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To better solve the problems associated with optimal pathfinding and dynamic obstacle avoidance in the path planning of mobile
robots, a hybrid path planning scheme combining modified gray wolf optimization (MGWO) and situation assessment
mechanism is proposed. Firstly, a MGWO algorithm is proposed to plan a global path. Secondly, different situational factors for
robots in different regions are extracted from the fusion results of 2D laser measurements and image data, and a Bayesian network
model of robot action selection is established. Then, the situational factors of the robot are used as evidence for reasoning. Based
on the posterior probability value in the inference result, the grid to be moved is selected and the traveling direction of the robot is
adjusted in order to take advantage of both global path planning and local dynamic obstacle avoidance. The simulation results
show that the proposed MGWO has better optimization performance. When combined with a situation assessment mechanism, it

realizes dynamic obstacle avoidance while keeping the path length as short as possible.

1. Introduction

With technological advancement and social development, the
level of intelligence and automation of mobile robots has
gradually improved, and it has gradually penetrated into
people’s daily life [1]. In the field of mobile robots, path
planning is one of the most important requirements, which is
the key technology to realize autonomous robot navigation [2].

The mobile robot needs to plan a short, energy-efficient,
and safe path from the initial position to the target position,
and it must be able to avoid static and dynamic obstacles
along the way. At the same time, mobile robots should have
certain computing capabilities of calculating the shortest and
safest path in real time to reduce time and energy con-
sumption [3].

This article proposes a mobile robot path planning
scheme based on the MGWO and situation assessment
mechanism. Firstly, a global path is planned with the pro-
posed MGWO. Secondly, a situation assessment mechanism
is used to fuse the data from multiple sensors equipped on
the robots, obtaining situational factors from multisensor

information and inferring the impacts of the detected ob-
stacles on the robot movement so as to determine the next
move. Moreover, the corresponding action is carried out to
find the shortest path or the second shortest path from the
starting position to the destination without any collision
with the obstacles.

The contributions of this article are listed as follows:

(1) To solve the problem of global path planning of the
mobile robot, a modified gray wolf optimization
algorithm (MGWO) is proposed in which the
population diversity is enhanced by logistic chaotic
mapping. An adaptive adjustment strategy of control
parameters is utilized to achieve a balance between
search and development capabilities. With the static
weighting average strategy, the population position
is updated to speed up the convergence speed,
thereby boosting the performance in finding an
optimal global path.

(2) From the perspective of cognition, the mechanism of
a situation assessment is introduced to the
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application of mobile robots, which provides a new
solution for the local path planning of mobile robots.

(3) A hybrid planning scheme based on the divide-and
conquer concept is proposed. The initial path based
on global environment information is obtained with
the MGWO algorithm. When an obstacle is detected,
the situation assessment mechanism is used to avoid
the obstacle through local planning and then back to
the global path. Repeat the process until the desti-
nation is reached.

The rest of this article is organized as follows. Section 2
introduces the related path planning methods. The details of
the proposed MGWO are explained in Section 3. Section 4
describes the proposed situation assessment mechanism. In
Section 5, a comprehensive comparative analysis is con-
ducted based on the results obtained from a number of
experiments. Finally, Section 6 concludes the full article.

2. Related Works

According to the amount of situational information ac-
quired, robot path planning methods can be divided into two
categories: global path planning and local path planning,
where local path planning is also called dynamic path
planning [4].

At present, global path planning algorithms can be
generally classified as conventional algorithms and intelli-
gent algorithms. The former includes A* algorithm [5] and
RRT algorithm [6], and the latter includes ant colony al-
gorithm [7] and particle swarm algorithm [8]. Traditional
algorithms mostly use the length of the path as the only
indicator, while intelligent search algorithms use randomly
generated initial solutions or sampling points to approxi-
mate the optimal solution through multiple iterations. The
biggest characteristic of an intelligent algorithm is its ran-
domness, so its solution is not unique. A lot of heuristic
intelligent search methods have been proposed with respect
to optimization algorithms, considering that there are a large
number of NP-hard problems in path planning, and each
problem has its own optimal solution, which may not be
solved. Therefore, the heuristic intelligent search algorithm
approximates the optimal path through iterative improve-
ments of randomly generated initial feasible solutions [9].

