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Environmental perception systems can provide information on the environment around a vehicle, which is key to active vehicle
safety systems. However, these systems underperform in cases of sloped roads. Real-time obstacle detection using monocular
vision is a challenging problem in this situation. In this study, an obstacle detection and distance measurement method for sloped
roads based on Vision-IMU based detection and range method (VIDAR) is proposed. First, the road images are collected and
processed. *en, the road distance and slope information provided by a digital map is input into the VIDAR to detect and
eliminate false obstacles (i.e., those for which no height can be calculated). *e movement state of the obstacle is determined by
tracking its lowest point. Finally, experimental analysis is carried out through simulation and real-vehicle experiments.*e results
show that the proposedmethod has higher detection accuracy than YOLO v5s in a sloped road environment and is not susceptible
to interference from false obstacles. *e most prominent contribution of this research work is to describe a sloped road obstacle
detection method, which is capable of detecting all types of obstacles without prior knowledge to meet the needs of real-time and
accurate detection of slope road obstacles.

1. Introduction

With increasing public attention to the field of traffic safety,
the automobile industry is developing in the direction of
intelligence, with many studies on autonomous driving by
engineers and scientific researchers. Autonomous driving
does not refer to a single technological field, but it is a
product of the development and integration of automotive
electronics, intelligent control, and breakthroughs related to
the Internet of *ings [1, 2]. *e principle is that autono-
mous driving systems obtain information on the vehicle and
the surrounding environment through an environmental
perception system. *en, the information is analyzed and
processed by the processor, and the obstacle information in
front of the vehicle is detected. Combining with the vehicle
dynamics model, the obstacle avoidance path planning and
lateral control of the vehicle are realized [3–7].

Environmental perception systems, which need to per-
form functions such as object classification, detection,

segmentation, and distance estimation, have become a key
component of autonomous vehicles. *ese systems can not
only provide important traffic parameters for autonomous
driving but also perceive surrounding obstacles, such as
stationary or moving objects, including roadblocks, pedes-
trians, and other elements [8]. During the vehicle’s move-
ment, radar (laser, millimeter wave), infrared and vision
sensors are used to collect environmental information to
determine whether a target is in a safe area [9–11]. However,
the price of infrared sensors and radars is relatively high, and
most of them are limited to advanced vehicles [12]. Com-
pared with other sensor systems, monocular vision requires
only one camera to capture images and analyze scenes,
thereby reducing the cost of detection solutions. Moreover,
the camera can work at a high frame rate and provide rich
information from long distances under good lighting and
favorable weather conditions [13]; therefore, detection
methods based on machine vision are being more and more
widely adopted.
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Machine learning can be used to achieve object classi-
fication for vision-based obstacle detection [14, 15]. How-
ever, traditional machine learning methods can only detect
known types of obstacles (see Figure 1). If the vehicle cannot
detect an unknown type of obstacles accurately, it is very
likely that a traffic accident will occur. *is situation is not
conducive to the safe driving of the vehicle; therefore, in this
study, we propose an unsupervised learning-based obstacle
detection method, which allows the detection of both
known- and unknown-type obstacles in complex
environments.

Traditional obstacle detection methods, such as motion
compensation [16–18] and optical flow methods [19–22],
allow the detection of obstacles of different shapes and at
various speeds. However, these methods require the ex-
traction and matching of a large number of object points,
which increases the computational load. *erefore, in this
study, we adopt a Vision-IMU (inertial measurement unit)-
based detection and rangingmethod, abbreviated as VIDAR,
which can realize fast matching and feature point processing
of the detection area and improve the obstacle detection
speed and detection effectiveness.

VIDAR is an obstacle detection method developed for
horizontal roads. When obstacles and test vehicles are lo-
cated on different slopes, there will be imaging parallax,
which will lead to the detection of false obstacles as real ones,
resulting in a large measurement error, thereby affecting the
detection accuracy. To cope with the impact of slope
changes, in this study, we take the slope of road into account
during the model establishment, and analyze the specific
situation according to the position relationship between the
detected vehicle and the obstacle. We thus propose an
obstacle detection and distance measurement method for
sloped roads based on VIDAR. In the proposed method,
slope and distance information are provided by digital maps
[23–26].

