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Tis paper presents the design of the control system for a robot vehicle with two wheels that mimics a double Inverted Pendulum
(IP) system with an extendable payload. By expanding the degrees of freedom, the system is more fexible. Still, this model posed
challenges for control of parts of the system, including the proper balancing of the intermediate body and angular displacement of
both wheels and lifting the payload to the demanded height. In this paper, a hybrid control system that incorporates more than one
type of controller which combined proportional integral derivative (PID), proportional derivative (PD), and fuzzy logic control
(FLC) these controllers are designed for stabilising the aforementioned system.Te controller was validated by applying diferent
input signals to the payload actuator to prove the control system’s stability and analyse the system’s behaviour. Te simulation
results were satisfactory for the hybrid control technique. Te wheels successfully stabilised within 1.2682 s. Further, the frst and
second links stabilised at 9.5953 s and 9.6467 s, respectively. Te payload approximately produces the same input signal applied to
the payload actuator. Te model was derived using the Euler–Lagrange equation. Te equations are solved using kinetic energy
and potential energy which employs for motion. Simulation results of the two-wheeled robot vehicle with extendable payload
designed with hybrid control systems are implemented using MATLAB/Simulink environment.

1. Introduction

Te proposed robot vehicle is based on a double IP which is
considered a nonlinear and unstable system [1–3].Te IP system
and its applications play a vital role in control system engi-
neering and research because of its highly underactuated nature
and complex strong-coupling system [3, 4]. In the subject of
control engineering, IP problems are very common. Previous
research studied the problem of stabilising IP and has refected
the development of many applications based on the same
concept, including the design of a classical pendulum on a cart
[5–7]. Te IP systems have been extended and become more
complicated with multiple rods which provides much fexibility
[8], such as double IP [9–11] and triple IP [12–15]. Many pieces
of research focused on applications based on IP systems, such as
the Segway robot [16–18], the two wheelchairs [19–21], simple
walking models [22], and the bipedal robot based on IP [23, 24].

Our research considered the fve degrees of freedom
model, consisting of two wheels and two links with a
movable payload that can be moved to demand height.
Increasing the system’s degrees of freedom enables the
vehicle to manoeuvre freely. Diferent input signals were
applied to the movable payload to validate the system’s
stability. Te wheels were assumed to move within 0.8m
while both links of the intermediate body of the system were
retained as upright to ensure system stabilisation.Te hybrid
control system was used as a control technique to implement
fve loops of model control to achieve system stability.

Tis paper is organised as follows: “system description”
which describes the two-wheeled robot vehicle with movable
payload and the “mathematical modelling” section, which
explains the derivation of the nonlinear diferential equa-
tions utilized in the system simulation. Te section “hybrid
control design” obtained the control system used for the
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system stabilisation. Te “Results Discussion” section dis-
cussed the simulation results. Finally, the research is con-
cluded in the “conclusions” section.

2. System Description

A diagram form illustration of the assumed model [25] is
shown in Figure 1. Te system consists of two wheels and an
intermediate body comprised of two links connected to the
payload that can move to the required height. Te robot
vehicle drives these wheels using two DC motors, with a
further motor used to drive the second link. A single ac-
tuator in the middle of the second link of the intermediate
body lifts the payload to the required height. Te robot
vehicle thus has fve degrees of freedom (DOF).

(i) Te translational motion of the two wheels
(ii) Te two links of the system
(iii) Te movable payload linear actuator

Te angles of both links, the frst being θ1 and the second
θ2, were measured from the Z-axis, representing the in-
termediate body being in the upright position or inclined to

only a small degree, depending on the controller design.Q is
the linear displacement of the payloadmeasured from theO2
position along with the second link. Te left δL and right δR
wheels’ angular displacements cause the vehicle to move
linearly in the XY plane. Tese are the main fve loops
controlled to stabilise the system.

3. Mathematical Modelling

Te system mathematical modelling was derived using the
Euler–Lagrange equation due to modelling complex, non-
linearity, and strong-coupling systems such as [19, 26]. Tis
method ofers a simple approach to determining a complex
systems model [18]. Te Lagrange equation employs both
kinetic energy and potential energy that are solved for
motion [20, 27] using an equation as follows:

d

dt

zL

z _qi

􏼠 􏼡 −
zL

zqi

� Qi. (1)

After the system was derived it yields fve nonlinear
diferential equations

2C21
€δL + C22

€δR + C9
Rw

2
L1

€θ1 cos θ1 − C9
Rw

2
L1

_θ
2
1 sin θ1 +

Rw

2
C10 + C8Q( 􏼁€θ2 cos θ2 −

Rw

2
C10 + C8Q( 􏼁 _θ

2
2 sin θ2 +

Rw

2
C8

_Q _θ2 cos θ2

� TL − TfL, 2C21
€δR + C22

€δL + C9
Rw

2
L1

€θ1 cos θ1 − C9
Rw

2
L1

_θ
2
1 sin θ1 +

Rw

2
C10 + C8Q( 􏼁€θ2 cos θ2 −

Rw

2
C10 + C8Q( 􏼁 _θ

2
2 sin θ2

+
Rw

2
C8

_Q _θ2 cos θ2

� TR − TfR, 2C18
€θ1 + C9

Rw

2
L1

€δL + €δR􏼐 􏼑cos θ1 − C9
Rw

2
L1

_δL + _δR􏼐 􏼑 _θ1 sin θ1 + 2L1 C10 + C8Q( 􏼁€θ2 cos θ1 − θ2( 􏼁

− 2L1 C10 + C8Q( 􏼁 _θ1 _θ2 sin θ1 − θ2( 􏼁 + 2L1 C10 + C8Q( 􏼁 _θ
2
2 sin θ1 − θ2( 􏼁 + 2L1C8

