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Mobile robots have been widely used in various sectors in the last decade. A mobile robot could autonomously navigate in any
environment, both static and dynamic. As a result, researchers in the robotics feld have ofered a variety of techniques. Tis paper
reviews the mobile robot navigation approaches and obstacle avoidance used so far in various environmental conditions to recognize
the improvement of path planning strategists. Taking into consideration commonly used classical approaches such as Dijkstra al-
gorithm (DA), artifcial potential feld (APF), probabilistic road map (PRM), cell decomposition (CD), and meta-heuristic techniques
such as fuzzy logic (FL), neutral network (NN), particle swarm optimization (PSO), genetic algorithm (GA), cuckoo search algorithm
(CSO), and artifcial bee colony (ABC). Classical approaches have limitations of trapping in localminima, failure to handle uncertainty,
andmanymore. On the other hand, it is observed that heuristic approaches can solvemost real-world problems and performwell after
some modifcation and hybridization with classical techniques. As a result, many methods have been established worldwide for the
path planning strategy for mobile robots. Te most often utilized approaches, on the other hand, are ofered below for further study.

1. Introduction

Since the last decade, mobile robots have been widely used in
various industrial sectors. Not limited only tomanufacturing
industries, mobile robots are now expended in agriculture,
space, military, medicine, education, rescue, and many more
[1]. A mobile robot can navigate intelligently in any envi-
ronment [2]: static, dynamic, uncluttered, uncertain, and
many more. Navigation is a technique for moving a robot
from one location to another in a variety of settings. Path
planning entails determining the most efcient and colli-
sion-free route from the starting point to the destination. It
is an essential task for mobile robot navigation [3]. Finding a
safe path planning for a mobile robot that travels the shortest
distance, follows the smoothest path, and consumes the least
amount of energy and time is a prerequisite for developing
mobile robot systems. Tus, the appropriate choice of op-
timization performance is a crucial phase in mobile robot
path planning.

Tis research uncovers a literature review of alternative
path planning and mobile robot navigation methodologies.
Te central difculties in mobile robots are navigation and
path planning, which have been the subject of decades of
research. As a result, several methodologies were presented
and utilized in the mobile robot path planning problem.Te
strategies for optimizing mobile robots may be divided into
two groups: nondeterministic or classical approach and
deterministic or heuristic approach. Te classical techniques
are Dijkstra algorithm, artifcial potential feld, probabilistic
roadmap, and cell decomposition. Te heuristic approaches
are, for instance, fuzzy logic, neutral network, particle swarm
optimization, cuckoo search optimization, genetic algo-
rithm, and artifcial bee colony. Figure 1 shows the overall
organization of the optimization techniques used by nu-
merous researchers.

In addition, hybridization approaches have recently been
used in path planning issues for mobile robots to get better
results than any other method, called evolutionary
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algorithms, such as hybridization of fuzzy and nondeter-
ministic algorithms or hybridization of neural networks and
nondeterministic algorithms [4].

2. Classical Approach

Classical methods were presented and established in the
1980s and 1990s. Before developing the heuristic approach,
classical approaches were often used by researchers to solve
path planning problems [5]. However, the main issue with
this method is that it has a high processing cost and fails to
adapt to the environment’s unpredictability, which is why it
is rarely adopted for concurrent performance [1]. Tis
section presents a few classical approach methods that are
popular in its class such as Dijkstra algorithm, artifcial
potential feld, probabilistic road map, and cell
decomposition.

2.1. Dijkstra’s Algorithm. Edsger Wybe Dijkstra introduced
Dijkstra’s algorithm (DA), the Dutch scientist, back in 1956
and published in 1959 [6]. Te shortest path issue between
one node and another in a directed graph is solved using this
method, one of the most commonly used techniques [7],
representing discretized workspace roadmaps [7]. Tis al-
gorithm is regularly applied in path planning. DA is a well-
known strategy; however, it is less valuable when the starting
and goal sites are far apart [8]. Nevertheless, Nato and Sato
[9] devise an expanded DA to counter the disadvantage.Tis
method is also used in an algorithm to fnd the shortest
evacuation path. It works by fnding the maximum value.
Te weight of each edge in the graph, the distance between
points, must have a positive value (weight more and equal to
zero). Below are the following steps:

(1) Set all distances to infnity and space to zero (0)
except for the beginning point.