*e rest of this study is structured as follows: in Section
2, we review the research on obstacle detection and visual
ranging. In Section 3, the conversion process from world
coordinates to camera coordinates and the ranging principle
of VIDAR are introduced. In Section 4 the detection process
of real obstacles on sloped roads is outlined and the ranging
and speed measurement models are established. Simulated
and real experiments are presented in Section 5 and the
experimental results are compared with the detection results
of YOLO v5s to demonstrate the detection accuracy of the
proposed method. In Section 6, the proposed method and
our findings are summarized, and the study is concluded.

2. Related Work

Obstacle detection still forms one of the most significant
research foci in the development of intelligent vehicles. With
the improvement and optimization of monocular vision,
obstacle detection based on monocular vision has attracted
the attention of researchers. Most of the research on the
detection of obstacles using monocular vision is based on the
optimization of machine vision and digital image processing
to improve the accuracy and speed of detection. S. Wang

proposed a novel image classification framework that in-
tegrates a convolutional neural network (CNN) and a kernel
extreme learning machine to distinguish the categories of
extracted features, thus improving the performance of image
classification [27]. Nguyen proposed an improved frame-
work based on fast response neural network (Fast R-CNN).
*e basic convolution layer of Fast R-CNN was formed
using the MobileNet architecture, and the classifier was
formed using the deep separable convolution structure of the
MobileNet architecture, which improved the accuracy of
vehicle detection [28]. Yi proposed the improved YOLO v3
neural network model, which introduced the concept of
Faster R-CNN’s anchor box, and used a multiscale strategy,
thus greatly improving the robustness of the network in
small object detection [29].Wang K.W. proposed an efficient
fully convolutional neural network, which could predict the
occluded part of the road by analyzing foreground objects
and the existing road layout, thereby improving the per-
formance of the neural network [30]. Although the above
methods improved the accuracy of obstacle detection, they
require a large number of sample data for network training
and the range of samples must cover all obstacle types;
otherwise, the obstacles cannot be detected.

Monocular ranging pertains to the use of a single camera
to capture images and perform distance calculations. Zhang
et al. used a stereo camera system to compute a disparity
map and use it for obstacle detection. *ey applied different
computer vision methods to filter the disparity map and
remove noise in detected obstacles, and a monocular camera
in combination with the histogram of oriented gradients and
support vector machine algorithms to detect pedestrians and
vehicles [31]. Tkocz studied the ranging and positioning of a
robot in motion, considering the scale ambiguity of mon-
ocular cameras. However, only experimental research has
been done on the speed and accuracy of measurement [32].
Meng C designed a distance measurement system based on a
fitting method, where a linear relationship between the pixel
value and the real distance is established according to the
pixel position of the vehicle in the imaging plane coordinate,
thus realizing adaptive vehicle distance measurement under
monocular vision [33]. Zhe proposed a method for detecting
vehicles ahead, which combined machine learning and prior
knowledge to detect vehicles based on the horizontal edge of
the candidate area [34]. *ese methods were only used for
the measurement of distance to other vehicles and are not
applicable to other types of obstacles.

Rosero proposed a method for sensor calibration and
obstacle detection in an urban environment. *e data from a
radar, 3D LIDAR, and stereo camera sensors were fused to-
gether to detect obstacles and determine their shape [35].
Garnett used a radar to determine the approximate location of
obstacles, and then used bounding box regression to achieve
accurate positioning and identification [36]. Caltagirone pro-
posed a novel LIDAR-camera fusion fully convolutional net-
work and achieved the most advanced performance on the
KITTI road benchmark [37]. Although sensor fusion methods
reduce the processing load and achieve improved detection
accuracy, these methods are based on flat roads and are not
suitable for complex slope road environments.
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To solve the above problems, we propose an obstacle
detection and distance measurement method for sloped
roads based on VIDAR. *is method does not require a
priori knowledge of the scene and uses the road slope in-
formation provided by a digital map and the vehicle driving
state provided by an IMU to construct distance measure-
ment and speed measurement models, which allow the
detection of obstacles in real time, as well as the distance and
movement state of the obstacles.

3. Methodology

*e obstacle detection model of VIDAR is based on pinhole
camera model, which can accurately calculate the distance
between vehicles and obstacles.

3.1. Coordinate Transformation. *e camera can map the
coordinate points of the three-dimensional world to the two-
dimensional imaging plane. *is imaging principle is con-
sistent with the pinhole model principle, so camera imaging
can be described by pinhole model.

