more efficient. But the disadvantage of this method is that it
is only applicable to target points in the same direction. Wu
et al. [19] propose a hybrid algorithm combining beetle
antenna search algorithm and artificial potential field al-
gorithm for the dynamic path planning problem. ,e ex-
perimental results verify the effectiveness and superiority of
the method. ,e method proposed by Kashyap et al. [20]
combines the DWA algorithm and teaching and learning
optimization. Path planning and obstacle avoidance can be
successfully implemented in both the dynamic terrain and
the dynamic terrain.

For the path planning problem of mobile robots in
complex environments, Ma et al. [21] propose a method
combining improved A∗ algorithm, minimum snap tra-
jectory generation, and the timed elastic band, which im-
proves the efficiency and flexibility of mobile robot path
planning. ,e experimental results show that this method
can shorten the length of the planned path, reduce the total
turning angle, and effectively complete the global optimal
path planning and local real-time obstacle avoidance.

3. Improved A∗ Algorithm

3.1. Traditional A∗ Algorithm. ,e A∗ algorithm is a heu-
ristic search algorithm that obtains the planned path of the
mobile robot by continuously searching for the path
approaching the destination. ,is method is simple and fast,
and the heuristic search is very targeted. It only needs to
search a part of the state space of the problem, so it can
achieve the purpose of narrowing the search range and
reducing the complexity of the problem, and the path
finding efficiency is very high.

,e A∗ algorithm can be expressed as follows:

f(n) � g(n) + h(n), (1)

2 Journal of Robotics



where n is the current node, f(n) is the cost value of the
optimal path from the starting node to the target point, and
g(n) is the depth factor, which is the cost of the optimal path
from the starting node to node n found by the heuristic
search algorithm. h(n) is an estimated cost value of the
optimal path from node n to the target node. ,e value of
each decision is evaluated according to the evaluation
function, and it is decided which scheme to try first in order
to obtain the shortest path.

3.2. Improved A∗ Algorithm. ,e traditional A∗ algorithm
has the following two shortcomings: (1) there are too many
searching nodes, which affect the computational efficiency
and (2) the path obtained by the A∗ algorithm has redundant
collinear nodes and redundant turning points. ,e robot
walking along such a path will affect its movement
continuity.

In view of the above problems, this paper proposes two
improvements to the A∗ algorithm: (1) in order to improve
the searching efficiency, an optimized search point selection
strategy is proposed, and the heuristic function is improved;
(2) in order to further optimize the path, the redundant
point deletion strategy is introduced. Redundant nodes are
eliminated so that the final path contains only the starting
point, end point, and key turning points.

3.2.1. Optimization of Search Point Selection Strategy.
,e traditional A∗ algorithm expands the eight neighbor-
hood grids of the current node during path planning. As
shown in Figure 1, the pink grid is the current point, and n1
to n8 are the eight directions in which the current grid can
move. Too many options of the orientation for the target
point will cause unnecessary grids in the eight-neighbor
grids, resulting in a waste of computing time and storage
space.

In order to further improve the searching efficiency, an
optimized search point selection strategy is introduced.
According to the relative position of the target point and the
current point, three search directions are discarded, and five
search directions are retained. Let the angle between the
segment from the target point to the current point and the
direction of n2 as ε, then the corresponding relationship
between the angle ε and the 3 discarded directions is shown
in Table 1. After the above optimization, the number of
search nodes can be reduced, and the computational effi-
ciency can be improved.

3.2.2. Heuristic Function of the Optimization Algorithm.
,e traditional A∗ algorithm will traverse many unnecessary
nodes during the path searching process, which affects the
searching efficiency.,e key factor causing this problem is the
heuristic function design of the A∗ algorithm. If the estimated
value of the heuristic function is less than the actual cost value,
too many search nodes will be generated, reducing the
computational efficiency, though the optimal path can be
obtained. However, if the estimated value of the heuristic
function is greater than the actual cost value, a relatively

