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Aiming at the problems of high computing energy consumption and long time in traditional UAV-assisted edge computing
research work, a computing resource allocation strategy using biological evolutionary algorithms in UAV-assisted mobile edge
computing is proposed by introducing UAV swarms and genetic algorithms. Firstly, it analyzes the communication model for
uplink transmission, the calculation model for local computing tasks, and UAV to perform computing tasks. Secondly, the
objective function and overall model of system are constructed by comprehensively considering multiple constraints. )en,
improved genetic algorithm is introduced into the model. On the basis of data encoding, crossover, mutation, and termination
operations, the optimization performance of algorithm is greatly improved by multiple iterations of fitness function. Finally, the
energy consumption of proposed algorithm and other two algorithms under the same number of iterations are compared and
analyzed by simulation experiments. )e experimental results show that the optimal solution, average, and variance of proposed
algorithm for energy consumption are 52.354, 50.326, and 0.224, respectively, and its performance is better than other two
comparison algorithms.

1. Introduction

Communication technology and Unmanned Aerial Vehicle
(UAV) technology, as an important technological founda-
tion of human information age, have developed rapidly in
recent years. With the continuous advancement of related
technologies, UAV technology has gradually developed from
military only to military, civilian, and commercial use, and it
has been widely used in various fields of society [1–3].
Following the development and widespread popularity of
mobile terminal devices has provided a broad stage for a
variety of intelligent applications. But at the same time, it
also brings many problems that cannot be ignored, such as
limited computing resources and limited battery capacity
[4,5]. )erefore, studying reasonable calculation methods to
reduce network congestion and transmission delay in the
application of mobile devices is the focus of current industry
research [6,7].

In response to related issues, the most forward-looking
and research-oriented algorithm is mobile edge computing.

It can marginalize cloud computing and information
technology services in the process of providing auxiliary
computing [8]. In addition, combined with the character-
istics of high flexibility and mobility of UAVs, related
problems can be better solved [9,10]. Reference [11] studied
the problem of maximizing computing efficiency in mobile
edge computing networks powered by wireless power in
partial and binary computing offloading modes. It maxi-
mized the calculation efficiency under the maximum-min-
imum fairness criterion through joint optimization of
energy harvesting time, local calculation frequency, off-
loading time, and power. However, this method did not
consider frequency division multiple access and cannot
realize D2D communication of different users on orthogonal
frequency bands. Reference [12] used drones as computing
servers to help user devices calculate its tasks or act as a
repeater for further offloading computing tasks to the access
point. )ey proposed a UAV-assisted mobile edge com-
puting architecture, which minimizes the weighted total
energy consumption under given multiple constraints.
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However, this method did not consider the problem of safe
interruption when the energy of user devices was limited.
Reference [13] studied the weighted sum energy minimi-
zation problem under the security offload rate constraint, the
calculation delay constraint, and the security interruption
probability constraint. )ey also considered the actual
passive eavesdropping scenarios and used confidentiality
interruption probability to measure the confidentiality
performance of computing offloading and characterized the
best confidentiality offloading rate and power allocation.
However, this method did not consider the balance between
task delay and network energy consumption. Reference [14]
proposed a UAV-assisted nonorthogonal multiple access
network, which used UAVs and base stations to provide
corresponding services for ground users. )ey realized UAV
trajectory optimization through alternate user scheduling
and obtain the optimal nonorthogonal multiple access
precoding vector by two schemes with different constraints
and maximize the total calculation rate on this basis.
However, this method did not propose a corresponding
solution to the highly coupled nonconvex weighting prob-
lem. Reference [15] proposed a mobile edge-assisted com-
puting method and a relay scheme, which defined the cost
function of trade-off between energy consumption and delay
time through research. Combined with the minimization of
cost function relative to the actual constraints, a closed-form
solution was derived, which improved the throughput of
uncompressed data in mobile peer-to-peer communication.
However, this method did not provide an optimal solution
to the nonconvex problem formed. Reference [16] gives
computing power to the moving drone and provides
computing offloading opportunities for mobile users with
limited local processing power. It studied mobile cloud
computing system based on drones and realized the quality
of service requirements for offloading mobile applications
on the basis of minimizing total energy consumption of
mobile. However, the effective utilization of resources in the
process of UAV relay providing services to mobile users in
this method is low. In the multi-UAV-assisted mobile edge
computing system, in [17] based on the partial computing
offload mode, joint optimization of user association, CPU
cycle frequency, power and spectrum resource allocation,
and UAV trajectory scheduling maximizing computing
efficiency problem was studied. )ey also proposed an it-
erative optimization algorithm with a double loop structure
to find the optimal solution for the problem of nonconvexity
and coupling between variables. However, this method did
not significantly improve the communication delay
problem.