If we want to determine the correspondence between the
object point and the image point, we must establish the
coordinate system needed by vision system, including world
coordinate system, camera coordinate system, imaging plane
coordinate system, and pixel coordinate system. *e
transformation process from the world coordinate system to
the pixel coordinate system is shown in Figure 2.

Pixel coordinate (u, v) and image plane coordinate
(x, y) are on the same plane, and the X and Y axes are
parallel. *e corresponding position of the original point
in the image plane coordinate system is (u0, v0). Both the
world and the camera coordinate systems are 3D coor-
dinates, which are associated through the camera.
According to the principle of keyhole imaging, the camera
coordinate system can be obtained through a transfor-
mation of the coordinate axes of the world coordinate
system, so the conversion relation between the two co-
ordinate systems must be deduced. *e conversion

equation from the world to the pixel coordinate system is
shown in
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(1)

where R and T are the external parameters. *e internal and
external parameters can be obtained through camera
calibration.

3.2. Obstacle Ranging Method. *e obstacle ranging prin-
ciple is also based on the pinhole model principle. For the
convenience of expression, we installed the camera on a test
vehicle and a vehicle on a sloped road was regarded as the
obstacle. *e feature points of the obstacle were detected,
and the lowest point was taken as the intersection point
between the obstacle and the road surface (see Figure 3). In
the case of normal detection by the system, the camera
collects image information, and by processing the image
information, feature points in the image can be extracted. By
measuring the distance of the feature point, it can be de-
termined whether the obstacle where the feature point is
located has a height. For real obstacles, tracking the feature
point at the lowest position can calculate the moving speed
of the obstacle, judge the motion state of the obstacle, and
provide data support for the safe driving of the vehicle. As
long as the camera can capture images normally, all obstacles
in the captured scene can be detected. *e number of de-
tected obstacles is related to the number of extracted feature
points.

Let f be the effective focal length of the camera, z be the
pitch angle, μ be the pixel size, h be the mounting height of
the camera and the camera center be the optical center of the
lens. Let (x0, y0) be the coordinate origin of imaging plane

Figure 1: Fast R-CNN. Normal cars are detected, but the overturned car and the box are not detected.
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coordinate system, and (x, y) be the intersection coordinate
of the obstacle and the road plane in the image plane co-
ordinate system. *e horizontal distance between the
camera and the obstacle can be obtained using

d �
h

tan ϑ + arctan y0 − y( μ/f ( 
. (2)

4. Research Approach

In the traditional VIDAR model, it is assumed that the test
vehicle and obstacles are on the same plane. However, when
the test vehicle and the obstacles are on roads with different
slopes, this will cause a deviation of the distance measure-
ment. In order to enhance the visual detection accuracy and
expand the visual ranging application scenarios, in this
study, we take the slope into account and establish an ob-
stacle detection model for the sloped road.

4.1. Establishment of the Distance Measurement Model.
*e sloped road mentioned in this study refers to a road
where the test vehicle and the obstacles are not on the same
slope. When measuring distance, the above situation can be
simplified into two models.

*e distance model between the camera and obstacles on
a sloped road with obstacles in front of the test vehicle are
shown in Figure 4. Let the light blue line be the auxiliary line,
and the red dot on the obstacle be any detected object point.

Let C′ be a point on the road’s surface, C be the image
point of C′ on the sloped road’s surface, C″ be the inter-
section point where CC′ extends to the imaginary horizontal
plane, and S′ be the distance from the camera to the be-
ginning of road slope change. Let di be the horizontal

distance between the camera and C″, and dii be the hori-
zontal distance between the camera and C′.

Using triangle similarity, equation (3) can be obtained
through the geometric relationships shown in Figure 4:
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*e expression of dii is further derived by

dii �
S′ ∗ tan α + kh

tan α + k tan θi

. (4)

When the slope of the road where the obstacle is located
is larger than that of the test vehicle, k � −1. In the opposite
case, k � 1.