smaller number of searching nodes will be generated, which
will improve efficiency, but it is difficult to obtain an optimal
path. When the estimated value of the heuristic function is
equal to the actual cost value, the highest search efficiency can
be achieved. Since the heuristic function adopts Euclidean
distance, the value of the heuristic function will always be less
than or equal to the actual distance from the current point to
the target point. When the current point is far from the target
point, the estimated value of the heuristic function is much
smaller than the actual value, which will cause the algorithm
to search for more nodes and reduce efficiency. At this time,
the weight of the estimated value should be increased to
improve efficiency. When the current point is gradually
approaching the target point, the estimated value gradually
approaches the actual value. In order to prevent the estimated
value from being too large and to avoid failure in searching for
the optimal path, the estimated value weight should be re-
duced accordingly. In summary, we propose to improve the
cost function as follows:

f(n) � g(n) + 1 +
r

R
􏼒 􏼓h(n), (2)

where f(n) is the integrated cost value, h(n) is the estimated
cost value from the current point to the target point, g(n) is
the actual cost value from the starting point to the current
point, R is the distance from the starting point to the target
point, and r is the distance between the current point and the
target point.

3.2.3. Multiobjective Optimization. ,e traditional A∗ al-
gorithm is only suitable for searching a single target point,
and it has the shortcomings of low searching efficiency and

n1 n2 n3

n5

n8n7n6

n4

Figure 1: Schematic plot of the robot movement.

Table 1: ,e relationship between angle ε and the discarded
directions.

ε Retained directions Discarded
directions

[337.5°, 360°)∪ [0°, 22.5°) n1n2n3n4n5 n6n7n8
[22.5°, 67.5°) n1n2n3n5n8 n4n6n7
[67.5°, 112.5°) n2n3n5n7n8 n6n7n8
[112.5°, 157.5°) n3n5n6n7n8 n1n4n6
[157.5°, 202.5°) n4n5n6n7n8 n1n2n4
[202.5°, 247.5°) n1n4n6n7n8 n2n3n5
[247.5°, 292.5°) n1n2n4n6n7 n3n5n8
[292.5°, 337.5°) n1n2n3n4n6 n5n7n8
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poor compatibility. Nowadays, the work situation is com-
plicated, and the tracking of multiple target points in one
planning can greatly improve efficiency. ,erefore, the
proposed method first samples and compares the location
information of the target points and then improves the
searching algorithm to consider multiple target points in one
planning.

,e priority of different target points is an important
prerequisite for multitarget path planning. ,e Euclidean
distance is used as the cost function of selecting the optimal
target point. ,e lower the selection cost, the higher the
priority level. Specific steps are as follows:

(1) Calculate the cost function of the target points Ti,
i� 1, 2, . . ., n; (2) compare the priority levels of the target
points Ti; (3) preferentially plan the path for the target point
Ti with the highest priority; (4) take the current target point
Ti−1 as the starting point of the mobile robot and plan the
path of the secondary target point Ti; and (5) judge whether
to reach the n-th target point. If it arrives, stop searching;
otherwise, go back to the last step.

4. Enhanced Dynamic Window Approach

In this paper, an enhanced dynamic window algorithm
(EDWA) is proposed, which combines global path infor-
mation to avoid obstacles and pursue dynamic targets. Even
part of the environment information is unknown, themobile
robot can still perform local path planning, avoid obstacles,
and reach the designated target point.

4.1. Kinematics Model of Mobile Robot. DWA mainly sam-
ples the speed space of the mobile robot in the window area
and simulates the feasible motion trajectory within time t in
the speed space (vt,ωt). ,e changes of the linear velocity vt

and the angular velocityωt in the velocity space represent the
motion states of the mobile robot. Among all feasible tra-
jectories, the optimal trajectory is obtained with the eval-
uation function. ,erefore, assuming that the mobile robot
moves within the time interval Δt, the kinematics model can
be formulated as follows [22]:

x � x + vxΔt cos θt − vyΔt sin θt,

y � y + vxΔt sin θt + vyΔt cos θt,

θt � θt + ωtΔt.

⎧⎪⎪⎨

⎪⎪⎩
(3)

4.2. Speed Sampling of Mobile Robot. ,ere are an infinite
number of groups in the velocity space, but in actual op-
eration, it is necessary to constrain the sampling velocity
range based on the constraints of the mobile robot as well as
environmental constraints.

