
Review Article
Behavior Trees for Smart Robots Practical Guidelines for Robot
Software Development

Eric Dortmans and Teade Punter

Fontys University of Applied Sciences, Research Group High Tech Embedded Software, Eindhoven, Netherlands

Correspondence should be addressed to Teade Punter; teade.punter@fontys.nl

Received 20 May 2022; Revised 1 July 2022; Accepted 23 July 2022; Published 7 September 2022

Academic Editor: Ramadoni Syahputra

Copyright © 2022 Eric Dortmans and Teade Punter. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Behavior Trees are a promising approach to model the autonomous behaviour of robots in dynamic environments. Behavior Trees
represent action selection decisions as a tree of decision nodes. �e hierarchy of these decision nodes provides the planning of
actions of the robot including its reactions on exceptions. Behavior Trees enable �exible planning and replanning of robot
behavior while supporting better maintainable decision-making than traditional Finite State Machines. �is paper presents an
overview of lessons, which we have learned when applying Behavior Trees to various autonomous robots.We present these lessons
as a sequence of steps that is meant to support robot software practitioners to develop their systems.

1. Introduction: Need for
Embodied Intelligence

Robots are designed to get a particular task done in the real
world such as manoeuvre along shop �oors in warehouses,
or to support caring sta� in hospitals. �ey are made to
perceive the world using speci�c sensors, such as camera’s,
laser scanners, pressure sensors, and to act in this world
using speci�c actuators like grippers, arms, and wheels [1].

In general, an autonomous robot has a control unit that
takes sensor data as input, builds a model of the world, and
selects appropriate actions for the situation it thinks it is in.
To act in its world the robot has a set of built-in skills [2],
such as the ability to move around and to pick and place
objects. (see Figures1 and 2)

�e decision-making intelligence of an autonomous
robot is in its action selection mechanism that determines
which skill to activate for which state of the world.�e action
selection mechanism can be seen as the centre of the robot
brains. It determines its behavior and with that its
usefulness.

Designing a robust and maintainable action selection
policy is not an easy task. Not only the primary task of the

robot needs to be encoded as a sequence of actions but also
all possible real-world states must also be taken into account.
In general, a policy will comprise a combination of a de-
liberative plan of actions and a set of actions that are
triggered only when the state of the world requires it.

As the real world is too complex to deal with in full detail, it
is common practice for roboticists to make abstractions of it.
Every detail that is not relevant for the task at hand is abstracted
away. In this paper, we will use the following abstractions:

(i) We represent the state space of the world using a
collection of boolean conditions. Each condition is a
predicate that the robot can check for its truth value.
In this way, we basically divide the complex and
analogue state-space of the world into a limited
amount of discrete states.

(ii) Complex actuation algorithms (“skills”) of the robot
are abstracted as a collection of actions A that can
bring the world (with high probability) from a
precondition to a postcondition.

(iii) We assume that the conditions can be checked
instantaneously while actions may take some (un-
known) time to complete.

Hindawi
Journal of Robotics
Volume 2022, Article ID 3314084, 9 pages
https://doi.org/10.1155/2022/3314084

mailto:teade.punter@fontys.nl
https://orcid.org/0000-0003-2145-7424
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3314084

(iv) �e mapping of states S to actions A is represented
as a so-called action selection policy π: S⟶ A.

Action selection policies can be implemented in di�erent
ways. A traditional way to implement such a policy is by using
imperative programming language constructs, such as
statement sequences, if-then-else, and while constructs. �e
example in Figure 3 shows a procedural policy, speci�ed using
pseudocode, for an industrial robot that has to move objects.

�e example robot has four actions that can be selected:
“move_to_object,” “grab_object,” “move_to_goal,” and “relea-
se_object.” Something might go wrong, and the robot should
“stop.”�is results in a fairly simple �owdepicted in the left part
of the �gure. However, things get complicated when sensor
inputs are taking into account as well, see right part of Figure 3.

In general, action selection policies are strongly in�u-
enced by the environment in which the robots have to work.
Modern, autonomous robots usually have to operate in
unstructured environments and have lots of sensors to deal
with. Coding an action selection policy in the traditional,
procedural way leads to complex code that is hard to de-
velop, maintain, and improve.