4.2. Determination of the Real Obstacle on Sloped Roads.
In the process of the test vehicle’s movement, road images
were collected twice. *e imaging diagram of the stationary
obstacles is shown in Figure 5. Let A′ and B′ be points on the
road surface, and A and B be the corresponding image
points.*e first point of the obstacle on the image plane is A.
As the camera moves with the test vehicle, and the y axis on
the image plane moves from axis y1 to the axis y2, we obtain
the point B of the obstacle on the image plane. A″ is the
intersection, where AA′ extends to the imaginary horizontal
plane, and accordingly for B″. Δ d is the movement distance

Pixel coordinate
(u, v)

Imaging plane
coordinate (x, y)

Camera coordinate
(Xc, Yc, Zc)

World coordinate
(Xw, Yw, Zw)

Figure 2: Transformation between coordinate systems.
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Bottom point (P)
Feature point detection

Figure 3: Schematic diagram of obstacle ranging model (in order to visualize the detection principle, the nonreal proportional relationship
is shown in the figure).
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of the camera (i.e., the test vehicle), d1 is the horizontal
distance from the camera to A″, d2 is the same, d11 is the
horizontal distance from the camera to A′, and accordingly
for d22.

d11 and d22 can be calculated using equation (4). *e
relationship between d11 and d22 can be approximated as
d11 � d22 + Δ d, but the real relationship is
d11 � d22 + Δ d + Δl. If d11 ≠d22 + Δ d, the object points are
not on the road surface. Using this method, it can be de-
termined whether the obstacle has a height (i.e., it is a real
obstacle).

4.3. Special Case of Obstacle Detection. A special case should
be excluded during obstacle detection. When the test vehicle
and the obstacles are moving at the same time, the imaging
point of the camera light on the road surface through an
object point of the obstacle coincides with each other.
VIDAR is unable to detect obstacles in this case.

*e diagrams of obstacle detection in complex envi-
ronments are shown in Figure 6. Let LA be the distance
(along the road where the obstacle is located) between the
highest point of the obstacle and the object point of the road
surface when the test vehicle is moving for the first time.
Similarly, LB is the distance when the vehicle moves for the
second time. *e letters in Figure 6 have the same meaning
as the letters above.

Let the speeds of the detecting vehicles and obstacles be v

and v′, respectively. When the imaging point of the road’s
intersection point and the obstacle’s object point passes
through the camera, the relationships between hv, v, v′, LA

and LB are as follows:

hv

tan α + bθ1( 
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LA − LB � v′t,

Δ d � vt.
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(5)

When the slope of the road where the obstacle is located
is larger than that of the test vehicle, b � 1, while b � −1 in
the opposite case.

*erefore, VIDAR can be used in all cases except when
LA − LB � v′t, and
v′ � v/Δ d(hv/tan(α + bθ1) − hv/tan(α + bθ2)). *erefore,
the proposed method using a monocular camera to detect
obstacles on sloped roads is convenient and feasible. *e
detection process only includes tracking and calculating the
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Figure 4: Diagram of distance models. (a) Situation 1: the test vehicle on a flat road and obstacles on an uphill road. (b) Situation 2: the test
vehicle on a flat road and obstacles on a downhill road.
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position of the object point, which can shorten the detection
time and reduce computational resource consumption.

4.4. Speed Measuring Model of the Sloped Road Obstacle.
Obstacles can be imaged in the camera photosensitive element.
By extracting and calculating the feature points of the collected
obstacle images, we can calculate the feature points that are not
on the road surface, that is, the feature points whose height is
not zero. *e object points with nonzero height are mor-
phologically processed to obtain the obstacles’ areas. *e
movement state of the obstacles can be determined through
tracking and calculating the speed of the lowest point.

When the test vehicle is moving, the obstacles, camera,
and the lowest point of the road will form images (see
Figure 7). At this time, the horizontal distance between the
lowest point of the obstacle and the camera can be expressed
as dii.

Let A be the image plane point corresponding to the
lowest point of the obstacle at time t and B corresponding
point at t + Δt. *e relationship between v′ d11, d22 and Δ d

is as follows:

d11 − d22 + Δ d( 




cos α
� v′ · Δt, (6)

where Δ d � v∗Δt, with v being the speed of the test vehicle.
When d11 � d22 + v∗Δt, the obstacle is stationary; other-
wise, it is moving with a speed of

v′ �
d11 − d22 − v · Δt




Δt∗ cos α
. (7)

4.5.ObstacleDetection onSlopedRoadsUsingVIDAR. In this
study, an obstacle detection and distance measurement
method for sloped roads based on VIDAR is proposed,
which can quickly judge and eliminate false obstacles that
without height, and at the same time identify real obstacles
and judge their movement state. *e detection process is as
follows (see Figure 8).

Step 1. Update camera parameters using the IMU:

(1) Calibration of the camera’s initial internal and ex-
ternal parameters: the camera’s parameters, such as
the focal length f, mounting height h, pixel μ, and
pitch angle z are obtained through calibration.