Since its proposal, the gray wolf optimization (GWO)
[10] algorithm has been widely studied because of its ad-
vantages of good searching performance, simple structure,
and easy implementation. For example, Toufan and Niknafs
[11] exploited the cosine function-based searching factors
and introduced a dynamic weighting strategy to balance
global and local exploring abilities, which improves the
solution accuracy of GWO. Olivera et al. [12] used an ex-
ponential function to attenuate the searching factor « so that
the convergence factor is changed nonlinearly and dy-
namically with the increase of iteration times and tried to
find a better trade-off between the search and development
stages to ensure that the optimal solution is approached.
Albina and Lee [13] proposed balancing the searching ability
with stochastic convergence factors and performing
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individual update through differential mutation to improve
the convergence and accuracy of the original GWO.

The proposed MGWO further improves the perfor-
mance of the original GWO and speeds up the convergence.
However, as a global path planning method, the MGWO
does not have the ability to avoid obstacles in real time.
Aiming at this problem, we propose a dynamic path
planning of mobile robots based on the fusion of MGWO
and a situation assessment mechanism.

Local path planning is a kind of dynamic planning. The
robot perceives its surroundings with sensor information
and plans a collision-free path from the current node to a
target subnode online. In a rapidly changing environment, it
is necessary to continuously collect sensor information and
replan the path to guide the robot’s movement in real time.
The planning range is usually limited to the detection range
of the sensors. Commonly used local planning algorithms
include artificial potential field [14], dynamic window [15],
D* algorithm [16], and fuzzy logic approaches [17].

Situation assessment is the high-level information fusion
in a multisensor information system. It is the extraction,
combination, and comprehensive processing of the high-
level relationships of the information flows of different types
and multiple levels obtained from the system, thereby ac-
quiring the important cognitive information from sensor
information to infer the target intentions and future trends.
Situation assessment is a cognitive reasoning method based
on human thinking.

Huang et al. [18] proposed a cyber situational awareness
(CSA) decision-making system based on fuzzy sets, in which
a team CSA with the ability to process unknown information
is established in a distributed way. Arora et al. [19] proposed
to code certain knowledge with a Bayesian network and
perform network reasoning by Monte Carlo tree search
technique to plan actions based on information perception.
The experiment results prove the method has practical value.
Zhou et al. [20] proposed an uncertain information fusion
method for aerial situation awareness in the DST framework.
Firstly, the perceived uncertain information is preprocessed
with belief entropy, and the evaluated information is
combined according to Dempster combination rules. This
kind of technique can enhance and expand the limited
cognitive ability.

3. Global Path Planning with MGWO

3.1. Problem Formulation. Given the regional environment
map. T = {T,T,, ..., T,} is the collection of target points. O
is the starting point of the robot. The robot is required to
traverse n checkpoints and return to the starting point. The
traversal path is R = {O, T, T,, ..., T,, O}. Then, the path
length L can be calculated as follows:

n—1
L=[oT |+ Y |17 +[T,0], (1)
=1

where |OT, || denotes the distance traveled by the robot from
the starting point to the first checkpoint. |T;T ;| is the
distance from checkpoint j to checkpoint j+ 1. | T, O] is the
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distance from checkpoint n to the starting point. It is re-
quired to find the order of the traversal checkpoints
{T,,T,,...,T,} so that the shortest path is found with
length minL.

3.2. Classic Gray Wolf Optimization. The gray wolf opti-
mization is an algorithm that simulates the predation be-
haviors of predator wolves at the top of the food chain. Most
gray wolves like to live in groups and have a very strict social
hierarchy, as shown in the pyramid structure of Figure 1.

In the mathematical model of GWO, each wolf repre-
sents a candidate solution in the group, where « is the
optimal solution and 8 and § are the second and third best
solution, respectively; the rest of candidate solutions are
denoted by w. In GWO, the search (optimization) is guided
by a, 3, and § and followed by w.