,e speed constraints of mobile robots can be expressed
as follows:

Vm � (v,ω)|v ∈ vmin, vmax􏼂 􏼃􏼈 􏼉, ω ∈ ωmin,ωmax􏼂 􏼃􏼉. (4)

In the moving time interval of the dynamic window, the
speed constraint of the mobile robot caused by the addition

and subtraction constraints of the motor can be calculated as
follows:

Vd � ((v,ω)|v ∈ vc − _vbΔt, vc + _vaΔt􏼂 􏼃,􏼈

ω ∈ ωc − _ωbΔt,ωc + _ωaΔt􏼂 􏼃􏼉,
(5)

where vc and ωc denote current speed, _va and _ωa denote the
maximum acceleration of the mobile robot, and _vb and _ωb

denote the maximum deceleration of the mobile robot.
Mobile robot braking distance constraint: when avoiding

obstacles in a local environment, the safety of the mobile
robot needs to be ensured. Under the constraint of maxi-
mum deceleration, the speed can be reduced to 0m/s before
the impact. ,e braking constraint is expressed as follows:

Vd � (v,ω)|v≤ 2d(v,ω) _vb( 􏼁
1/2

, ω≤ 2d(v,ω) _ωb( 􏼁
1/2

􏽮 􏽯,

(6)

where d(v, ω) represents the shortest distance between the
trajectory (v, ω) and the obstacle.

4.3. Evaluation Function Considering Global Path
Information. After simulating several trajectories based on
the range of motion speed and the robot motion model, the
optimal trajectory is obtained through the evaluation
function. ,e traditional DWA often falls into the local
optimum. In order to fix this problem, an evaluation
function considering the global path information is pro-
posed to ensure that the final local path is in accordance with
the global optimal path.,e improved evaluation function is
as follows:

G(v,ω) � σ αPH(v,ω) + βd(v,ω) + cve(v,ω)( 􏼁, (7)

where PH(v,ω) is the angle difference between the direc-
tions of the trajectory end points and the current target
point, d(v,ω) is the distance between the trajectory and the
nearest obstacle, ve(v,ω) is the current speed evaluation
function, σ is the smoothing function, and α, β, and λ are
weighting coefficients. With the evaluation function, the
path planned by the robot can avoid random obstacles and
fit the global optimal path.

4.4. Dynamic Target Pursuing with Preview Deviation Angle
Algorithm. In the current complex working environment, it
is necessary for mobile robots to realize online path planning
while avoiding obstacles and complete the task of pursuing
dynamic targets as quickly as possible. In the process of
pursuing the target, not only the dynamic path planning
problem needs to be solved, but also the mobile robot needs
to use its own sensors to continuously adjust the yaw angle
and combine the weighted obstacle search algorithm to
improve the chasing efficiency.

During the operation, the position information of the
target point is constantly updated with the robot sensors; the
center point of the target is regarded as the preview point;
and the distance between the center of the mobile robot and
the center of the target is the preview distance. ,e angle
between the moving directions of the target point and the
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mobile robot is the preview angle. ,e schematic diagram of
chasing strategy based on the preview deviation angle is
shown in Figure 2. In Figure 2, L is the preview distance, and
Md is the vertical distance between the mobile robot and the
dynamic target point trajectory. Given L≠ 0 andMd≠ 0, then
Md is always less than L, θ1 is the preview deviation angle,
and it is stipulated that the preview deviation angle is
positive when the preview point is in the frost-left of the
moving direction of the mobile robot, and the center of the
moving target point is the preview point.

It can be seen from Figure 2 that when θ1⟶ 0 and
L⟶ 0, the mobile robot can catch up with the moving
target, so we get:

ϕ1 � arctan
Md

N
− θ1. (8)

In the case of L≠ 0 and Md � 0, it can be seen from
Figure 2 that the robot is always behind the target point
during the pursuit; we get N� L, arctan(Md/N) � 0, then
θ1 � 0, and ϕ1 � 0; and the robot accelerates in a straight line
to chase the target point. In the case of L≠ 0 and Md≠ 0, it
can be derived that during the pursuing process N≠ 0,
arctan(Md/N)⟶ 0 and θ1⟶ 0, so ϕ1⟶ 0. In Figure 2,
if an arc is drawn with O as the center and tangent to the
trajectory of the moving target, then the arc is the planned
trajectory, and the arc radius R can be calculated as follows:

R �
L
2

2Md

. (9)