_Q _θ2 cos θ1 − θ2( 􏼁 + C9
Rw

2
L1

_θ
2
1

_δL + _δR􏼐 􏼑sin θ1

+ 2L1 C10 + C8Q( 􏼁 _θ
2
1
_θ2 sin θ1 − θ2( 􏼁 − C3 g _θ1 sin θ1

� 0.5 TLT − TRT( 􏼁, C20
€θ2 + C12

_Q + 2C8 Q􏼐 􏼑 _θ2 + C12 Q + C8Q
2

􏼐 􏼑€θ2 +
Rw

2
C10 + C8Q( 􏼁 €δL + €δR􏼐 􏼑cos θ2

−
Rw

2
C10 + C8Q( 􏼁 _δL + _δR􏼐 􏼑 _θ2 sin θ2 + C9

Rw

2
_Q _δL + _δR􏼐 􏼑cos θ2 + 2L1 C10 + C8Q( 􏼁€θ1 cos θ1 − θ2( 􏼁

− 2L1 C10 + C8Q( 􏼁 _θ
2
1 sin θ1 − θ2( 􏼁 + 2L1 C10 + C8Q( 􏼁 _θ1 _θ2 sin θ1 − θ2( 􏼁 + 2C8 L1

_θ1 _θ2 cos θ1 − θ2( 􏼁

+
Rw

2
C10 + C8Q( 􏼁 _δL + _δR􏼐 􏼑 _θ

2
2 sin θ2 − C15 + C8Q( 􏼁g _θ2 sin θ2 − 2L1 C10 + C8Q( 􏼁 _θ1 _θ

2
2 sin θ1 − θ2( 􏼁

� TMT − LdFd, C8
€Q −

1
2

C12 + 2C8Q( 􏼁 _θ
2
2 − C8

Rw

2
_θ2 _δL + _δR􏼐 􏼑cos θ2 − 2L1C8

_θ1 _θ2 cos θ1 − θ2( 􏼁 + C8g cos θ2 � FaT.

(2)

Te system was built and the dynamics were described
using these fve nonlinear diferential equations. Te torques
of the motors are the system’s inputs including TLTTRT. Te
motor derived the second link TMT, and the linear actuator
force is FaT where Jw, J1, J2u, J2l, and Jm are the intermediate
body’s mass moment of inertia. Te system simulation
parameters reported by [28] that based on the standard
dimensions of a two-wheeled robot vehicle illustrated in
Table 1.

3.1. Hybrid Control Design. Te hybrid control system in-
tends to improve the system performance by combing the
best specifcations from the control systems used [29, 30]. A
hybrid control system employs the benefcial sides of the
proposed controllers suggested [31]. Tis study implements
hybrid controllers to improve performance.

Te frst control system was the PID controller, a widely
used control system that provides dependable and stable
performance for most systems [32, 33]. Te proposed
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controller is a commonly used control system because it is
simple and easy to tune, further providing robust perfor-
mance [34]. Ten the fuzzy logic controllers test the system
stability and the improvement of this type of controller on
the system. In this research, higher control eforts were
exerted in PID than in FLC for the system stabilisation.
However, it is essential to decrease the exerted efort of the
controller to stabilise the system. According to the simu-
lation results, the FLCwas signifcantly reduced compared to
PID controllers by the control efort made for system sta-
bilisation, without impacting the stability of the system.
After that, the hybrid control system intends to improve the
system performance by combing the good specifcations
from the PID and FLC control systems used [35].

Two types of hybrid control systems are designed for the
nonlinear model for two-wheeled robot vehicles with
movable payload. PID with FLC is used to control both
wheels, two links of the intermediate body, while the payload
actuator was controlled using PD with FLC controllers.

Te PID-PD control parameters are tuned progressively
until the system stabilise [36]. Te FLC with two inputs
includes error and change of error with one output used to
describe a fuzzy inference system and then create the fuzzy
rules [37, 38]. Te linguistic variable of the two inputs and

output are negative-big (NB), negative-small (NS), zero (Z),
positive-big (PB), and positive-small (PS). Tese rules yield
the action of the FLC parts. Te proper system tuning of the
FLC to stabilise themodel was developed using fve Gaussian
membership functions (MF) with 25 rules base. Figure 2
illustrated the design of the model with the hybrid control
system.

For PID and PD tuning, the gain parameters are shown
in Table 2.