�erefore, we prefer to model robot behavior explicitly
instead of implicitly coding it in some programming lan-
guage. Our preferred way of modelling is using Behavior
Trees (BTs) [3, 4]. BTs generalize Sequential Behavior
Compositions, the Subsumption Architecture, and Decision
Trees [5]. BTs are an e£cient as well as �exible way of
creating complex systems that are both modular and re-
active. �ese properties are crucial in many applications,
which have led to the spread of BTs from computer game
programming to many branches of AI and Robotics [6].
Several authors have already shown that Behavior Trees are a
promising approach to model autonomous behaviour in
dynamic environments [6–11], [25, 27].

A growing amount of literature discusses fundamental
aspects and applications of behavior trees for robotics [3, 6, 7].
Several authors provide formal de�nitions of Behavior Trees
[3, 4] or propose extensions [12]. Others provide algorithms
to implement goal-directed task plans using behavior trees
and provide convergence proofs [13–17].

�e goal of this paper is to bridge the gap between
fundamental research and practical application of Behavior
Trees for action selection in autonomous robots. We provide
guidelines how to construct BTs to implement reactive,
robust, and maintainable robot behavior. We also provide
advice how to build a �exible BT execution infrastructure.

Section 2 introduces the BT formalism and its main
syntax. Section 3 provides an overview of advantages and
disadvantages of using BTs. �e remaining sections provide
lessons we learned during BTapplication (Section 4) and are
aimed to help robot software engineers in building a �exible
execution architecture for BTs (Section 5).

2. BT Syntax and Semantics

A Behavior Tree [3] describes the decision-making policy of
a robot (or software agent or non-player game character) as a
rooted, directed tree of nodes. �e tree consists of �ow

control nodes, that represent the decisions in the tree, and
leaf nodes that are the actions to be executed and the
conditions under which those actions are executed.

Four di�erent �ow control types are distinguished:

(i) Sequence (⟶)—Execute child nodes one by one
until one fails. Execute the �rst child, and then the
next one until all children have succeeded.

(ii) Fallback or Selector (?)—Execute child nodes one by
one until one succeeds.Try the �rst child, and if it
does not succeed then try the next one until one of
the children succeeds.

(iii) Parallel (||)—Execute all child nodes in parallel until
a speci�ed number (e.g., all) of them succeed.

(iv) Decorator (◊)—Modify the execution (result) of its
(only) child node. For example: invert, time-out,
and repeat-until-success.

Leaf nodes represent the world conditions that are to be
checked and the actions that can be selected:

(i) Condition– Check the state of the world (model).
(ii) Action– Act upon the world using a particular skill.

In practice, most BT libraries have all kinds of variations
of the above introduced �ow control nodes and also allow to
extend the basic node set with domain-speci�c nodes [7].
Action and condition nodes are mostly domain and ap-
plication speci�c.

Figure 4 shows an example of a simple, intuitive BT of a
robot that has to pick an object, move it to a destination, and
place the object at that location.

�e action selection policy of the robot is fully de�ned by
the structure and semantics of the �ow control and leaf
nodes of the BT. �e hierarchy of decision nodes concisely
speci�es all possible sequences of actions of the robot, and
how these sequences are in�uenced by conditions.

Action selection (‘robot brain’)

Perception
World model

Actions
Skills

Sensors Actuators

Figure 1: Robot software architecture embodying intelligence:
perception, action, and world model.

POLICY: S → A

ACTION (A)STATE (S)

Object_Detected
Holds_Object
Is_At
...

Pick
Place
Move_To
...

Figure 2: Action selection.

2 Journal of Robotics

To be able to execute a BT, each node supports a “tick”
method. When this method is called (by its parent node), the
node is activated. If a node needs more time than one tick to
execute, the tick method returns status “RUNNING” to its
parent. When the node completed its task, its tick method
returns “SUCCESS” if its outcome was positive or “FAIL-
URE” otherwise.

A BT is executed by calling the tick method of the root
node at a certain frequency. Ticking the BTneeds to continue
while its root node returns “RUNNING” and stop when the
root node returns SUCCESS or FAILURE.

Each �ow control node passes the tick on to its child
nodes, one by one, or in case of a parallel node all at the same
time. Eventually the tick reaches a leaf node. �e tick allows
this leaf node to execute itself, i.e., to check a condition, or to
apply a skill. A �ow control node that receives a status
“RUNNING” from a child will return “RUNNING” to its
parent. How it reacts to receiving “SUCCESS” or “FAIL-
URE” status from a child depends on its type.