(2) Make all nodes, including the initial point,
nonvisited.

(3) Assign the current node “C” to the nonvisited node
with the shortest current distance.

(4) For each of the current node’s neighbours “N,”
multiply the current distance of “C” by the weight of
the edges linking “C” and “N”. Set it as the new

current distance of “N” if it is less than the current
distance of “N”.

(5) Check the box next to the current node “C” to in-
dicate that it has been visited.

(6) Repeat steps 3–6 until the desired point has been
reached.

Kirono [10] used DA to determine the vehicle routes on
toll roads. Te pseudocode used in [10] is as in Figure 2.

Amaliyah et al. [11] use the DA to determine the shortest
distance between cities on the island of Java. In Broumi et al.
[12], this method has been redesigned to deal with the
situation when most network parameters are unknown and
expressed as neutrosophic values. Fuhou and Jiping [13]
presented a shortest path algorithm for massive data based
on DA. Tey proved that DA could save much memory and
be suitable for use in a network with massive nodes. An
improvement of this method and its application in path
planning have been presented in Fan and Shi [14], and it has
been shown that the upgrades are reasonable and practical.
Finally, in [15], the path planning problem in rectangular
mesh networks was addressed by fnding the shortest link
between each pair of sites using a Dijkstra-based greedy
algorithm.

2.2. Artifcial Potential Field. Khatib [16] introduced the
artifcial potential feld (APF) method for the mobile ro-
botics problem by believing the divergences between at-
traction and repulsion forces help robot movement inside
the environment. Te idea of the APF is that the mobile
robot movements are within the feld of forces.Te attractive
force attracts the robots to reach the goal position and re-
pulsive force keeps them away from each obstacle [17], as
shown in Figure 3.

One drawback of this APF method is that local minima
are present in the feld, so the planner might get trapped in
local minima. Tus, to keep the robot from being stuck in
local minima, Cheng and Zelinsky [18] used high-magnitude
attraction forces for brief periods of time at random places.
A multipoint APF has been utilized in [19] to solve obstacle
avoidance problems. Te use of potential felds has been
performed out by Luis and Tanner [20] for obstacle
avoidance as well as motion planning in a nonholonomic
mobile robot. Te author in [21] suggested using repulsing
force to lessen the oscillations and reduce a collision when
the obstacles are too close to the target. Te APF was used in
[22] to ofer a chain of communication relays in a dy-
namically changing environment with obstacles present
between unmanned aerial vehicles (UAVs). Dai et al. [23]
proposed a hierarchical APF method for UAVs’ path
planning in clustered environments.

2.3. Probabilistic Roadmap. Kavraki et al. [24] frst intro-
duced the probabilistic roadmap (PRM) in 1996 with the
central objective mind providing a path for a robot in a static
workspace. PRM has the ability for multiquery planning
[25]. Road maps refer to the connectivity of the robot’s
confguration free space plotted on a 1-dimension curve or
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Figure 1: Selected optimization techniques used.
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lines. Te roadmap has likewise been named highway
strategy [1], withdrawal approach, and skeleton system [3]. It
is used to construct road maps over the visibility graph as
well as the voronoi graph [1] to establish the shortest path
from the initial to the destination place. A PRM visibility
graph and a Voronoi graph are shown in Figure 4 below.

In the visibility graph, the obstacles are represented as
polygons [15]. Te vertical of the polygonal obstacles have
nodes connected. Terefore, road maps will be derived as
near as possible to obstacles, and path length will be min-
imized. In the Voronoi graph, the plane’s edges are separated
by using two nearby places on the obstacle’s edges as central
points, and then the region is split into subregions. Te road
maps keep as distant as possible away from obstacles; thus,
the path is safe but longer than the visibility graph [2]. A
slight variation in PRM was produced to determine the
shortest path using the slow collision checking approach in
[26]. In [27], a hybrid method to achieve path optimality was
provided by combining the Voronoi diagram with the
visibility graph in PRM. Also, [28] combined the Voronoi
diagram and visibility graph to get the optimal path. An
elastic PRM was presented in [29] for autonomous mobile
robot motion planning. Mika [30] proposed enhanced
sampling in PRM to minimize the confguration space. Te
PRMwas utilized to test the navigation in a 3D environment
for UAVs [31] and simulate multirobot motion planning
[32].