Let the population size of the gray wolves be N, and the
search space is a Dim-dimensional space, XP'™ is the po-
sition vector of the ith wolf in the Dim-th dimension; then,
the mathematical model of the gray wolves hunting prey is
expressed as follows:

D :|CXP(t)—X(t)|,
X(t+1)=X,(t) - AD,

(2)

where t is the current iteration number. A and C are co-
efficient vectors, A = 2ar, — a, C = 2r,, where r; and r, are
random numbers in the range [0, 1]. a is the convergence
factor, and its value linearly decreases from 2 to 0 as the
number of iterations increases. X, is the position vector of
the prey. D is the positional relationship vector between the
gray wolf individual and the prey. X is the position vector of
the gray wolf.

The mathematical model of the gray wolves tracking prey
locations can be expressed as follows:

D, =|C,X, - X|. [ X, =|X, - A,D,|,
Dy =[C,Xy - X|, § X, =[X; ~ Ay, (3
D; =|C,X, - X|, | X; =[X; - A;Dy,

where C;, C,, and C; are random vectors. D,, Dg, and Ds
denote the distance of wolves «, 3, and § with other members
in the wolf pack, respectively. X,, X3, and X denote the
positions of wolves «, f3, and 6, respectively. X is the current
position of the wolf pack. The position of wolf w in the wolf
pack is jointly determined by wolves «, 3, and 0.

3.3. Modified Gray Wolf Optimization Algorithm

3.3.1. Population Initialization Based on Logistic Mapping.
Chaos has the characteristics of randomness, ergodicity, and
regularity. By introducing chaotic sequences, the individuals
in the initial population can utilize the information in the
solution space as much as possible, thereby enhancing global
searching capability. In the population initialization stage,
chaotic sequences are generated using logistic mapping [21],
which is simple and chaotic and has good traverse

w

FIGURE 1: Social hierarchy of gray wolves.

uniformity to generate chaotic sequences to initialize the
population position of the wolf pack. The logistic mapping
can be expressed as follows:

X1 = AXy (1 - xn)’ (4)

where x,, € [0, 1] is the chaotic variable, a = 4. Let x, = 0.4288.
Figure 2 shows the bubble map after the population initiali-
zation of 30 populations using logistic mapping.

3.3.2. Adaptive Adjustment Strategy of the Control
Parameters. The global searching ability and local devel-
opment ability of the GWO algorithm can be controlled by a.
It decays from 2 to 0 linearly as the number of iterations
increases, and the iterative convergence process is not linear.
Based on this fact, we propose an adaptive adjustment
strategy for nonlinear control parameters, which balances
the search and development capabilities of the GWO al-
gorithm by adjusting the value of a adaptively. In early it-
erations, when the global search is performed, a larger value
is assigned to a to realize a fast nonlinear changing rate and
powerful global search ability and avoid local optimum. In
later iterations, a smaller value is assigned to a to slow down
the nonlinear changing rate in order to find an optimal
solution within a certain region, thereby achieving strong
development ability and boosting convergence speed.
The strategy can be expressed as follows:

1 (t/tmax) "
a(t) = Ginitial ~ Finital So1\e -1, (5)

where ¢ is the current iteration times. T,y is the maximum
number of iterations. n € [1,2] is the linear modulation
index. aj,iga is the initial value of the control parameter g,
Qinitial = 2. Figure 3 shows the nonlinear decaying trend of a.

3.3.3. Static Weighting Average Strategy. The main idea of
the static weighting average strategy is to weigh three leader
wolves in accordance with the hierarchical structure of the
pyramid. Using static weighting average strategy, wolves «, f3,

and 9§ are given the weights of 0.5, 0.3, and 0.2, respectively:
5X; +3X, +2X
X(t+1) === (6)

4. Situation Assessment

In the proposed situation assessment mechanism, the sit-
uational factors of the environment where the robot is
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FiGure 2: Population initialization with logistic mapping.
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FiGure 3: Comparison of the control parameter a.

located are extracted based on the 2D laser ranging data,
sonar sensor measurements, and 2D image data of the
mobile robot in order to infer the next move of the robot,
thereby realizing local path planning within the unknown
environment.