It is important to note that Sequence and Fallback nodes
tick their children one by one. �is automatically implies a
priority: the �rst child (from the left) is run before the second
child and so on. �is can be used to give certain actions
higher priority than others.

A Fallback node works like a logical “OR” function, but
instead of checking the status of its children all at once, it
ticks its children one by one, starting with the �rst, left-most
child. Fallback is often used for trying prioritized alternatives
that, when executed, have the same e�ect, i.e., would result in
the same postcondition.

A Sequence node works like a logical “AND” function,
but again checking its children one by one instead of all at
the same time. A Sequence enforces an all or nothing

transaction. It can be used to run a sequence of actions as a
transaction, or to always check a precondition before
starting an action.

3. BT Trade-Offs

Behavior Trees provide an alternative to Hierarchical State
Machines (HSMs). Both are equally expressive. We per-
ceived the following advantages when applying BTs [3]:

(i) Modularity, Reusability—BTs are modular on all
scales. Any subtree from a BTor even any complete
BT can be reused as a subtree in another BT.

(ii) Readability—�eir tree structure and modularity
makes BTs well readable and therefore better ana-
lysable and understandable by humans.

(iii) Maintainability—�e tree structure of BTs is better
maintainable than the transitions in HSMs. Deci-
sions in BTs are represented explicitly as nodes, and
are not hidden in state transition conditions.

(iv) Learnability—BTs can be learned by (machine)
learning programs [3] or generated from a for-
malized plan [15].

On the negative side, we should mention:

(i) Veri�ability- BTs are not yet supported by formal
veri�cation tools, contrary to HSMs. �is short-
coming can, however, be addressed by translating the
BTinto anHSM and then conducting the veri�cation,
see, e.g., the Carve project (https://carve-robmosys.
github.io/results/).

4. A Practical Approach to Define BTs

�is section aims at providing a structured approach for
robot practitioners for constructing robust and reactive BTs.
We will describe four steps. �ese steps result from our
lessons learned when applying BTs in robot research projects
at Fontys University of Applied Sciences. �e steps we will
elaborate on are:

(1) Describe context and purpose of the robot.
(2) Basic plan—describe a “good weather” BT.
(3) Create a robust plan.
(4) Add reactivity to the plan.

BehaviorTree

Sequence

MoveToObject PickObject MoveToGoal PlaceObject

Figure 4: Näıve BT with four action nodes and a “sequence”
control �ow node.

Figure 3: Example of a procedural policy: basic code (left), extended with sensor input (right).

Journal of Robotics 3

https://carve-robmosys.github.io/results/
https://carve-robmosys.github.io/results/

Specific idioms, needed to go from step 2 to 3, are in-
troduced as an intermezzo. We illustrate the steps by means
of a running example. (e example that we have chosen is a
mobile robot that picks up objects and places them at some
goal location.

4.1. Step 1: Describe Context and Purpose of the Robot.
Before even starting to create a BT, a context description of
the robot application helps to identify the relevant aspects to
be covered by your BT. (inking about the system context
first is a general good design principle, which is, e.g., ad-
vocated by the C4-model (https://c4model.com/). (e fol-
lowing aspects are helpful when defining the context for a
robot application: system goal, actions, scenarios, and states;
inspired by Winikoff and Padgham [18].

(e system goal describes what the robot should do. (e
goal for our robot is moving objects to a goal location. (is
should start the thinking process. What actions does the
robot need to perform?Which world and robot states should
we be able to check? What action to execute in which state?

(e actions describe which action skills are needed by the
robot to achieve its system goal? In case of our example
robot, obvious actions will be “move to object,” “pick ob-
ject,” “move to the goal,” and “place object.” In reality, there
are usually many more actions to consider.

A scenario describes the dynamics of the robot, by
linking the actions into a sequence, like first moving to an
object object, then picking it up, then moving to the goal
location, and finally placing it there. Although writing down
a scenario might look straightforward, in practice often
problems pop up when you think about all situations that
can interrupt the normal sequence of actions, e.g., when our
robot finds itself at a closed door or when its battery is
empty. Do always take non-functional requirements, like
power or safety, into account when thinking about scenarios.
Being aware of contingencies, and thinking in terms of “bad
weather” behavior for the robot, does in general help to
define a robust BT (see step 3). In general the “good weather”
scenario is just one of the scenarios to consider.