2.4. Cell Decomposition. Te cell decomposition (CD)
technique provides a fundamental idea for classifying the
free space and occupied space by obstacles between geo-
metric areas or cells [2, 3].Te breakdown of open space into
a series of simple sections is called a cell [2].Te goal of CD is
to reduce the search area by adopting a cell-based repre-
sentation. In addition, the aim is to produce a succession of
collision-free cells from the beginning position to the target
point [33]. Te initial CD steps can be summarized as
follows [31]:

(1) Divide open regions into basic, related areas known
as cells.

(2) Next, fgure out which open cells are connected and
create an availability graph.

(3) Next, identify the cells of the underlying and objective
units and search the availability chart for a route that
connects the underlying and objective cells.

(4) Finally, using an appropriate searching method, fnd
a path within each cell from the cells grouping.

Seda [34] in 2007 recommended the following steps for
CD:

(1) Separate the search area into cells, which are cor-
responding regions.

(2) Use neighbouring cells to make a chart. Vertices
signify cells and edge link cells with a standard limit
in such a graph.

(3) Create a succession of collision-free cells from the
start to the objective cells by identifying the goal and
start cells.

(4) Provide a route from the cell series that has been
constructed.

In short, this method difers the area into nonoverlap-
ping grids called cells and uses connectivity grids for

Algorithm 1 Dijkstra Algorithm
Set OpenList as a priority
OpenList.push(START)
Set CloseList as an empty set

Current = OpenList.top()
while OpenList.top() is not the GOAL do

OpenList.pop(Current)
OpenList.push(Current)
for Neighbors of Current do

f(Neighbor) = g(Neighbor)
Neighbor in OPenList and cost < f(Neighbor)

if Neighborα< Neighborβ then
Remove Neighborβ

end if
end for

end while
Get the solution by reversing path from GOAL to START

select a Neighbor with a lower cost in all Neighbor

Figure 2: Pseudocode for Dijkstra’s algorithm [10].
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Figure 3: APF-based navigation for a mobile robot.
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crossing from one cell to another cell from start cells to goal.
Tis method is classifed as exact, approximate, and prob-
abilistic CD depending on the assignment of the borders
between cells [3]. In an exact CD, the decomposition is
lossless [35], and the form and size of cells are not fxed [1].
On the other hand, the approximate CD has an approxi-
mated decomposition result as actual maps [36], and the grid
has a specifc shape and size [1]. Finally, the probabilistic CD
is like an approximate CD, excluding the cell borders, which
do not represent any physical meaning [37]—Figures 5 and 6
show CD systems in three classes.

Te probabilistic CD was presented in [37] for a mobile
robot path planning that brought milk from the fridge to the
kitchen table and provided a comparison study between
rapidly random trees. Te CD was compared with PRM in
[34] and showed that PRM could purge CD disadvantages.
Tunggal et al. [38] produced the fuzzy logic and CD to work
in an ambiguous environment for real-time operation. In
[39], a sensor-based CD model was developed to cope with
an unknown workplace for mobile robot duties by inte-
grating it with a laser scanning approach to avoid obstacles.
Gonzalez et al. [8] presented comparative studies on the
trajectories resulting from cell decomposition methods.

Finally, a hybridization of fuzzy logic with the CD method
was shown in [40] to apply to aerial vehicles. Table 1
summarizes a few works done in the mobile robot navi-
gation feld using a classical approach.

Te table above investigates the benefts and drawbacks
of classical approaches. Dijkstra’s approach is thought to be
simple and efcient enough to be used for somewhat big
problems. However, it cannot be employed in negative
weight without costing a signifcant amount of time and
wasting critical nodes. Artifcial potential feld, on the other
hand, have a basic structure and are straightforward to
execute. It may also be highly efcient. Local minima might
occur when the robot passes through a bounding area.
Roadmaps are possible in both simulated and real-life
conditions for known environments, but they are inefcient
when dynamic constraints and diverse limitations exist. As
with APF, cell decomposition is simple to construct but
results in infeasible solutions and complexity. As a result,
numerous researchers have employed classical algorithms,
which may be applied in a wide range of situations. Gen-
erally, classical approaches lack fexibility and adaptability
and are inadequate for dynamic environments. Terefore,
heuristic approaches are provided to solve the faws of these
approaches.