Based on the above analysis, aiming at the problems of
high computing energy consumption and long time in
traditional UAV-assisted edge computing research work, a
computing resource allocation strategy using biological
evolutionary algorithm in UAV-assisted mobile edge
computing is proposed. )e basic idea is as follows:① First,
build a multi-UAV-assisted mobile edge computing system
overall model and corresponding objective function by
establishing communication model and calculation model.
② Optimize the computing resource allocation by

introducing improved genetic algorithm to improve the
optimization performance of algorithm. Compared with
traditional computing resource allocation strategies, the
innovation of proposed method lies in the following:

(1) )e proposed computing resource allocation strat-
egy studies the communication model of uplink
transmission, the computing model of computing
task time, and energy consumption and builds the
system model and objective function on this basis

(2) )e overall model and objective function of system
are constructed, and the optimization performance
of algorithm is improved by introducing an im-
proved genetic algorithm

2. System Model and Optimization Goal

2.1. SystemModel. )e overall model of system uses mobile
edge computing system including u user devices and v

UAVs, and user devices are randomly allocated in a specified
area, where u ∈ U 1, 2, 3, . . . , U{ }, v ∈ V 1, 2, 3, . . . , V{ }, and
the overall model of system is shown in Figure 1.

As shown in Figure 1, each user device of system model
needs to use a binary offloading strategy to perform its own
computationally intensive tasks. )e expression for com-
putationally intensive tasks is shown in

Ru � Tu, Xu, Qu( . (1)

In formula (1), Tu represents the total number of cycles
experienced after task Ru is completed. Xu represents the
amount of data offloaded after task Ru is completed. Qu

represents constraints, including time constraints and user
service quality constraints.

Completing the offloading task of calculation requires
three steps: data transmission, calculation execution, and
result return. )e focus is on the two parts of data trans-
mission and calculation execution, and the result return part
does not need to be calculated [18].

2.2. Communication Model. )e following is an analysis of
communication model in uplink transmission process, as-
suming that the offloading decision of user devices is
muv � 0, 1{ }, where v ∈ V and v ∈ U. )e meaning of off-
loading decision muv is as follows: when muv � 0, it means
that u user devices perform calculation locally; when M1, it
means that the u user devices offload the calculation to v

UAVs. )e offloading decision is that muv satisfies the re-
lationship shown in the following:


v∈V

muv � 1, ∀ u ∈ U. (2)

It can be seen from formula (2) that each offload task of
user devices can only perform calculations on one UAV.

User devices can be divided into two forms: fixed and
mobile.)e position of a fixed form of devices is fixed during
use. However, the position of a mobile device changes
during use. Due to the extremely fast data transmission
speed, the position of mobile form devices during the data
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transmission process can also be regarded as fixed [19]. At
this time, if the u user devices satisfy muv � 1, then u user
devices will offload the calculation to v UAVs. )e trans-
mission rate can be expressed by the following formula:

s � B · log2 1 +
PQ,uvzuv

α2
 . (3)

In formula (3), B represents the bandwidth of signal
transmission channel. PQ,uv represents the transmit power of
signal. α represents the noise power of UAV. zuv represents
the gain coefficient of signal transmission channel, which
can be calculated by the following formula:

zuv �
φ

G
2
v + L

2
uv

. (4)

In formula (4), φ represents the small-scale fading
component. Gv represents the flight height of v UAV from
the ground. In the calculation process, it is considered that
all UAVs have the same flight height from the ground. Luv

represents the horizontal distance between u user devices
and v UAVs.