4.1. Situational Factor Extraction. Through the fusion of 2D
laser ranging data and monocular camera image data, the
target information located at the forefront of the mobile
robot, that is, within the range of [1°, 17°], is obtained.

Figure 4 shows the coordinate system of the mobile
robot, where the positive and negative directions of axis Xt
represent the front and back directions of the robot
movement, respectively. The positive and negative directions
of axis Yt represent the right and left directions of the robot
movement, respectively.

Based on the distance D between the target and the robot
and the angle A (°) between the target and the positive
direction of axis Yt of the robot coordinate system, the
environmental factors are extracted using 2D laser ranging
data. Place the angle A of the location information into a
certain region in the map; if the distance D satisfies
0 < D <220, then the target is regarded as a situational factor
of the region.

4.2. Bayesian Network Model of Robot Action Selection. In
this study, the local path planning of a mobile robot is
classified into three types of relatively independent action

Journal of Robotics

170°
- 160°
~
N
N
2120°
\.
\
Ot ' 90°
, »
Xt
‘I
7 60°
/
./‘
'/
I e
v

FIGURE 4: Situational factor extractions based on angle partition.

units (subactions): moving forward, obstacle avoidance, and
escaping from a U-shaped trap.

Taking the robot coordinate system in Figure 4 as a
reference, the discrimination rules of the three types of
subactions are determined. For example, if there are ob-
stacles in the right-ahead, right-front, and left-front direc-
tions of a mobile robot, then the robot will choose the
subaction of obstacle avoidance.

The forebode node and the result node are extracted
from the antecedent part and subsequent part of the dis-
criminant rules, respectively, as listed in Table 1.

In this study, the obstacles in the right and left directions
will be regarded as parallel to the moving direction of the
robot. Therefore, the forebode node T, in Table 1 is de-
termined based on the obstacles with respect to the robot
position, that is the right or left obstacles. By using the
diagnostic Bayesian network modeling, that is, take the
forebode node as the father node of the result node and take
the result node as the child node of the forebode node, the
Bayesian network model of action selections is established as
shown in Figure 5.

In Figure 5, the action selection node C comprehensively
considers the values of the forward node, avoidance node,
and escaping node. Except for node C, all nodes in Figure 5
are of the discrete node type, which are binary discrete
nodes, and their value states are yes (Y) and no (N). Node C
is a four-value discrete node, and its value states are Sy, Sy, S,
and S;. Among them, S, means choosing to move forward, S;
means choosing to avoid obstacles, S, means choosing to
escape from U-shaped traps, and S; means an error state.
After determining the Bayesian network structure, the
conditional probabilities of each node need to be given. The
parameter is configured based on the discriminate rules of
subactions. Take the avoidance node (S,) as an example; the
configuration is listed in Table 2.

All forebode nodes in Figure 5 are the root nodes of the
Bayesian network. In this study, the value of all forebode
nodes is set to (0.5, 0.5).

4.3. Action Selection Inference. For the action selection in-
ference of the mobile robot, based on the Bayesian network
model shown in Figure 5, inputting the evidence and
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TaBLE 1: Robot action selection based on Bayesian network model.

Node description Node type Explanation
Obstacle judging node (T;) Fo;zlzlcéde Whether or not there is an obstacle 11117€1]ront of the robot within the range [1°,
Obstacle node in parallel with the robot Forebode =~ Whether or not the obstacle detected is parallel to the moving direction of the
(T) node robot

. Forebode . .
Right-front obstacle (T) node Whether or not there is an obstacle on the right front of the robot
Left-front obstacle (T,) Forrlzlzi(;de Whether or not there is an obstacle on the left front of the robot
Right-ahead obstacle (Ts) FoIr:)lzic;de Whether or not there is an obstacle right ahead of the robot
Right obstacle (Ts) Forrlzlzl(;de Whether or not there is an obstacle on the right of the robot
Left obstacle (T>) Fo;zlzlcéde Whether or not there is an obstacle on the left of the robot