(2) Data acquisition: the camera is used to collect images
and the IMU is used to collect inertial data. *e
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Figure 5: Schematic diagram of stationary obstacle imaging. (a) Situation 1: the test vehicle moving on a flat road and stationary obstacle on
an uphill road. (b) Situation 2: the test vehicle moving on a flat road and stationary obstacle on a downhill road.
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acquisition frequency of the IMU is larger than that
of the camera.

(3) Update of camera parameters: the frequency rela-
tionship between the IMU and camera is established
and the camera parameters at time t are calculated
periodically according to the inertial data.

Step 2. Obtain the road information.
Acquire the road slope α and the distance S from the test

vehicle to the sloped road using the digital map.

Step 3. Regional background extraction:

(1) Two consecutive images are taken as the total ob-
stacle detection area Bi during the running of the test
vehicle (see Figures 9(a) and 9(b)).

(2) *e lane line is detected and the image within the
lane line is extracted as Gi.

(3) Machine learning is used to process the images,
detect and classify specific types of obstacles. *e
area set Fi of known types of obstacles is obtained,
where Fi � f1, f2, . . . , fk , and k is the number of
known obstacles.

(4) *e known obstacle area Fi in the total obstacle
detection area Gi is eliminated and the background
area Ni (Ni � Gi − Fi) is extracted as the VIDAR
data to be detected.

Step 4. Image processing and obstacle detection:

(1) Object points are extracted from the background
areas Ni and Ni+1 of two consecutive images. With
Ni as the background region template map and Ni+1
as the background region real-time map, the
matching regions Mi and Mi+1 are obtained using a
fast image region matching method based on region
feature extraction, as shown in Figure 9(c).

(2) *e object points set Pi of matching area Mi+1 is
extracted, as shown in Figure 9(d).

(3) *e distance between the test vehicle and the object
point is calculated. *e horizontal distance between
the camera and the imaged object point on the
imaginary road is di � h/tan θi. *e horizontal
distance between the camera and the imaged object
point on the real road is dii � S′ · tan α + kh/
tan α + k tan θi. *e calculation process of dii is
shown in Figure 10. First, the pixel coordinates of
object points are obtained through the transforma-
tion of the coordinate axes. *en the slope infor-
mation is obtained through Step 2, and finally the
distance is obtained through the ranging model.

(4) *e object points with height in set Pi are extracted
(see Figure 9(e)). Calculate dii and di+1i+1 as the
vehicle is moving continuously. If dii � di+1i+1 + Δ d,
then the object points are on the road surface
(without height), so the object points pij are
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Figure 6: Schematic diagram of obstacles and camera imaging in complex environments, (a) Situation 1: Test vehicle driving on a flat road
and dynamic obstacles on an uphill road, (b) Situation 2: Test vehicle driving on a flat road and dynamic obstacles on a downhill road.
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eliminated. If dii ≠di+1i+1 + Δ d, then the object
points are not on the road surface (i.e., they have a
nonzero height). *e object points are extracted to
obtain the object point set pi

′.
(5) Morphological processing is applied to the image of

the object point set pi
′ (Figure 9(f)). *e target image

is Ei, and the structural element is B, which is used to
apply a closing operation on Ei and obtain C con-
nected regions. *e real obstacle region Oi is thus
obtained, where Oi � Ei · Bi � (Ei⊕Bi)⊖Bi, and
Oi � (oi,1, oi,2, . . . , oi,c).

(6) Edge detection of real obstacles, shown in
Figure 9(g).

(7) According to the detection result of (6), the lowest
object point of each obstacle area is extracted, as
shown in Figure 9(h). *e lowest object point set Pi

″
constitutes the obstacle area.

(8) Each object point in Pi
″ is tracked during the

movement of the test vehicle.
(9) Get the movement state of the obstacles is obtained.

*emovement speed of the obstacle where the object
point is located can be obtained by tracking each
object point in Pi

″. If |di+1i+1 − di+2i+2| � vi+1 · Δt, the
obstacle on which these object points are located is
static. If |di+1i+1 − di+2i+2|≠ vi+1 · Δt, the obstacle is

moving with an instantaneous speed
vi+1′ � |di+1i+1 − di+2i+2 − vi+1 · Δt|/Δt∗ cos αi.