From the sensor readings of the mobile robot, the co-
ordinates of the moving target point (xg, yg) and the mobile
robot (x, y) can be measured, then the coordinates of the
center O (xr, yr) can be obtained. ,e center O that is closer
to the mobile robot will be selected:

−x + tan θg · y − b · tan θg � 0,

1 − xr + tan θg · yr − bθg tan θg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
���������
1 + tan2θg

􏽱 � R.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

,en the arc trajectory is expressed as follows:

x − xr( 􏼁
2

+ y − yr( 􏼁
2

� R
2
. (11)

5. Experiment

In order to verify the global and local path planning per-
formance of the proposed method, we compare the pro-
posed hybrid method with other methods in different
environments. ,e experiment runs on a computer with a
CPU of I5-9400 and a RAM of 16GB, and the algorithm is
implemented through MATLAB programming simulation.
,e parameters are set as follows: the maximum velocity is
1m/s, the maximum angular velocity is 20°/s, the velocity
resolution is 0.01m/s, the angular velocity resolution is 1°/s,
the acceleration is 0.2m/s2, and the angular acceleration is
50°/s2. ,e parameters of the evaluation function are: α� 0.1,
β� 0.05, and c � 0.2.

5.1. Map and Environment Construction. In order to facil-
itate performance analysis, this article uses the following
settings for mobile robots and environmental maps:

(1) ,e grid method is used to mathematically model the
environment map, and the feasible and infeasible
areas are represented by white grids and black grids,
respectively.

(2) ,e starting point and ending point of the map are
given, with some unknown obstacles in the map.

(3) ,e mobile robot and dynamic obstacles are rep-
resented as dilated points.

(4) ,e dynamic obstacle in the map moves in a straight
line at a uniform speed, but the moving direction and
position of the obstacle are unknown.

(5) ,e mobile robot is equipped with sensors, which
can perceive the information of the map within a
limited range, such as the position and speed of
obstacles.

(6) ,e mobile robot moves at a constant speed and can
move in all directions.

5.2. Trajectory Comparison. On the static global path
planning problem, compared with the traditional A∗ algo-
rithm, the proposed algorithmmainly optimizes the planned
path trajectory. In a 20× 20 grid environment, global path
planning is performed with (1, 1) as the starting point and
(20, 20) as the ending point, and the performance of the
proposed method is compared with the classic A∗ algorithm
[18]. ,e reference standards for optimizing the trajectory
include the cumulative turning angles, the average turning
angles, and the path length. Figure 3 shows the optimization
process of path nodes, and the red line represents the
generated global path. Figure 3(a) is the path trajectory
generated by the traditional A∗ algorithm, Figure 3(b) is the
path trajectory generated with [18], and Figure 3(c) is the
path trajectory generated by the proposed method. ,e
statistics are shown in Table 2.

moving target

preview point

preview distance

mobile robot
planned
trajectory

RL

N

Md
ϕ1

θ1

O

o

y

x

Figure 2: Preview deviation angle tracking.
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It can be seen from Table 2 that compared with the
traditional A∗ algorithm, the proposed method has signif-
icantly reduced the cumulative turning angles, average
turning angles, and path length through path optimization
strategy. ,e method in [18] only deletes redundant points
for the trajectory. It can be seen from Table 2 that although
the proposed algorithm has a slight increase in path length
compared to [18], the cumulative turning angle and average
turning angle have been reduced, making the planned tra-
jectory smoother andmore in line with the kinematics law of

the mobile robot. In addition, the multiobjective strategy
adopted in this paper shortens the average distance between
nodes, which is more conducive to the selection of the
subsequent local path planning range.

5.3. Comparison of AlgorithmEfficiency. In order to alleviate
the impact of environmental changes on the experiments
and further improve the evaluation fairness, different data
are used to simulate different algorithms on the same
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Figure 3: Path planning results. (a) ,e path trajectory generated by the traditional A∗ algorithm. (b) ,e path trajectory generated with
[18]. (c) ,e path trajectory generated by the proposed method.

Table 2: Planned paths with different methods.