3. Heuristic Approach

A heuristic approach is created for cracking the problems
more quickly [41]. Te method has proven its efectiveness
and has become widely used in autonomous navigation [6].

3.1. Fuzzy Logic. Fuzzy logic (FL) is a technique for per-
suading a person’s intellect. FL is a unifed approximation
(linguistic) method for concluding uncertain facts using
uncertain rules [42]. In 1965, Lotf A. Zadeh was the frst
person who introduced the idea of the FL system [43]. Yet,
his vision was expanded later in many felds as FL serves as a
formal plan to represent and execute human experts’ heu-
ristic intelligence and observation based manners [3, 33].
Figure 7 is an example of a primary FL controller used in [1].

Hex Moor [44] was the frst to apply the FL concept to
robotic route planning and obstacle avoidance. Te Takagi-
Sugeno technique was then used to construct fuzzy robot
motion planning [45]. Similarly, in [46], fuzzy robot motion
planning was proposed utilizing the genetic algorithm with a
fuzzy critic. A hybridization algorithm employs FL and GA
for mobile robot path planning problems given in [47].
Wang and Liu [48] created the FL route planning approach
in an unknown environment. A mobile robot path planning
algorithm based on FL and neural networks was designed in
[49]. Finally, Chelsea and Kelly [7] presented an FL con-
troller for UAVs in a 2-dimensional environment, while Lei
et al. [50] did so in 3-dimensional space with full cell or
battery hybrid power.Ten, the navigation in 3-dimensional
space also was presented in [51] using FL for aerial robots
and [52] for underwater robots. In addition, the Mamdani
type-based FL controller tracks the moving obstacles for a
nonholonomic wheeled mobile robot [53].

GOAL

GOAL
START

START

Figure 4: Visibility graph (up);Voronoi graph (down).
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3.2. Neural Network. A neural network (NN) is an intel-
ligent system inspired by the natal sensory system, which
was initially developed by [54] for mobile robot route
planning. It mimics the neurons in the human brain [55].
Te NN has been used in various domains, including
discovery, search optimization, pattern recognition, im-
age processing, mobile robot route planning, signal
processing, and many more. NN consists of diferent plain
and highly interconnected processing elements that re-
locate the data to external inputs [1]. Te input layer, the
target, and the output of the NN path planning are shown
below in Figure 8.

Yangmin and Xin [56] combine the adaptive NN with
the particle swarm optimization to apply for mobile robots
where particle swarm optimization works as a path planner
that provides a smooth path for the adaptive NN controller,
which drives the mobile robot. Zhu and Yang [57] proposed
the NNmethod for dynamic task assignment for multirobot.
Singh and Parhi presented the NN technique to enable
mobile robots to travel in a known or unknown environment
in [58] and designed multilayer feed forward NN that
controls the steering angle in [59]. A novel hybrid approach
combining the NN with the FL was made in [60] for mobile
robot navigation. Likewise, in [61], the author presented a
hybridization approach between the FL and the NN for
manifold mobile robot navigation in a chaotic condition.

Te basic NN was modifed in [62] to form a guided
autowave pulse coupled neural network (GAPCNN) for
mobile robot movement in static and dynamic environ-
ments. Te GAPCNN’s purpose is to get fast parameter
convergence for the mobile robot. Otherwise, the NN
method has been utilized in mobile robot path planning
problems for aerial robots [63] by using MATLAB as shown
in Figure 9, humanoid robots [64], underwater robots [65],
and industrial robots [66], respectively.

3.3. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is an algorithm in path planning established by
Kennedy and Eberhart in [67]. Te social behaviour of a
group of birds, a school of fsh, or a fock of animals fnding
food and adjusting their environment as well as dealing with
predators [68] is used to simulate this nature-based heu-
ristics approach—these mimics label every population
member as particles, representing a potential solution for the
problem. PSO is identical to GA in that the procedure starts
with a randomly initialized population [69]. However, un-
like GA, each possible solution is given a random velocity.
Tus, the attainable solutions referred to as particles move
around the problem space. As shown in Figure 10, the basic
PSO concept is specifcally based on their placement and
velocity in the search area.
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Te PSO is used in numerous felds of mobile robot path
planning for navigation by a humanoid robot [70], an in-
dustrial robot [71], a wheeled robot [72], an aerial robot [73],
and an underwater robot [74] in an unknown and complex
3D environment. Zhang and Li [75] applied PSO to the
mobile robot in the dynamic environment to optimize its
travel time. A new path planning method based on the binary
PSO algorithm has been presented in [76]. Te authors have
proven that this approach rectifes the premature convergence
problem and obtains a shorter path length and convergence
speed near GA. Te exact contribution was proposed in [77].
Te simultaneous localization and mapping (SLAM) issue for
a MR was solved in [78] using a modifed PSO and a fuzzy
evolutionary approach. Tang, Li, and Jiang [79] addressed the
SLAM problem for MR navigation by using a multi-agent
particle flter in an unknown environment. Te PSO algo-
rithm for multiple MR was presented based on navigation in
[80]. Te PSO and Darwinian PSO (DPSO) systems were
modifed in [81] for multiple MR navigation in the real world