States are related to the scenarios because they define
when actions are eligible for execution. In our example, the
most important state of the robot is its position in the world.
Dependent on its position (at origin, at goal), appropriate
actions can be conducted, like: picking at origin, placing at
goal. In general, there are many more states to consider than
just the robot position, such as the location of the objects, the
state of the robot gripper, or the state of the robot battery.
Being aware of which states are relevant helps to refining the
BT (see step 2).

4.2. Step 2: Basic Plan, Define a “Good Weather” BT.
When the context and purpose of the robot are defined, it is
time to draw a first BT to describe the task that the robot has
to do as a sequence of actions. (is procedure should result
in a first, intuitive version of the BTwhich should work when
there are no disturbances, a so-called “good weather” BT.

In our running example, our BT is identical to the BTof
Figure 4, a simple sequence of actions: “MoveToGoal,”

“PickObject,” “MoveToGoal,” and “PlaceObject.” (is is the
same sequence that we would write down as a programmer.
Nothing gained yet by using a BT. However, the “good
weather” scenario is only valid under the following
assumptions:

(1) (e state of the world at the start is as required by the
scenario.

(2) All actions do eventually complete successfully.
(3) No external agent does interfere by changing the

world state, while the scenario is running.

In practice, it is unlikely that all these assumptions hold
true; in our example:

(1) (ere might not be an object at the pickup location.
(2) Grabbing the object might fail.
(3) (e robot might lose the object it has picked.
(4) (e robot might run out of (battery) power.
(5) An external agent, such as a human or another robot,

might take the object away and puts it at the goal
location.

(is implies that many more possible scenarios should
be incorporated in our BT. In general, a good BTshould be a
concise model that describes all the possible scenarios, i.e.,
all possible sequences of actions. In order to select between
various scenarios, we need to add conditions to the BT, i.e.,
we need to check the actual state of the world (including the
robot itself) to decide which action is eligible for execution.

4.3. Intermezzo: Adding Checks (Idioms) for Robustness.
(e BT that was derived in step 2 encodes a “good weather”
scenario and assumes that all actions go well. It does not
react on any disturbances and just gives up if one of the
actions fails. In the previous step, the robot is modelled by
ordering the actions as then . . . else, but not taking the if, the
condition, really into account. (ese ifs, the conditions or
guards, are added to ensure the appropriate context to
execute the action. We can do better than that by adding
checks to enrich the BT with other possible ways to execute
to make the BT more robust.

Several checks can be added. A precondition check can
be added to the action (or subtree) using a Sequence node, as
depicted in Figure 5 (left). A postcondition check can be
added using a Fallback node as depicted in Figure 5 (right).

A specific pattern that is constructed from these idioms
is the postcondition precondition action (PPA) pattern [3].
Several actions can have the same postcondition but with
different preconditions. By combining these alternatives
using a Fallback node, we can improve the robustness of the
BT. (e PPA pattern is a subtree which combines fallback to
alternative actions with precondition and postcondition
checks. (see Figure 6)

4.4. Step 3: Create a Robust Plan. Now, the idioms—to
achieve robustness—have been introduced, we can apply
them. Step 3 is about the creation of a robust BT, to execute a

4 Journal of Robotics

https://c4model.com/

deliberate, goal-oriented plan in an e�ective and e£cient
way. �e way to generate such a plan in the form of a BTcan
be done manually as well as automatically by a deliberative
planner.

A straight forward way to de�ne a robust BT is by using
the “Robust Logical-Dynamical Chain” pattern [17] Figure 7,
which is also described as “Implicit Sequence” in [3]:

(1) Reverse the order of the actions, de�ning most
downstream action �rst (reading from the left of the
tree).

(2) Replace the Sequence node by a Fallback node in
order to change from an explicit to an implicit
sequence.

(3) Add a precondition check to each action.

When we apply this pattern on our running example, we
reverse the order of the actions, compared to how they were
de�ned in the näıve BTor basic plan BT, Figure 4. �e result
is shown in Figure 8.

If the precondition of an action fails, we fall back to the
next (more upstream) action, and so on. �e order of the
actions is reversed because we are primarily interested in
running the last, most downstream action, because running
that action will give us the outcome we want.