2.3. Calculation Model. )e following is an analysis of time
and energy consumption of local computing tasks and UAV
computing tasks in the calculation process. First, analyze the
calculation model of local computing task.

It is assumed that the local computing capability of each
user devices is the same as Nu1, and the total number of
cycles experienced after the completion of computing task
Ru is Tu. )en the time t1 required for the u user devices to
complete the local calculation can be expressed by the
following formula:

t1 �
Tu

Nu1
, ∀u ∈ U. (5)

According to formula (5) power Pu1 required for u user
devices to complete the local calculation can be obtained, as
shown in the following formula:

Pu1 � cu · N
mu

u1 , ∀u ∈ U. (6)

In formula (6), mu is a coefficient, and its value is usually
set to 3. cu is the effective switched capacitance, and its value
is general.

)en, we analyze the calculation model of UAV to
perform computing tasks.

When offloading decision muv � 1, user devices will
offload the calculation to UAV for execution. At this time, it
is necessary to clarify whether user devices are within the
coverage of UAV, and the judgment basis for judging
whether u user devices is within the coverage of v UAVs is
shown in the following formula:

Fuv ≤Gu tan βv, ∀u ∈ U, v ∈ V. (7)

In formula (7), βv represents the communication angle of
v UAVs. Fuv can be calculated with the following formula:

Fuv �

�������������������

au − Av( 
2

+ bu − Bv( 
2



. (8)

In formula (8), (au, bu) represents the coordinate po-
sition of u user devices. (Av, Bv) represents the plane co-
ordinate position of v UAVs at the height of Gu from the
ground.

According to equation (7), if user devices are within the
coverage of UAV, then continue to analyze the calculation
model of UAV to perform computing tasks. Set the data
transmission time as ts,uv and task execution time as tr,uv;
then according to the proposed communication model, the
total time t2 spent by u user devices to execute tasks on v

UAVs can be obtained, as shown in the following:

t2 � muv · ts,uv + tr,uv , ∀u ∈ U, v ∈ V. (9)

In equation (9), the calculation methods for data
transmission time ts,uv and task execution time tr,uv are as
shown in

ts,uv �
Xu

suv

,

tr,uv �
Tu

Nuv

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

In formula (10), Nuv represents the computing resource
allocated by v UAVs to u user devices. All user devices
should meet the constraint conditions shown in equation
(11) in terms of time.

muv

Tu

Nu1
+ 

V

v�1
muv

Xu

suv

+
Tu

Nuv

 ≤ t. (11)

In formula (11), t is the total time.
At the same time, since the overall resources of UAV are

limited, Nuv shouldmeet the constraints shown in following:


u∈U

Nuv ≤Nv,max. (12)

It can be known from equation (12) that the resources
allocated to user devices by each UAV must be less than the
total amount of resources of UAV.

#1 UAV #2 UAV

User Equipment 
performs local 

calculations

Uninstall 
task input

Communication link 
Interfering link

Figure 1: Multi-UAV-assisted mobile edge computing system.

Journal of Robotics 3



)e energy consumed by the suspension and calculation
of UAV is very small and can be ignored [18]. Based on this
premise, the energy consumption of u user devices offloaded
to v UAVs can be calculated, and the result is shown in the
following formula:

Puv � PQ,uv

Xu

suv

, ∀u ∈ U, v ∈ V. (13)

In formula (13), PQ,uv represents the transmit power of
signal. Xu represents the amount of data offloaded after task
Ru is completed. suv represents the transmission rate of
signal.