to derive mutual communication problems and collision-free
paths.Ten, Chen et al. [82] discovered that a human expert’s
control strategy could learn depending on the wall-following
robot navigating in the vague environment using a multi-
category classifer. In [83], a sensor-based PSO-fuzzy type 2
model for multiple MR navigation was presented. At the same
time, [84] derived an enhanced PSO and a gravitational search
algorithm that have been combined for multiple MR navi-
gation to develop an optimal path in a cluttered environment.
Yang et al. [85], on the other hand, improve the PSO approach
by taking into consideration the identifcation of the pa-
rameter for the Preisach model as the hanging issue for
decades. Li and Chou [86] developed a self-adaptive system
PSO technique (SLPSO) for solving the MR a minimization
multiobjective optimization problem and path planning issue.

3.4. Genetic Algorithm. Genetic algorithm (GA) is an op-
timization technique that refers to natural genetics and

Table 1: Summary of a few works performed using the classical approach.

Author Approach Objective Contribution

Amaliyah et al.
[11]

Dijkstra
algorithm

To fnd the shortest distance between cities on
the island of java.

Te Dijkstra algorithm fnds the shortest path
between 46 cities by removing the node closest to
the start node in Java. When utilizing Google Map
as a reference, the accuracy of node combination is
92.88 percent, according to an experimental run-

through.

Fuhou and
Jiping [13]

Dijkstra
algorithm

Te authors presented a shortest path algorithm
for massive data.

Te authors demonstrated that DA might save a lot
of memory and be used in a network with many

nodes.

Cheng and
Zelinsky [18]

Artifcial
potential feld

Te authors presented temporary high
magnitude attraction forces at a random place
to prevent the robot from getting trapped in

local minima.

A theoretical analysis of a behavior-based
navigation system for autonomous mobile robots is

provided in this study. In an unfamiliar
environment, the robot navigates and avoids

obstacles.

Saravana et al.
[19]

Artifcial
potential feld To solve obstacle avoidance problems.

An arc on a semicircle around an AUV’s bow with a
predetermined radius is discretized into

equiangular points, with the center representing the
current position.Tus, by calculating that point, the
vehicle may be steered in 2D space towards the spot

with the lowest potential.

Wein, et al. [28] Probabilistic
roadmap

Te authors combined the Voronoi diagram
and visibility graph to get the optimal path.

Te visibility–Voronoi diagram is presented as a
new form of a graph. A natural-looking route is
short, smooth, and maintains a certain level of

consent from obstructions. In addition, we present
a method for preparing a scene with confguration-

space polygonal obstacles.

Yuandong and
Oliver [29]

Probabilistic
roadmap

An elastic RM was presented for autonomous
mobile robot motion planning.

Unique feedback is ofered on motion planning
technique that is capable of meeting all these
motion restrictions and feedback needs. Tis

framework has been validated through simulation
and real-world trials with a mobile manipulator and

stationary platform.

Lingelbach [37] Cell
decomposition

Te PCD was presented for a mobile robot path
planning that brought milk from the fridge to
the kitchen table and provided a comparison

study between RRT.

Te suggested method has been used to handle rigid
body motions, maze-like challenges and path
planning difculties for robotic platforms.

Seda [34] Cell
decomposition

Te CD was compared with the roadmap and
showed that RM could purge CD disadvantages.