Note that in this case a so-called “ReactiveFallback” node
is used. �is node always ticks all its children (from left to
right), even those that have already returned “SUCCESS”
during earlier ticks.

An alternative approach to create a deliberative plan is
expanding the BT by using “backward chaining”
[13, 14, 16]. �e method here is to iteratively expand
preconditions. We start by taking the last, most down-
stream action, and work our way backwards. �e pre-
condition of this action is replaced with the PPA subtree
which postcondition is the same as this precondition and so
on. (see Figure 9)

When applying backward chaining to our running ex-
ample, the result will be the following robust BT Figure 10.

Mart́ın et al. [15] describe yet another approach to
generate a deliberate BT. �ey start by generating a plan
using a PDDL-based planner [19] and then automatically
convert this plan into a robust BT for execution.

4.5. Step 4: Add Reactivity to the Plan. �e deliberative plan
for the robot ensures that the robot will do its primary task.
However, there might be contingencies to deal with. A robot
can only ful�ll its task when it remains safe and in good
working condition. While it is executing its deliberate plan,
problems may occur, like an empty battery. We do not know
if and when these problems will occur, but we should take
care of them as soon as possible. Handling contingencies is
of higher priority than executing a deliberate plan. �e
Fallback node already handles this priority. Its leftmost child
is ticked �rst and thus has the highest priority. From left to
right, priority goes down. Contingencies therefore have to be
added to the left of the existing deliberative subtree as
depicted in Figure 11.

In our running example, we introduce reactivity to the
deliberative plan by adding a check on battery power level of
the robot. If the power level will drop below a minimum level,
the robot is triggered to move to its charging station and starts
charging itself. �is functionality is added as rows 3 and 4 in
Figure 12, which is a supplement on the left compared to the
deliberate BT that was earlier created in Figure 10. �e
resulting Figure 12 presents a robust and reactive BT.

5. BT Execution Architecture

Now, the basic steps for creating a robust BTs have been
introduced and the BT-models have to be executed by real
code. �is section deals with the construction of a BT

Precondition–specifies what must be true to
execute a skill. It is the condition that applies to a
sequence of skills. In pseudocode: if pre do
action.

Post condition–specifies what will be true when a
skill is executed. It applies to a fallback of skills:
if the condition is not fulfilled another action
should be done. In pseudocode: if not post do
action.

→

pre action

?

post action

Figure 5: Pre- and post-condition de�ned.

post

?

→ →

preX preYactionX actionY

Figure 6: Postcondition-precondition-action (PPA) pattern
subtree.

preN pre2 pre2

?

→ → →

actN ... act2 act1

Figure 7: Representation of a robust logical-dynamical chain
(RLDC).

Journal of Robotics 5

execution architecture for the successful application of BTs
in robots.

Robot software is typically divided into three tiers [20],
comprising a deliberator (planner) tier, a task executor

(sequencer) tier, and a controller (skills) tier. �e deliberator
produces high-level task plans. �e executor is responsible
for the execution of those plans, by sequencing primitive
skills. In a reactive robot architecture [8, 21, 22], the executor
is in charge of driving the overall system by requesting new
plans from the deliberator and dispatching subtasks to
speci�c robotic controller (skill) modules. In this case, the
executor considers the deliberator as one of the available
skills.

�e three-tier architecture can be applied at multiple
abstraction levels. Some skills might be quite complex and
will require a three-tier structure themselves. For instance, a
“NavigateTo” skill needs a motion planner to calculate a path
in the map and a controller to follow that path while
avoiding collisions and a recovery skill that gets the robot out
of navigation problems. A BT-based executor could be used
to coordinate these subskills [8].

A deliberator is essential in applications where plans
need to be constructed at run time. Runtime planning takes
time but does also provide optimized and e£cient behavior.
For a lot of applications, a good enough plan can be con-
structed at design time, either manually or using an auto-
matic planner.�is holds in particular for reactive, behavior-
based robotic applications [23]. Design time generated plans
have the advantage that they can be validated or veri�ed
before deployment. Flexibility can be added to such a plan by
runtime switching between prede�ned subplans.