Forward node (S;)
Avoidance node (S,)
Escaping node (S5)
Action selection node (S,)

Result node
Result node
Result node
Result node

If the robot chooses to move forward
If the robot chooses to avoid obstacle
If the robot chooses to escape from a U-shaped trap
The final action decision made by the robot

parallel
obstacle

right front
obstacle

obstacle
judging

move
forward

obstacle
avoidance

action
selection

left front
obstacle

right
obstacle

right-ahead
obstacle

escaping from
U-shaped trap

left obstacle

FIGURE 5: Bayesian network model.

TaBLE 2: Parameter configuration for S, node.

T T T 52

3 4 5 Y N
Y Y % 1.0 0.0
Y Y N 1.0 0.0
Y N Y 1.0 0.0
Y N N 1.0 0.0
N Y Y 1.0 0.0
N % N 1.0 0.0
N N Y 1.0 0.0
N N N 0.0 1.0

calculating the posterior probabilities of the selection nodes
by the reasoning algorithm of the Bayesian network, the
result node with the biggest posterior probability will be
chosen as the action decision of the robot.

In the Bayesian network of action selection, the forebode
nodes are evidence nodes, and evidence values need to be
assigned to the corresponding forebode nodes before per-
forming the inference.

The evidence values of the forebode nodes are obtained
from the extracted situational factors of the robot. For ex-
ample, if the set of situational factors in the right-ahead
direction is not empty, then the evidence value of the ob-
stacle node T5 in the right-ahead direction is set as Y;
otherwise, it is set to N. Based on the extracted situational
factors, input evidences for seven forebode nodes (T}, T>, T,
Ty, Ts, Tg, T7), where the evidence values are denoted by el,
€2, ..., €7, form an evidence set E = {e,, e,,...,e,}. Taking
the evidence set E as posterior conditions, the posterior
probabilities of the action selection node C can be calculated
with Bayesian network reasoning algorithm; then, the
posterior probabilities of node C in 4 value states can be
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TABLE 3: Action selection details.
Subaction Deviation angle(/°C)
1 Move forward 0
Escaping from U-shaped obstacle 180

30 to the right
60 to the right
30 to the left

3 Obstacle avoidance 60 to the left

30 to the left or right
60 to the left or right
0

FIGUre 6: Path planning performance of different methods. (a) Path planned by the PSO algorithm. (b) Path planned by the GWO

algorithm. (c) Path planned by the MGWO algorithm.

obtained as follows: P(C =S,/E),
P(C =S,/E), P(C = S,/E).

The Bayesian network reasoning algorithms include
precise reasoning algorithm and approximate reasoning
algorithm. Due to the low complexity of the Bayesian
network model of action selection, this article adopts the
precise reasoning algorithm of the Bayesian network, which
is the variable elimination method.

Certain movement decisions will be taken in corre-
sponding to the subaction chosen by the mobile robot for the
next step. The decisions for the three types of subactions are
listed in Table 3.

P(C = S,/E),

4.4. Hybrid Path Planning. The fundamental idea behind
the hybrid path planning mechanism is based on the divide-
and-conquer concept. The mechanism is divided into two
scenarios. Under the condition that the global situation
information is known, a global path is planned with the

global path planning algorithm. On this basis, the situation
assessment method is used to plan a local path to avoid
obstacles.

Firstly, an initial path based on global situation infor-
mation is planned with the proposed MGWO algorithm.
Local path planning is carried out under the guidance of the
global path. When there are no obstacles that randomly
appear in the surroundings, the situation assessment method
plans a trajectory along the global path. If random obstacles
are detected nearby that block the robot from continuing to
move along the global path, the situation assessment method
focuses on obstacle avoidance, planning a local path to avoid
the obstacles. After that, the robot returns back to the global
path until it reaches the destination.

5. Experiment

5.1. Global Path Planning Test. Firstly, the grid map is used to
model the environment information, and the global path



Journal of Robotics 7
TaBLE 4: Quantification results.