Te disadvantages of roadmap techniques for
fnding a solution with polynomial time is

discussed.
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natural selections that Bremermann frst discovered in 1958
[87].Tis fundamental idea led the GA to mimic the concept
of the survival of the fttest. Te fttest value represents every
member of the population. Te most vital members of the
population will survive, while the weaker members will be
abandoned. As per their ftness value, the survivingmembers
allow the genes to be passed down to the next generation by
bio-inspired operators like crossover, mutation, and selec-
tion. Tis randomized structure information was combined
to create a search algorithm that produced solutions to the
given problems to develop feasible paths.Te population can
be said to be in a binary string arrangement (refer to
chromosomes). Any bio-inspired operator must sustain
population diversity. By preventing early convergence, the
chromosome’s population is switched to another. Once the
populace converges, the algorithm will be terminated [1].
Te basic GA is outlined as follows:

(1) Primary population - Random populations are ini-
tiated with string and the objective function.

(2) Produce a new population based on a Darwinian
evolutionary theory with three genetic operators, as
shown in Figure 11.

(3) Continue to produce a new population until stop
conditions are reached as follows [15]:
Time limit: It has been operating for a certain
amount of time
Fitness value: It has reached the satisfactory ftness
level required for the algorithm
Generations: It has been generated the maximum
number of generations

Professor J. Holland initially proposed the application of
GA in computer science in 1975 [88]. Shibata and Fukuda
[89] provided GA in a static environment for the navigation
of MR. Te path planning strategy in a static environment
using GA for multiple MR is presented [90, 91]. A matric-
binary codes-based GA was proposed in [92] for a static and
dynamic environment for MR navigation. Navigation in a
dynamic environment with static and obstacles was
addressed in [93] for a multi-MR. In the face of shifting
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impediments, navigation in an uncertain environment is
presented in [94]. Te GA is used in numerous felds of
mobile robot path planning problems for navigating a hu-
manoid robot [95] and the underwater robot navigation
challenge in 3D path planning [96] and aerial robot [97, 98].
Te researchers also utilized the hybridization of GA with
other approaches for MR navigation for better outcomes in
path planning problems like GA-PSO [99], GA-FL [100],
and GA-NN [101].

3.5. Cuckoo Search Algorithm. Yang and Deb [102] ac-
knowledged the cuckoo search algorithm (CSA) as a path
planning method in 2009. Tis method mimics the cuckoo
species’ swarm intelligence or lackadaisical conduct when
depositing their eggs in other host nests. Tree main be-
haviours of CSA are as follows:

(a) In each iteration, each cuckoo is only permitted to
lay one egg at a time in a randomly selected nest
based on Levy fights.

(b) Te nest is full of high-quality eggs passed down to
the next generation (elitism).

(c) Te available host nests are rigid. Te probability for
the host birds to discover the egg laid by a cuckoo in
each nest is pa ∈ (0, 1). Te host bird has the option
of discarding the egg, dumping the nest, and starting
over.

CSA is considered a freshly developed heuristic algo-
rithm in mobile robot path planning; hence, its use is
limited. A hybrid approach between CSA and diferential
evolution (DE) for a 3D world that is unknown was pro-
posed by Wang [103] to increase the rate of global con-
vergence. Xie and Zheng [104] also suggested the hybrid
approach by combining the CSA and DE algorithm to solve
the 3D aerial vehicle path planning. In an unfamiliar en-
vironment for multiple mobile robots (MR) navigation,
[105] introduced a hybridization of CSA and an adaptive
neuro-fuzzy inference system to create improved outcomes.
Te algorithm is shown in Figure 12.

Te authors proposed a stand-alone CSA to navigate the
wheeledMR in a static, partially unknown environment.Te
simulation and experimental in real-time only showed a
small deviation error. Besides, the application of CSA can be
found in vehicle path planning problems [107] and sched-
uling [108].

3.6. Artifcial Bee Colony. Karaboga [109] developed the
artifcial bee colony (ABC) technique in 2005, swarm-based
intelligent foraging behaviour of honeybees activities for
searching their food. Tree rules in the ABC model are as
follows:

(a) Employed foraging bees: Employed bees will be sent
to food sources (the nearest colony) and scanned for
food quality.

(b) Unemployed foraging bees: After receiving infor-
mation from employed bees, unemployed bees ob-
serve the preferred food sources and evaluate the rich
sustenance sources.

(c) Food sources. Te forager’s bees belonging to rich
sustenance will distribute to the feasible food sources
while foragers surrender with weak food sources
causing objectionable criticism.