*e proposed obstacle detection method can be used to
detect real obstacles in complex environments and deter-
mine their movement state, which is beneficial for vehicles to
take timely measures and avoid accidents.

5. Experiment and Evaluation

*e proposed method can be used for obstacle detection in
complex environments with improved accuracy, as well as
distance and speed measurement of obstacles. Obstacle
detection and distance measurement were realized in
Matlab, whereas all experiments were performed on a
desktop PC with the Intel(R) Xeon(R) Silver 4210 CPU.

5.1. Simulation Experiment. In this study, experimental
equipment was used to simulate a detection environment so
as to verify the detection effect of obstacles on sloped roads
based on VIDAR. *e experimental equipment included: a
test vehicle equipped with an OV5640 camera unit and a
JY61p IMU (Figure 11(a)), vehicle scale models
(Figure 11(b)), bottle caps and paper (Figure 11(c)), and
simulated sloped road (Figure 11(d)). Among them, the test
vehicle was used to analyze the road environment and detect
its own driving state, scaled vehicle models were used to
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Figure 7: Schematic diagram of the camera and the lowest point on the road. (a) Situation 1: the test vehicle moving on a flat road and
dynamic obstacles on an uphill road. (b) Situation 2: the test vehicle moving on a flat road and dynamic obstacles on a downhill road.
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simulate known obstacles, while the bottle caps and paper
were used to simulate unknown obstacles. *e road slope
was set to 13°.

*e bottle cap was taken as the real obstacle of unknown
type, and the paper pasted on the simulated road was taken
as the pseudoobstacle of unknown type. *e angular

acceleration and acceleration data of the vehicle were ob-
tained by the IMU installed by the vehicle. Quaternion
method is used to solve the camera attitude, and the pitching
angle of the camera is updated. *e velocity data are used to
calculate the horizontal distance between the vehicle and the
obstacle. *e height of the obstacle is calculated by the
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Figure 8: Flow chart of slope road obstacle detection method based on VIDAR (see the following for specific steps).
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Figure 9: Obstacle detection based on VIDAR and digital map. (a) Two images collected during the movement of the vehicle. (b) Lane line
detection on the image and extraction of the detection range. (c) Feature point detection and matching on the images within the range. (d)
Extraction of feature points. (e) Determination of whether the extracted feature points have height. (f ) Removal of feature points without
height. (g) Morphological processing on feature points. (h) Tracking of the lowest point of obstacles.
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change of the distance before and after the movement, so as to
determine whether the detected obstacle is a real obstacle. *e
video collected using the OV5640 camera comprised an image
sequence at 12FPS, which was used for obstacle detection. *e
results obtained using the original VIDAR and VIDAR on
sloped roads are shown in Figure 12, while the test results of the
simulation experiment are summarized in Table 1.

*e test results of the simulation experiment is shown in
Table 1.

It can be seen from Figure 12 that the original VIDAR
can detect unknown types of obstacles such as bottle caps,
but it will detect false obstacles as real obstacles, resulting in
low accuracy of obstacle detection. However, the obstacle
detection method for sloping roads based on VIDAR can
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Figure 11: Equipment for simulating experiment. (a) Test vehicle. (b) Vehicle scale models. (c) Bottle caps and paper. (d) Simulated sloping
road.
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eliminate false obstacles, which makes up for the wrong
detection of unknown types of obstacles on sloping roads;
therefore, compared with the original VIDAR, our proposed
method can detect obstacles more accurately.

5.2. Real Environment Experiment. In the real environment,
purely electric vehicles were used as test vehicles (see Fig-
ure 13). As a sensor, the camera can adapt to complex
environments and collect environmental information in real
time (we only used the left camera).*e camera was installed
at a height of 1.60m. *e IMU used for locating the test
vehicle and reading of its movement state in real time was
installed at the bottom of the test vehicle. GPS was used for
accurate location positioning. *rough the combination of
GPS and IMU, the real-time position information of the test
vehicles and obstacles can be obtained, and then the tra-
jectory information of vehicles and obstacles can be ob-
tained. A digital map was used to obtain accurate road
information such as distance and slope. A calculation unit
was used to process the data in real time.

Accurate calibration of camera parameters was a pre-
requisite for the whole experiment and is a very important
task for obstacle detection methods. In this paper, Zhang
Zhengyou’s camera calibration method was adopted to
calibrate the DaYing camera. First, the camera was fixed to
capture images of a checkerboard at different positions and
angles. *en, the key points of the checkerboard were se-
lected and used to establish a relationship equation. Finally,
the internal parameter calibration was realized. *e camera
calibration result is shown in Figure 14.