2.4. Optimization Goal. )e following is to analyze and
optimize the objective function of system model. For the
overall system model proposed above, the corresponding
objective function is given as shown in the following:

min
MUAV,Mr,MN{ }


u∈U


v∈V

muv · PQ,uv ·
Xu

suv

+ 
u∈U

Puv

Tu

Nuv

. (14)

In formula (14), MUAV represents the position matrix of
UAV. Mr represents the offloading matrix of task. MN

represents the allocation matrix of UAV resources.
)e constraint conditions are shown in the following:

(1) muv � 0, 1{ }, ∀u ∈ U, v ∈ V,

(2) 
u∈U

muv � 1, ∀u ∈ U,

(3) muv

Tu

Nu1
+ 

V

v�1
muv

Xu

suv

+
Tu

Nuv

 ≤ t, ∀u ∈ U,

(4) 
u∈U

Nuv ≤Nv,max, v ∈ V,

(5) Fuv ≤Gu tan βv, ∀u ∈ U, v ∈ V.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

In formula (15), the constraint condition (1) indicates
that all tasks can only be executed locally or offloaded to
UAV for execution. Constraint (2) means that if tasks are
offloaded to UAV for execution, then each task can only be
offloaded to a certain UAV for execution. Constraint (3)
represents the delay constraint of user devices. Constraint
(4) means that the resources allocated to user devices by each
UAV must be less than the total amount of resources of
UAV. Constraint condition (5) represents UAV coverage
range constraint.

3. Computing Allocation Strategy Based on
Improved Genetic Algorithm

Due to the many constraints of objective function, the difficulty
of solving the optimal computing offloading strategy is greatly
increased, and it is difficult to calculate the optimal solution in
polynomial time. )erefore, an improved genetic algorithm is

introduced to find the optimal solution of task offloading
strategy. )e basic principle of genetic algorithm is biological
evolution process based on natural selection and genetics
mechanism. It is usually used to solve nonlinear, global, and
more complex combinatorial optimization problems, and it is a
high-performance computing model [20]. )e main idea is to
simulate the natural selection concept of survival of fittest in
nature. By converting the problem-solving process into a process
similar to the crossover and mutation of chromosomal genes in
biological evolution, on this basis, iterative calculations are used
to gradually approximate and obtain the optimal solution.

3.1. Coding and Initial Population. )e traditional genetic
algorithm does not directly process the parameters of so-
lution space but first encodes parameters and then continues
to process [21]. )e encoding operation is to convert pa-
rameters in the solution space into individuals or chro-
mosomes in the space. )ese individuals or chromosomes
are arranged according to a specific structure of genes, and
the process of parameter conversion is the process of
encoding. After the parameters are encoded, crossover,
mutation, and genetic operations can be carried out more
conveniently.

In general, encoding methods include gray code
encoding, binary encoding, and symbol encoding. From the
analysis of communication model in Section 2.1, it can be
known that the user’s offloading decision muv is only 0 and 1,
which can be regarded as binary variables. )us, the choice
of binary encoding can greatly reduce the complexity when
choosing the encoding method. When encoding, first set the
initial population set as P0,
P0 � B1, B2, B3, . . . , Bk, . . . , BK , where Bk represents the k
individual or chromosome and satisfies |P0| � K. U repre-
sents the total number of user devices in network, and U

binary digits are used to construct the k individual or
chromosome: Bk � bk

1, bk
2, bk

3, . . . , bk
u, . . . , bk

U ,
k ∈ 1, 2, 3, . . . , K{ }. On this basis, the specific steps of
population initialization algorithm used to generate initial
population set P0 can be obtained, as shown in the following:

(1) First, let k � 1 and randomly generate a random
number that obeys a uniform distribution in the
range of [0, 1] as the probability of randomly gen-
erating a gene u in the k individual or chromosome.
)is random number is denoted as pk

u.
(2) Let u � 1.
(3) Judge whether pk

u is less than or equal to 0.5.
(4) If pk

u is less than or equal to 0.5, then bk
u � 0; oth-

erwise, bk
u � 1.