Methods Longest path Shortest path Average length Variance

PSO 46.77 39.55 42.67 3.11

GWO 45.98 38.57 39.88 4.02

MGWO 39.74 36.68 38.33 2.12

FIGURE 8: Path planned by the hybrid method after dynamic obstacles added to the map. (a) Hybrid path planning a. (b) Hybrid path

planning b. (c) Hybrid path planning c. (d) Hybrid path planning d.

planning is carried out using the classic GWO, the proposed
MGWO, and the particle swarm algorithm (PSO), respec-
tively. In the simulation, for all the algorithms, the pop-
ulation size is set to 50, and the maximum number of
iterations is set to 100.

5.1.1. The Shortest Collision-Free Path. Figure 6 shows the
path planning performance of the three algorithms in the
grid environment. The quantified results of each of the three
algorithms after 20 iterations are shown in Table 4. It can be
seen from the table that the proposed MGWO outperforms



the other two algorithms in terms of the longest path, the
shortest path, and the average path length.

Compared with PSO and classic GWO, the longest path
planned by the proposed MGWO is 4.25 m and 4 m shorter,
respectively, which is a reduction of 9.35% and 8.85%, re-
spectively. In terms of the shortest path length, the proposed
MGWO has achieved a 3.08% and 1.58% reduction com-
pared with PSO and classic GWO, respectively. Moreover,
the average path length is also reduced by 7.13% and 2.88%
by the proposed MGWO compared to PSO and classic
GWO, respectively. In addition, the variance of the path
length found by the proposed MGWO is more stable than
the other algorithms.

5.2. Hybrid Path Planning Simulation. Static obstacles are
added to the grid map to test the static obstacle avoidance
capability of the proposed hybrid method; the 12 static
obstacles added are shown in Figure 7. In the figure, blue
grids represent newly added obstacles; red lines indicate the
moving path of the robot. Use the situation assessment
method to plan the local path for the robot. After suc-
cessfully avoiding the newly added obstacles, the robot
continues to move along the global path until it reaches the
endpoint.

Three dynamic obstacles are added to test the dynamic
obstacle avoidance capability of the proposed hybrid
method. The obstacles move horizontally, and the mobile
robot successfully avoids the obstacles with the planned local
path, indicating the path planning task is successfully ac-
complished. The planned path provided by the hybrid
method is shown in Figure 8.

From the experimental results, it can be seen that
compared with using only local path planning, the path
planned by the proposed hybrid method is able to address
the local minima problem and provide a path very close to
the optimal path length. In addition, the simulation results
also prove that the proposed hybrid method has dynamic
obstacle avoidance capability; that is, the hybrid method can
evade newly added static and dynamic obstacles and suc-
cessfully reach the endpoint while guaranteeing an optimal
path.

6. Conclusion

This article proposes a mobile robot path planning scheme
based on a modified gray wolf optimization algorithm and
situation assessment mechanism. Firstly, we propose the
MGWO algorithm based on the GWO algorithm, which has
the characteristics of good searching ability and robust
performance. In MGWO, the population diversity is en-
hanced by logistic chaotic mapping, the balance between
search and development capabilities of the GWO algorithm
is achieved by the adaptive adjusting strategy of the control
parameters, and a static weighting average strategy is used to
update the population position and speed up convergence.
Finally, combine the paths planned globally and locally to
ensure that the situation assessment method can perform
local path planning along the globally planned path.

Journal of Robotics

Simulation results prove that the proposed scheme
has higher optimization accuracy and stability than state-of-
the-art methods. The proposed MGWO algorithm can
effectively reduce the path length and make the trajectory
smoother. The hybrid method can ensure the optimal path to
the greatest extent while taking into account the dynamic
obstacle avoidance ability of the robot, which has more
advantages than a single algorithm.

In the future, based on the scale of the tasks and
battery capacity constraint of the robot, pathfinding can
be performed based on task clustering, and large-scale
tasks can be automatically and autonomously converted
into time-by-step tasks so as to improve the applicability
of path planning schemes in large-scale scenes.
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