Skills [2, 12, 24] are basic building blocks of task plans. A
robotic manipulator arm typically has skills like “Pick” and
“Place” to be able to pick-up an object and place it somewhere.
A mobile robot typically has skills like “NavigateTo” to plan a
path and follow that path while avoiding objects. Basic skills
related to object detection, navigation, and arm motion are
common to a lot of robots. Added to those common skills,
speci�c application domains like manufacturing [24] or robot
soccer [25] require domain speci�c skills.

BehaviorTree

ReactiveFallback

Sequence

AtGoal PlaceObject HoldsObject MoveToGoal AtObject PickObject DetectedObject MoveToObject

Sequence Sequence Sequence

Figure 8: Result of step 3—robust logical-dynamical chain.

postN

?

?

→

→

→

→preN actN

actN-1

actN

postN

postN-1

preN-1

Figure 9: Expanding the BT using backward chaining.

BehaviorTree

Sequence

Sequence

Sequence

Sequence

Fallback PlaceObject

MoveToGoal

PickObject

MoveToObjectDetectedObject

AtObject

HoldsObject

AtGoal

Fallback

Fallback

Figure 10: Another result for step 3—by backward chaining.

contX contYreactX reactY
deliberate
subtree

?

→ →

Figure 11: Handling contingencies by adding reactivity to the plan.

6 Journal of Robotics

�e purpose of a skill is changing the state of the world
what the robot lives in. By using its sensors, the robot can
discover which objects are present in its world and where
these objects are probably located and what their status is.
Using sensor fusion and prediction, the robot can derive a
WorldModel out of these observations, containing all beliefs
that the robot has about its world. Skills can be implemented
in a reusable manner by parameterization. Objects and
locations can for instance be passed to skills as names of
objects or locations that are attached to physical objects and
locations by a lookup in the WorldModel.

For task planning and execution, it is important to note
that a skill has a precondition to be successful and an e�ect,
i.e., a prediction of the postcondition after its execution. For
the use of automatic planners, skills with their precondition
and e�ect are usually formally de�ned using, e.g., PDDL [19].

�e executor (sequencer) is the software module that
coordinates the execution of a task plan by sequencing skills.
In our case, the executor (sequencer) is a BT engine, i.e., a
software module that instantiates a BT in memory and ticks
it. �e structure of the BTmay be hardcoded in the source
code but may also be derived dynamically from a speci�-
cation �le (in XML or JSON format). We prefer the latter.

A common platform for robot software development is
the Robot Operation System (ROS (https://www.ros.org/))
[26]. ROS is a set of software libraries and tools for building
robot applications. ROS2 [27], the next generation of ROS, is
well suited for industrial applications. A successful BT exe-
cution architecture should be able to �t in this infrastructure.

Production quality, opensource Behavior Tree libraries, and
editors for robotic applications are available [7]. A good ex-
ample is BehaviorTree.CPP (https://github.com/BehaviorTree).
�is open source library is currently being used in essential
ROS2 packages, such as the Nav2 (https://navigation.ros.org)
navigation stack [8]. It is a C++ based library that reads and
runs behavior trees speci�ed in XML. �ese XML �les can be
created using any text editor but also a nice graphical editor is
provided, called Groot (https://github.com/BehaviorTree/
Groot). �is editor will not only be applicable to edit a Be-
havior Tree but does also monitor a BT-execution in real-time
or enables replay of a trace of its execution.

When applying the BehaviorTree.CPP for your BT-
implementation, all of the required BT control-, decorator-,
condition- and action nodes need to be implemented in
C++. A couple of frequently used BT nodes are provided.
When other application or domain speci�c nodes are
needed, they must be implemented as C++ plugins. Various
base-classes are provided to make it easier to construct such
new behavior tree plugins. A good practice is to make these
plugins as thin as possible and make them delegate the work
to specialized servers.

BTengines do usually support some kind of a blackboard.
�is way parameters can be set by one node and read by
another. BehaviorTree.CPP action and condition nodes can
exchange data via named and typed ports on a blackboard. All
input and output ports, including their name and type, must
be declared in the source code (header �le) of a node.

In ROS, an application is a computation graph of
interacting ROS nodes. ROS nodes interact by using any of
the following interface concepts: topics, services, and actions.
Topics are meant to be used for publish/subscribe commu-
nication of continuous data streams (e.g., sensor data, robot
state). Services are meant for remote procedure calls that
terminate quickly, e.g., for querying or setting the state of a
node or for calling a quick calculation. Actions should be used
for activating long running activities such as making a plan or
moving a robot to goal pose. An action can be preempted, i.e.,
cancelled before completion (see Figure 13).