(5) Execute u � u + 1 operation, and return to step (3)
until u � U is established, and then jump out of loop.

(6) Execute k � k + 1 operation, and return to step (2),
until k � K is established, the end.

3.2. Fitness Function. )e main function of fitness function
is to evaluate the performance of an individual or chro-
mosome, and its principle basis is the degree of fitness of
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individual in the natural environment [22]. )e fitness
function can be used to distinguish the pros and cons of
different individuals or chromosomes. If the value of fitness
function is larger, it means that the individual or chro-
mosome is more adaptable in the natural environment, and
it is easier to be retained in genetic evolution, and the
corresponding genetic decision-making performance is
better.

According to the objective function shown in equation
(14), the reciprocal of total energy consumption of all user
devices is used as the fitness function, as shown in the
following equation:

F �
1
C

�
1

i∈R 1 − Lj Cj + LjCj  + i,j∈R Li − Lj



Cij 
.

(16)

In formula (16), C represents the total energy consumed
by user devices. )e Li and Lj subtables indicate the exe-
cution locations of i and j tasks. Ci and Cj represent the total
energy consumed to perform the i and j tasks, respectively.
Cij represents the total energy consumed in the process of
receiving data.

According to the fitness function shown in formula (16),
the pros and cons of different individuals or chromosomes
can be evaluated and distinguished. It can be seen from
formula (16) that the smaller the total energy consumption
of a certain body or chromosome, the larger the fitness
function value, and the easier it is to be retained in genetic
evolution. Taking the fitness function value as the basic basis
can determine the probability of different individuals or
chromosomes appearing in the next generation. On this
basis, some individuals or chromosomes are selected from
the parents according to roulette selection method to form a
group of offspring.

3.3. Genetic Operation

3.3.1. Cross Operation. )e main principle of crossover
operation is that some genes in a certain body or chro-
mosome in the parent are exchanged according to a specific
rule and produce offspring [23].

For example, in single-point crossover, the crossover
process is to randomly select a point as crossover point in a
certain body or chromosome in the parent. Besides, based on
the crossover point, the genes on the left and right sides of
crossover point in the parent or chromosome are exchanged,
and two new chromosomes are generated. )e principle
process is shown in Figure 2.

3.3.2. Mutation Operation. )e main principle of mutation
operation process is based on a specificmutation probability,
by replacing part of gene of an individual or chromosome in
the parent with other genes. )e purpose is to generate new
individuals and maintain the diversity of entire population
to a greater extent, thereby enhancing the overall local search
capability of genetic algorithm to a certain extent [24].

In general, variation can be divided into multiple vari-
ations such as basic position variation, uniform variation,
boundary variation, and Gaussian approximation variation.
In order to be consistent with the encoding method, the
binary-based basic bit mutation method is selected here.)e
basic principle of mutation process is shown in Figure 3.

3.4. Genetic Termination Condition. After genetic crossover
and mutation operations, a new offspring population can be
obtained according to the parent population. On this basis,
the minimum energy consumption objective function is
solved according to the proposed multiple constraints, and
the performance of newly generated offspring population is
evaluated. Within the specified maximum number of iter-
ations, as long as the number of iteration calculations does
not exceed the set maximum number of iterations, then
continue and repeat the crossover and mutation operations
in genetic algorithm until the termination condition of
objective function solution of genetic algorithm is met. If the
number of iterative calculations reaches the set maximum
number of iterations or fitness function of best fitness in-
dividual in the successive generations of offspring pop-
ulations is still not significantly improved. )en it is
considered that the termination condition for solving ob-
jective function is reached and the iterative calculation is
stopped.