Camera distortion includes radial distortion, thin lens
distortion, and centrifugal distortion. *e superposition of
the three kinds of distortion results in a nonlinear distortion,
the model of which can be expressed in the image coordinate
system as follows:

δx(x, y) � s1x x
2

+ y
2

  + 2p1xy + p2y
3

+ k1x x
2

+ y
2

 

δy(x, y) � s2y x
2

+ y
2

  + 2p2xy + p1y
3

+ k1x x
2

+ y
2

 

⎧⎨

⎩ ,

(8)

where s1 and s2 are centrifugal distortion coefficients; k1 and
k2 are radial distortion coefficients, and p1 and p2 are the
distortion coefficients of thin lenses.

Because the centrifugal distortion of the camera is not
considered in this study, the internal reference matrix of the
camera can be expressed as shown in

M �

5.9774e + 03 0 949.8843

0 5.9880e + 03 357.0539

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (9)

*e calibration of the camera’s external parameters can
be calculated by taking the edge object points of lane lines.
*e calibration results are shown in Table 2.

Since the images in the public data set were all data
collected by other cameras, different camera parameters will
affect the accuracy of ranging, so we used the VIDAR-Slope
database (Figure 15), the images in which where collected
using a DaYing camera. *e collection frequency was 77
frames/min, and there are 2270 images in total. *e ex-
periment and image collection took place in Shandong

(a) (b)

Figure 12: Comparison of obstacle detection effect in simulated environment. (a) Original VIDAR. (b) VIDAR on sloped roads.

Table 1: Test results of the simulation experiment.

Obstacle *e i th movement of the test
vehicle

Detection distance
(cm)

*e test vehicle moving
distance

Whether it has
height

Whether to
exclude

1 1 16.5 3 No Yes2 19.5

2 1 18.5 3 Yes No2 21.2

3 1 24.5 3 Yes No2 27.0
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University of Technology’s driving school and experimental
building. We selected the downhill section of the parking lot
for the experiment. In the process of obstacle detection, the
test vehicle moves at a constant speed of 25 km/h.

*e detection results of YOLO v5s and the method
proposed in this study are shown in Figure 16. *e ac-
curacy of obstacle detection was measured through the
number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). Let a be an
obstacle that is correctly classified as a positive example, b

be an obstacle that is wrongly classified as a positive
example, c be an obstacle that is correctly classified as a
negative example, and d be an obstacle that is incorrectly
identified as a negative example. *en, TP � 

n
i�1 ai,

FP � 
n
i�1 bi, TN � 

n
i�1 ci, FN � 

n
i�1 di.

*e YOLO series is a representative target detection
framework based on deep learning. *ere are four versions
of the target detection network: namely YOLO v5s, YOLO
v5m, YOLO v5l, and YOLO v5x. Among them, YOLO v5s is
the smallest and has the fastest speed, so we choose it for
comparative experiments.

Comparing the two methods, it can be seen that the sta-
bility of the proposed method is higher than that of YOLO v5s.

YOLO v5s lacks training in unknown types of obstacles, and
will consequently offer reduced safety when used in realistic
vehicle situations. However, the proposed obstacle detection
method does not require training and can detect all types of
obstacles, thus ensuring its effectiveness of obstacle detection
results on sloped roads. *e total number of obstacles in the
target area in the VIDAR-Slope database was 9526. *e results
of YOLO v5s and proposed method are shown in Table 3.

In the results’ analysis, Accuracy (A), Recall (R), and
Precision (P) were used as evaluation indices for the two
obstacle detection methods, calculated through the follow-
ing equations:

A �
TP + TN

TP + TN + FP + FN
, (10)

R �
TP

TP + FN
, (11)

P �
TP

TP + FP
. (12)

*eAccuracy, Recall, and Precision of YOLO v5s and the
method proposed in this study are shown in Table 4.
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Figure 15: *e VIDAR-Slope database (part of data).

Table 2: Calibration results of camera external parameters.