A BT sequencer that is implemented in ROS should be a
node that runs the BT engine. It enables the BT engine to
read the BT structure from an XML �le and instantiates the
nodes and it makes it possible to tick the root node of the BT
with a �xed frequency, which will be somewhere between 10
and 1000Hz.

�e BTaction and condition plugins would act as action
clients of ROS Action Servers or service clients of ROS
Service Servers. Action and Service Servers would be
implemented in other nodes that could have been written in
C++ but could be implemented in Python as well. �is is
exactly how the ROS2 Nav2 navigation stack works [8].

6. Summary

Behavior Trees (BTs) are very well suited to model and
implement the robot behavior. �eir modularity is a big
advantage because it enables robot engineers to quickly
develop, adapt, and extend the behavior of a robot. Fur-
thermore, the visual representation of the BTs makes them

BehaviorTree

Sequence

ChargeBattery PlaceObject

MoveToGoal

ReactiveFallback

Sequence

Sequence

Sequence

Sequence

Fallback

Fallback

Fallback PickObject

AtGoal

HoldsObject

AtObject

DetectedObject MoveToObject

BatteryLow

Figure 12: �e reactive deliberative plan by adding a contingency
on battery level.

Journal of Robotics 7

https://www.ros.org/
https://github.com/BehaviorTree
https://navigation.ros.org
https://github.com/BehaviorTree/Groot
https://github.com/BehaviorTree/Groot

easier to read and to be modi�ed compared to (larger)
hierarchical state machines (HSM); in particular, when
supported by a graphical editor.

�is paper provides a hands-on approach for robot
software developers to apply BTs in their robot designs by:
(1) a way of working for the stepwise construction of robust
and reactive BTs and (2) the de�nition of a �exible archi-
tecture to execute BTs for ROS(2) based robots.

Data Availability

�e data used to support the �ndings of the study can be
obtained from the corresponding author upon request.

Conflicts of Interest

�e authors declare that they have no con�icts of interest.

Acknowledgments

�is work was supported by programming autonomous
robots in the applied research projects Raak MKB Close
Encounters and Raak Pro DurableCase. �e authors thank
Simon Jansen and Heico Sandee of Smart Robotics for
enabling the use of the example in Section 1.

References

[1] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction
to Autonomous Mobile Robots, MIT press, Cambridge MA,
USA, 2011.

[2] S. Bøgh, O. Nielsen, M. Pedersen, V. Krueger, and O. Madsen,
“Does your robot have skills?” in Proceedings of the 43rd
International Symposium on Robotics, Taipei, China, 2012.

[3] M. Colledanchise and P. Ögren, Behavior Trees in Robotics
and AI—an Introduction, Chapman & Hall, London, UK,
2018.

[4] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren,
“Towards a uni�ed behavior trees framework for robot
control,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), Philadelphia, PA, USA,
2014.

[5] M. Colledanchise and P. Ögren, “How behavior trees mod-
ularize hybrid control systems and generalize sequential be-
havior compositions, the subsumption architecture, and
decision trees,” IEEE Transactions on Robotics, vol. 33, no. 2,
pp. 372–389, 2017.

[6] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A
survey of Behavior Trees in robotics and AI,” Robotics and
Autonomous Systems, vol. 154, Article ID 104096, 2022.

[7] R. Ghzouli, T. Berger, E. Johnsen, S. Dragule, and
A. Wąsowski, “Behavior trees in action: a study of robotics
applications,” in Proceedings of the 13th ACM SIGPLAN In-
ternational Conference on Software Language, Chicago, IL,
USA, 2020.

[8] S. Macenski, F. Mart́ın, R. White, and J. Clavero, “�e
marathon 2: a navigation system,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
Daejeon, Republic of Korea, 2020.

[9] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. Hager,
“CoSTAR: instructing collaborative robots with behavior trees
and vision,” in Proceedings of the Robotics and Automation
(ICRA) IEEE International Conference, Philadelphia, PA,
USA, 2017.

bt file

bt engine

blackboard

condition
plugin

Service Server Service Server

WorldModel Skill_x Skill_y

Service Server Action Server Action Server

condition
plugin action plugin action plugin action plugin

Figure 13: Behavior tree execution architecture.