4. Experiment and Analysis

4.1. Simulation Setting. )e simulation experiment platform
uses MATLAB mathematical software, version 2019a. )e
computer hardware conditions used in the simulation are as
follows: CPU is i7-7200U; running memory size is 4G.
During the simulation experiment, overall horizontal area of
the experiment was set as a square area with an area of
100m× 100m. )e user devices are randomly distributed in
the test area, and specific parameters of simulation exper-
iment are shown in Table 1.

4.2. Simulation Analysis. Different parameter settings have
different effects on the performance of genetic algorithm,
such as the number of iterations. Too many iterations will
increase the amount of calculation and prolong calculation
time of algorithm. Too few iterations will cause the algorithm
to fail to converge, and the optimal solution cannot be
obtained. In order to make algorithm obtain the best per-
formance, firstly, the overall performance of proposed

-1

1 0 -1 0 1

0 -1 1 0 1

1 0 1 0 1 0 -1 0 1

Crossing

Figure 2: )e basic principle of single-point crossing.
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algorithm is simulated and analyzed according to the
number of genetic iterations. )e relationship between the
number of iterations and the total energy cost of algorithm is
shown in Figure 4.

It can be seen from Figure 4 that the total energy cost of
algorithm is different under different iteration times, and the
smaller the number of iterations, the greater the total energy
cost of algorithm. With the gradual increase in the number
of iterations, the total energy cost of algorithm also gradually
decreases. When the number of iterations reaches about 35
times, the total energy cost of algorithm no longer changes.
)is is because when the number of iterations is too small, it
will stop the iterative calculation if the algorithm fails to
converge, and the optimal solution cannot be found. )us,
the energy cost of algorithm will be greater. After 35 iter-
ations, the algorithm has found the optimal solution, and
increasing the number of iterations will not improve the
performance of algorithm.

)e task completion time of resource allocation strategy,
the energy consumption required to calculate the specific
location of UAVs, the influence of number of UAVs on the
energy consumption of algorithm, and the influence of
number of user devices on the energy consumption of al-
gorithm are all important evaluation indicators to measure
the strategy performance. )e following is a comparative
analysis of algorithm proposed in this paper and algorithms
in [12] and [17] under the same conditions for the above four
evaluation indicators.

Firstly, calculate the task completion time for different
algorithm resource allocation strategies. )e average task
completion time of different algorithms under different
number of tasks is shown in Figure 5.

It can be seen from Figure 5 that, in the case of different
number of tasks, the algorithm proposed in this paper has
the smallest average time for task completion compared with
the algorithms in [12] and [17]. And as the number of tasks
increases, the growth rate of average task completion time is

relatively small. )is is because the computing resource
allocation strategy proposed in this paper can better pri-
oritize the migration of tasks to any UAVs with the fastest
response time. Although [12] combined UAV and edge
computing methods and proposed an overall architecture, it
did not optimize the solution process of objective function,
and the solution process took more time. Reference [17]
used an iterative optimization algorithm to study the overall
calculation efficiency maximization. However, the calcula-
tion models of time consumption and energy consumption
of local tasks and UAV tasks were not analyzed and im-
proved in detail, and time and energy consumption were not
saved to the best.

)e following is an analysis of energy consumption of
tasks performed by different resource allocation strategies.

1 0 1 0 1 1 0 1 0 1

1 0 1 0 1 0 0 1 0 1

Variation

Figure 3: )e basic principle of bit variation.

Table 1: Simulation experiment parameters.

Parameter Value
Number of user devices 200/400/600
Number of UAV 4/10/15
Transmit power (W) 1
)e size of transmitted data (kb) 5×104

)e number of cycles to complete the task 109

Total time (s) 3
Channel bandwidth 106

Energy consumption for local execution (W) 1
)e total resource size of drone (kb) 1010

)e height of drone from the ground (m) 30
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Figure 4: )e relationship between the total cost of algorithm and
the number of iterations.
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Figure 5: )e average time for different algorithms to complete
tasks under different number of tasks.
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When the number of UAVs is the same, the energy con-
sumption of different strategies when different numbers of
user devices are adopted is shown in Figure 6.