Selection

Select two string from a
population with the
probability based on their
objective function.

Elements of two parents
strings are crossed over
based on a certain rule to
create two child strings.
This operator divides the
sub-selected string into two
components and exchanges
their parts with each other
to produce the brand-new
population.

The operator ranks the string
based on their fitness value
and sub-selecting high
ranked chromosomes to
generate new population.

Mutation

Crossover

Elements in an arbitary
string is mutated with a
mutation probability.

This operator picks one or
a group of string to be partly
or totally randomized and
form a new population.

(i)

(ii)

(i)

(ii)

(i)

(ii)

Figure 11: Te concept of GA.

Algorithm 2 Cuckoo Search Algorithm

Objective function f (x), x = ( x1, x2, .. ., xd )T

Generate initial population of n host nests x1 ( i = 1, 2, ..., n ) 
While (t<Max Generation) or (Stop criterion) do
Get a cuckoo randomly by Levy fights
Evaluate its quality/ftness Fi 
Choose a nest among n (say j) randomly
If (Fi>Fj) then
Replace j by the new solution
end
A fraction (pa) of worse nests are| abandoned and new ones-vare built
Keep the best solutions (or nests with quality solutions)
Rank the solutions and fnd the current best
End while
Post process results and visualization 
End

Figure 12: Pseudocodes cuckoo search algorithm [106].
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Table 2: Summary of a few works performed using the heuristic approach.

Author Approach Objective Contribution

Moor and
Vachtsevanos [44] Fuzzy logic Te authors started using the idea of FL for

robotic path planning with obstacle avoidance.

Tis study aims to ofer a method for determining
the shortest path for a quadrotor to navigate in an

unfamiliar environment.

Wang and Liu [48] Fuzzy logic Te authors introduced the method of FL path
planning in an unknown environment.

Tis paper proposes a novel technique, the
minimal risk approach, for tackling the local path

planning problem in goal-oriented robot
navigation in unknown environments to avoid

the local minimum.

Xiang et al. [52] Fuzzy logic Te navigation in 3-dimension space was
presented for underwater robots.

Tis research aims to see how well fuzzy-logic-
based guiding works in one of the most important
areas of robotics: Marine robotic vehicles. Recent
improvements in fuzzy control include self-

tuning, direct/indirect adaptive fuzzy control, and
neuro-fuzzy control.

Zhang, et al. [63] Neural network We utilized mobile robot path planning
problems for aerial robots.

Te recommended controller directly generates
angular velocity commands using the outer

position loop. Simulations and actual fight tests
are used to validate the feasibility and efcacy of

the suggested control approach.

Zhu et al. [65] Neural network

Te Glasius bio-inspired neural network
(GBNN) method is presented to enhance the
path planning of autonomous underwater

vehicles.

An underwater grid map is constructed by
discretizing the two-dimensional underwater

environment. Ten, a dynamic neural network is
built on top of the grid map. As a consequence,

AUV can cover the workspace and avoid
deadlocks.

Sun, He and Hong
[66] Neural network Adaptive neural networks (NNs) are used in the

control design of a fexible robotic manipulator.

Te system is modeled using the lumped spring-
mass method. Full-state feedback control and

output feedback control are also ofered.

Kumar et al. [70] Particle swarm
optimization

Adaptive neural networks (NNs) are used in the
control design of a fexible robotic manipulator.

Te system is modeled using the lumped spring-
mass method. Full-state feedback control and

output feedback control are also ofered.
Experiments are conducted to validate further the
viability of the suggested NN controllers on the

Quanser platform.

Rendom and
Martins [73]

Particle swarm
optimization

To propose a particle swarm optimization
application for adjusting quadrotor attitude

and route following control.

Using Euler–Lagrange equations, path planning
will be carried out to reduce the snap cost

function and ensure a smooth trajectory. Several
simulations will be used to assess the

dependability of this technique.

Patle et al. [92] Genetic
algorithm

To demonstrate SLI via accurate and practical
data for the assertion.

Te suggested controller’s result is optimal in
terms of path and time when compared to
existing intelligent navigational controllers.

Kumar et al. [95] Genetic
algorithm

Navigation in the presence of moving obstacles
in an uncertain environment.

It was determined that the suggested navigational
controllers are efcient in path planning and

obstacle avoidance and may be used for
humanoid navigation in complicated settings.