Method Nodes Cumulative turning angles (°) Average turning angles (°) Path length
Classic A∗ 15 488.49 32.56 33.77
[18] 5 128.92 25.78 25.89
Proposed method 6 85.41 14.24 26.05
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computer, and three environments of different complexity
are established. ,e complexity of the environment is set as
the size of the environment and the coverage of obstacles.

Table 3 compares the proposed algorithm with other
methods from the path planning time (the number of cycles
T) and the planned path length. From the results, it can be

found that the proposedmethod has achieved good results in
various environments and significantly reduced the com-
putational complexity. ,e reason is that in the proposed
method, a lot of the search nodes have been simplified
compared with the traditional A∗ algorithm and the method
in [18]. In terms of the number of turning points, the

Table 3: Comparison under different environments.

Method
20× 20 50× 50 100×100

Path planning time (T) Path length Path planning time (T) Path length Path planning time (T) Path length
Classic A∗ 22 28.7 26 82.8 155 169.7
[18] 18 25.6 22 67.2 85 77.3
Proposed method 10 26.1 16 61.9 42 74.8
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Figure 4: Path planned under given environment.
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Figure 5: Dynamic obstacle avoidance: (a) the robot is located in A and (b) the robot is located in B.
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proposed algorithm can reduce the number of turning
points in most cases. And through the improvement of
multiobjective optimization and heuristic function, the time
and space cost of path planning is greatly reduced.

5.4. Dynamic Environment Simulation. In order to verify the
dynamic programming ability of the proposed method, un-
known dynamic obstacles are introduced in the simulation,
and a simple environment is established for simulation
verification. In this environment, according to the given map
information, with S (1, 1) as the starting point and E (20, 20) as
the end point, global path planning is performed. After op-
timization, the path shown in Figure 4 is obtained, which is
represented by a red line. Select appropriate local subtarget
points on the path and add two local subtarget points A and B.

In this environment, the path is divided into three sub-
paths, namely SA, AB, and BE.When the robot is at the starting
position, theDWAdoes not detect any changes in themap, and
the robot travels from point S to the first local subtarget pointA
along the path. At this time, the robot detects a dynamic
obstacle M (blue square). According to the information
feedback from the sensors, the robot will collide with the
obstacle at the X position (red grid), as shown in Figure 5(a).

According to the sensor information, the traveling speed
of the dynamic obstacle M is less than the robot, and the
moving trajectory of M has an intersection with the path
trajectory of the robot. ,e EDWA is used to replan the path
in the local area and update the subpath AB. As shown in
Figure 5(b), the original path is represented by a dashed line,
and the path planned by the proposed method is represented
by a solid line.When the second subtarget point B is reached,
the obstacle is located on the left side of the robot, com-
pleting the dynamic obstacle avoidance process.

Table 4 shows the quantitative results of different algo-
rithms when unknown dynamic obstacles are introduced in
the 20× 20 grid environment shown in Figure 4. ,e tradi-
tional A∗ algorithm does not have the ability to avoid ob-
stacles. After encountering unknown obstacles, the path
planning fails, and the target location cannot be reached. ,e
proposed algorithm and [18] both have the ability to replan
the path when encountering unknown obstacles, and both
reach the target position.,e processing time and path length
of the proposed algorithm are better than those of [18].

Figure 6 shows the simulation results of the proposed
method for avoiding dynamic obstacles and chasing dy-
namic target points. ,e proposed hybrid algorithm can
realize local path planning and at the same time use the
preview deviation angle algorithm to complete the pursuit of
dynamic target points. And after combining the global path
information, the hybrid algorithm plans a path with a
shorter length and higher smoothness.

6. Conclusion

,is paper proposes a random obstacle avoidance method
for robot path planning that combines the improved A∗
algorithm with EDWA. By optimizing the search point
selection strategy and evaluation function of the traditional
A∗ algorithm, the search efficiency is improved, and a re-
dundant node deletion strategy is introduced to reduce the
path length. ,e EDWA is used to realize the real-time path
planning and make up for the shortcomings of the tradi-
tional A∗ algorithm with poor timeliness. While chasing
dynamic obstacles, the optimal path is planned in accor-
dance with the global path planning information. ,rough
comparative analysis, the effectiveness of the proposed
hybrid algorithm is proved. In the future, we plan to in-
corporate machine vision techniques to further explore the
path planning of mobile robots in complex environments
and multitask conditions.
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