It can be seen from Figure 6 that, under the premise of
using the same number of UAVs, the energy consumption of
three algorithms will increase as the number of users in-
creases. )is is because an increase in the number of users
means an increase in the number of tasks, and more energy
will be consumed to performmore tasks. At the same time, it
can be seen that the algorithm proposed in this paper
consumes the least energy in the case of different numbers of
users. And as the number of user devices increases, the
growth rate of its energy consumption is also the lowest.

When the number of user devices is the same, the energy
consumption of different strategies when different numbers
of UAVs are adopted is shown in Figure 7.

It can be seen from Figure 7 that, under the premise of
using the same number of user devices, the energy con-
sumption of three algorithms will decrease as the number of
UAVs increases. At the same time, it can be seen that the
algorithm proposed in this paper consumes the least energy
when using different numbers of UAVs. Besides, as the
number of UAVs increases, the average rate of change in
their energy consumption is also the largest.

)e following is an analysis of three algorithms to cal-
culate energy consumption of a specific UAV location under
the same conditions. )e energy consumed by using dif-
ferent algorithms to calculate UAV position is shown in
Table 2.

In Table 2, Average represents the optimal solution of
algorithm under the same number of iterations, Optimal
represents the average value of all solutions under the same
number of iterations, and Variance represents the variance
of solution under the same number of iterations. It can be

seen that, compared with the other two algorithms, the
optimal solution and average value of algorithm under the
same number of iterations are relatively small, 52.354 and
50.326, respectively. )e variance value of its energy con-
sumption is 0.224.)is shows that the algorithm proposed in
this paper has the best performance.

)e allocation strategy proposed in this paper can always
consume less energy than the other two algorithms when the
number of user devices or the number of UAVs changes.
)is is because the improved genetic algorithm is introduced
into the model, and the optimization performance of fitness
function is improved by operations such as coding, cross-
over, and genetics and further reduces the energy con-
sumption of computing resource allocation strategy. As the
number of user devices or the number of UAVs changes,
genetic operations and iterative calculations will be per-
formed again, and the optimal resource allocation will al-
ways be maintained. )e calculation model is analyzed in
detail, which makes up for the defect that the objective
function solving process is not optimized in [12] and the
energy consumption cannot be saved to the best in [17].
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Figure 6: )e relationship between energy consumption and the
number of user devices of different algorithms.
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Figure 7: )e relationship between energy consumption and the
number of UAV of different algorithms.

Table 2: )e energy consumed by calculating the location of UAV
by different algorithms.

Algorithms Index Energy consumed

Algorithm in this paper
Average 52.354
Optimal 50.326
Variance 0.224

K-means
Average 60.469
Optimal 58.978
Variance 0.523

Fuzzy C-Means
Average 65.642
Optimal 64.434
Variance 0.573
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5. Conclusion

Aiming at the problem of traditional UAV-assisted edge
computing, this paper proposes a computing resource al-
location strategy using biological evolutionary algorithms in
UAV-assisted mobile edge computing. Analyze the con-
straints of proposed objective function in many aspects,
which improves the overall computing performance of
system model to a certain extent. )e simulation analysis of
proposed algorithm is carried out by simulation experi-
ments, and experimental results show that, compared with
traditional algorithms, the average time and energy con-
sumption of proposed algorithm are the smallest. In addi-
tion, its average task completion time increases with the
increase in the number of tasks, and the increase rate of
energy consumption with the increase in number of user
devices is the smallest. )e optimal solution of energy
consumption under the same number of iterations, the
average value, and variance are the smallest, and the overall
performance of algorithm is the highest. Although the
proposed method has achieved some results, the flight al-
titude of UAV is often not fixed in the actual scene. In the
future, the performance of the proposed algorithm in task
calculation time and energy consumption in the case of
random flight altitude of UAV will be deeply studied.
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