8 Journal of Robotics

[10] M. Colledanchise and P. Ögren, “How behavior trees gen-
eralize the teleo-reactive paradigm and and-or-trees,” in
Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Las Vegas, NV, USA,
2016.

[11] P. Ögren, “Increasing modularity of UAV control systems
using computer game behavior trees,” in Proceedings of the
AIAA Guidance, Navigation and Control Conference, Min-
neapolis, MN, USA, 2012.

[12] F. Rovida, M. Crosby, D. Holz et al., “SkiROS—a skill-based
robot control platform on top of ROS,” in Robot Operating
System (ROS), A. Koubaa, Ed., Springer, Berlin, China, 2017.

[13] Z. Cai, M. Li, W. Huang, and W. Yang, “BT expansion: a
sound and complete algorithm for behavior planning of in-
telligent robots with behavior trees,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 7,
pp. 6058–6065, Washington, DC, USA, 2021.

[14] M. Colledanchise, D. Almeida, and P. Ögren, “Towards
blended reactive planning and acting using behavior trees,” in
Proceedings of the International Conference on Robotics and
Automation (ICRA), Philadelphia, PA, USA, 2019.

[15] F. Mart́ın, M. Morelli, H. Espinoza, F. Lera, and V. Matellán,
“Optimized execution of PDDL plans using behavior trees,” in
Proceedings of the 20th International Conference on Auton-
omous Agents and MultiAgent Systems (AAMAS ’21), Rich-
land, SC, USA, 2021.

[16] P. Ögren, “Convergence analysis of hybrid control systems in
the form of backward chained behavior trees,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6073–6080, 2020.

[17] C. Paxton, N. Ratliff, C. Eppner, and D. Fox, “Representing
robot task plans as robust logical-dynamical systems,” in
Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems, Macau, China, 2019.

[18] M. Winikoff and L. Padgham, “(e Prometheus methodol-
ogy,” in Developing Intelligent Agent Systems: A Practical
Guide to Design, L. Padgham and M. Winikoff, Eds., John
Wiley & Sons, Hoboken, NJ, USA, 2004.

[19] M. Ghallab, A. Howe, C. Knoblock et al., “PDDL—the
planning domain definition language,” in Proceedings of the
AIPS-98 Planning Competition Committee, Pittsburgh, PA,
USA, 1998.

[20] E. Gat, “On three-layer architectures,” in Artificial Intelligence
and Mobile Robots, D. Kortenkamp, R. Bonnasso, and
R. Murphy, Eds., MIT/AAAI Press, London, UK, 1998.

[21] R. Bonasso, D. Kortenkamp, D. Miller, and M. Slack, “Ex-
periences with an architecture for intelligent, reactive agents,”
Journal of Experimental and Beoretical Artificial Intelligence,
vol. 9, no. 2-3, pp. 237–256, 1995.

[22] Y. Jiang, N. Walker, M. Kim et al., “LAAIR: a layered ar-
chitecture for autonomous interactive robots,” in Proceedings
of the AAAI Fall Symposium on Reasoning and Learning in
Real-World Systems for Long-Term Autonomy, Arlington, VA,
USA, 2018.

[23] R. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal on Robotics and Automation, vol. 2, no. 1,
pp. 14–23, 1986.

[24] M. R. Pedersen, L. Nalpantidis, R. S. Andersen et al., “Robot
skills for manufacturing: from concept to industrial deploy-
ment,” Robotics and Computer-Integrated Manufacturing,
vol. 37, pp. 282–291, 2016.

[25] L. de Koning, J. Mendoza, M. Veloso, and
R. van de Molengraft, “Skills, tactics and plays for distributed
multi-robot control in adversarial environments,” in RoboCup

2017: Robot World Cup XXI, H. Akiyama H., Ed., Springer,
Berlin, Germany, 2018.

[26] M. Quigley, B. Gerkey, K. Conley et al., “ROS: an open-source
robot operating system,” in Proceedings of the ICRAWorkshop
Open Source Software, Philadelphia, PA, USA, 2009.

[27] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and
W. Woodall, “Robot operating system 2: design, architecture,
and uses in the wild,” Science Robotics, vol. 7, 2022.

Journal of Robotics 9