Mohanty and
Parhi [106]

Cuckoo search
algorithm

Te authors proposed a stand-alone CSA to
navigate the wheeled MR in a static, partially

unknown environment.

Te results of simulations demonstrate that this
technique may provide a safe and efective path

design.

Contreras-Cruz
et al. [111]

Artifcial bee
colony To defne the optimal path in real-time.

Te suggested technique is compared to a
traditional probabilistic roadmap method (PRM)
in planning performance on a set of benchmark

issues, outperforming it.

Ding et al. [119] Artifcial bee
colony

To obtain an optimal path in 3D world and
unmanned helicopter for undergoing the

challenge mission, etc.

Te identifcation fndings using input-output
data from actual fying tests demonstrated the
superiority of CABC over the ABC and the

genetic algorithm (GA).
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Safari and Mahjoob [110] used the ABC algorithm for
MR navigation in a static environment through simulational
experiments. Te author [111] proposed using MR interior
navigation in a static environment to determine the best path
in real-time.

Ma and Lei [112] proposed the algorithm for a real-time,
dynamic environment. Te application of the ABC algo-
rithm in a static environment for multiple MR can be seen in
[113, 114]; wheeled MR was tested underwater [115]; au-
tonomous vehicle routing problem [116]; and aerial robot
[117]. Te modifed ABC algorithm has been performed for
the unmanned combat aerial vehicle (UCAV) navigation
problem in [118] to obtain an optimal path in a 3D world
and for the unmanned helicopter in [119] to undergo the
challengemission.With the help of swarm intelligence, [120]
ofered a strategy for the approach to the improvement of
ABC to tackle the necessary difculty in mobile robot path
planning. Table 2 summarizes a few works carried out in the
mobile robot navigation feld by using a heuristic approach.

Although the heuristic technique was developed to address
the limitations of the classical approach, it still has advantages
and disadvantages. Fuzzy logic may lessen reliance on envi-
ronmental information while also providing strong adapt-
ability and performance. However, because fuzzy rules are
frequently set by experts, robots are incapable of learning and
have limited fexibility. Neural networks may perform tasks
that a linear programme cannot, but large networks require a
long processing time. Particle Swarm Optimization is simple
to build and requires fewer parameters; however, it has a
problem regulating parameters. Multiobjective optimization
and stability are supported by genetic algorithms. It derives
from a high computation time. Cuckoo Search is also simple to
implement because only one parameter is required. However,
it can only be utilized to remedy persistent issues. Te search
space is restricted by the initial solution in a bee colony.

4. Discussion

Among the earlier cultivated methods, heuristic approaches
are comparatively novel and have signifcant scope in mobile
robot navigation. It has been observed that researchers are
now working on many optimization criteria in order to get
the best possible outcomes. Hybridization of the algorithms
with the optimal combination of optimization criteria results
in the greatest possible performance. A long time ago, most
of the studies were conducted using classical approaches. A
few limitations were identifed for the classical approach,
including trapping in local minima, computational inten-
siveness, demand in various environments, and the inability
to handle maximum uncertainty. Terefore, to overcome
these drawbacks, researchers come up with heuristic ap-
proaches. Classical approaches are usually utilized in a
known environment, while heuristic approaches are adopted
in an unknown environment due to their efciency over
classical approaches. It is observed that heuristic methods
can solve most real-world problems and perform well after
some modifcation and hybridization with classical methods
for better results. Heuristic approaches have been widely
used over a 3Dworkspace for underwater, unmanned, aerial,

and humanoid, while classical approaches are not intelligent
enough for independent path planning in a 3D environment.

5. Conclusions

Tis paper discusses the most often used classical and
heuristic techniques for autonomous mobile robot path
planning. Te Dijkstra algorithm, artifcial potential feld,
probabilistic roadmap, and cell decomposition were among
the classical approaches presented, as were heuristic ap-
proaches such as fuzzy logic, neural network, particle swarm
optimization, genetic algorithm, cuckoo search algorithm,
and artifcial bee colony. Tere is a lack of rigorous study in
the prior literature. Te previous research has focused
primarily on static and dynamic obstacles, respectively. Very
little research has been carried out on a variety of obstacles to
evaluate the problem adequately. Tus, the previous work
can be extended by focusing on the type, shape, or location
of obstacles using appropriate approaches.
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