External parameter type Parameter size
Pitch angle 1.20
Yaw angle 3.85
Rotation angle 2.37
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Figure 16: Comparison of partial test results of YOLO v5s and proposed method. (a) YOLO v5s can only detect known type obstacles. (b)
*e obstacle method proposed in this article can detect pedestrians (known types) and boxes (unknown types).
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*e experimental results in Tables 3 and 4 show that
due to vehicle fluctuations and other factors, misjudgment
or misdetection may occur during vehicle movement.
Compared with YOLO v5s, the accuracy of the obstacle
detection method proposed in this study is increased by
8% and its precision is increased by 26.4%, which dem-
onstrates its improved obstacle detection capability on
sloped roads.

In terms of detection accuracy, we also compared our
method with other commonly used target detection
methods. *e detection results are shown in Table 5. It is
evident that the proposed obstacle detection method ach-
ieves an accuracy higher than state of the art methods.

*e real-time nature of obstacle detection refers to the
ability to process every image frame collected in time. In
terms of detection speed, YOLO v5s and the proposed
method were used to process 2270 images and the respective
average obstacle detection times were calculated. *e results
are shown in Table 6.

Since the average detection time of the method proposed
by us is 0.201s, in order to ensure the detection of obstacles
under normal driving conditions, the speed of the detected
vehicle must be less than or equal to the ratio of detection
distance to the average detection time.

Compared with YOLO v5s, the method proposed in this
study saves the training step of data set. *e modified
method firstly uses machine learning to detect obstacles of
known types, but it needs to process feature points of ob-
stacles of unknown types, so the final detection time is longer
than that of YOLO v5s. But it can still meet the demand of
real-time detection.

In order to verify the reliability of the distance mea-
surement method proposed in this study and the feasibility
of practical application, we have done a set of obstacle
detection experiments. We first use a fixed camera to take
pictures of the real road environment ahead and record the
process. *e result of IMU data processing is shown in
Figure 17. *en we select a few frames of images during the
progress of the obstacle for processing. Finally, the distance
between the camera and the obstacle in front is calculated,
and the detection result is shown in Figure 18.

*e comparison results are shown in Table 7.
Analyzing the difference between the actual and mea-

sured distance results, it was found that the difference lied
mostly between 0.013 and 0.191. *is phenomenon is caused
by the slight change in the posture of the vehicle.

*is study is based on the obstacle detection method of
VIDAR and the use of a digital map for distance mea-
surement experiments.*e experimental results show that
the error of this method is less than 2% at short distances
(<20m), and the distance measurement effect is better
than that reported by Guo Lei’s. Moreover, existing vi-
sion-based ranging requirements call for a measurement
error of less than 5% [36]. *erefore, from the distance
measurement results, the vision-based ranging algorithm
proposed in this article meets the requirements in mea-
surement accuracy and can achieve accurate distance
measurement to obstacles.

Table 3: Obstacle detection results in sloped roads of YOLO v5s and the proposed method.

Detection method Input value TP FP TN FN
YOLO v5s 9526 6716 2808 915 1214
Proposed method 9526 9124 402 530 485

Table 4: Evaluation indices of YOLO v5s and the proposed method.

Detection method A (%) R (%) P (%)
YOLO v5s 81.73 84.68 70.50
Proposed method 90.36 94.94 95.77

Table 5: Evaluation indices of YOLO v5s and the proposed
method.

Detection method A (%)
Fast R-CNN 76.53
SSD 71.28
Fast YOLO 78.95
SSD 300 73.96
YOLO v5s 81.73
Proposed method 90.36

Table 6: Evaluation indices of detections of YOLO v5s and the
proposed method.

Detection method Detection time (s)
YOLO v5s 0.164
Proposed method 0.201
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Figure 18: Obstacle distance detection. (a) 2021 81610 0 32.825. (b) 2021 81610 0 34.327. (c) 2021 81610 0 35.766. (d) 2021 81610 0 38.630.
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6. Conclusion

In this study, an obstacle detection method based on VIDAR
is applied to complex environments, avoiding the drawbacks
of machine learning methods that can only detect known
obstacles. Moreover, by integrating slope information into
the VIDAR detection method, real obstacles can be detected
on sloped roads, and distance and speed measurement of
obstacles can be realized, which has important research
value for autonomous vehicles and active safety systems. It
can be seen from the results that the proposed method is
effective in improving the accuracy and speed of obstacles
detection and can meet the requirements of obstacle de-
tection in complex environments. Obstacle detection in
complex road environment is the basis for safe driving of
vehicles. *erefore, obstacle avoidance path planning and
speed control based on obstacle detection are our future
research directions.
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