Te fuzzy logic control with 25 rules base and fveMF are
shown in Table 3 depending on the desired system
performance.

Te membership functions are illustrated in Figure 3.

4. Analysis and Discussion of
Simulation Results

At this stage, the system was designed with diferent force
input signals applied to the payload to validate the control
system’s robustness. A hybrid control system is designed to
stabilise combined with PID-PD and FLC. Te system re-
sponses were tested with various input signals applied to the
payload actuator.

4.1. Test 1: Simulation Results with the First Payload Input
Signal. Te frst input signal is illustrated in Figure 4. Tese
simulation results of the system response using hybrid
controllers are illustrated in Figure 5. Te results clearly
show that the control system stabilised the two wheels
robot vehicle. Te system controller efort is observed in
Figure 6. It can be seen that the wheels stabilised with
acceptable overshoot and peaks for the wheels, and the two
links and a 4.954% overshoot were observed on the payload
actuator.

Simulation results for the system response using hybrid
controllers are illustrated in Figure 5.

Te exerted efort of the controllers required to stabilise
the system is represented in Figure 6.
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Figure 1: Te main parts of the vehicle on two diferent sides.

Table 1: Te parameters of a two-wheeled robot vehicle with a
movable payload.

Variable Value Unit
Mm 0.3 Kg

Jw 0.225 Kg · m2

Rw 0.3 m

Ml 3 Kg

J1 0.003025 Kg · m2

M2l 1.5 Kg

M2u 1.5 Kg

J2u 0.005 Kg · m2

J2l 0.005 Kg · m2

M 70 Kg

JM 1 Kg · m2
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Te hybrid controller was able to help stabilise the
system components with the controllers’ efort as shown
in Figure 6. Te wheels settle at 1.2682 s with a 4.737%
overshoot. Te frst link of the intermediate body
reached settling time at 0.0621 s, and the second link
settled at 4.529 s, and the payload actuator produce the
same input signal applied to the payload with a 4.954%
overshoot.

4.2. Test 2: Simulation Results with the Second Payload
Input Signal. Te second input signal using a hybrid
controller applied on the payload actuator is illustrated in
Figure 7.

Simulation results for the system response using hybrid
controllers are illustrated in Figure 8.

Te exerted efort of the controllers required to stabilise
the system is represented in Figure 9.

Te hybrid controller was capable to stabilise the system
parts with the second input signal, and the control system

efort was less than the frst signal. Te payload actuator
produced the same input signal applied to the payload with a
0.515% overshoot.

4.3. Test 3: Simulation Results with the Tird Payload Input
Signal. Te third input signal using a hybrid controller
applied on the payload actuator is shown in Figure 10
and the system response is illustrated in Figure 11 further
Figure 12 represents the control system efort used to sta-
bilise the system.

Simulation results for the system response using the
hybrid controllers are illustrated in Figure 11.

Te exerted efort of the controllers required to stabilise
the system is represented in Figure 12.

Te system successfully stabilised with the third input
signal, but the payload actuator required higher control
efort for the payload stability, this is due to the sharp
shape of the input signal. When the signal reaches the
maximum point, it suddenly goes back to zero, which
makes the controller require higher efort for the payload
stabilisation.

4.4. Test 4: Simulation Results with the Fourth Payload Input
Signal. Te last test was with the input signal illustrated in
Figure 13. In this case, the control system successfully
stabilised with controller efort exerted for stabilisation, as
shown in Figure 14.

Simulation results for the system response using the
hybrid controllers are illustrated in Figure 15.

Te exerted efort of the controllers required to stabilise
the system is represented in Figure 14.

Te hybrid controller stabilised the system parts with the
fourth input signal and acceptable controller efort; Te
payload actuator produced the same input signal applied to
the payload with an overshoot of 59.718%.

Two-hybrid controllers are implemented, including PID
with FLC and PD with FLC. Te hybrid controllers com-
bined the excellent characteristics of the PID-PD and FLC
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Figure 2: Te system block diagram using hybrid controllers.

Table 2: PID and PD gain parameters.

Loop
PID gains

Kp Kd Ki
Left wheel 50 1 0.01
Right wheel 50 1 0.01
First link 10 2 0.1 e−3

Second link 6 7 0.8
Payload actuator 20 10 0

Table 3: 25 fuzzy controller rules base.

_e NB NS Z PS PB
NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z PS PB
PS NS Z PS PB PB
PB Z PS PB PB PB
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control systems. Te controllers successfully stabilised the
model with diferent input signals applied on the payload
linear actuator. Tese input signals validate the control

system’s stability, proving that the system is still stable with
various input signals. Te linear displacement for both
wheels settled with 1.2682 s settling time and 4.737%
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Figure 4: Te frst input signal applied on the payload.
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overshoot. Te two links of the intermediate body suc-
cessfully stabilised at the upright position. Te frst link
settled at 9.5953 s, while the second link stabilised at 9.6467 s

with a slight overshoot of 0.505% and small exerted eforts.
Te payload produces the same input signal applied to the
payload actuator.
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6 Journal of Robotics



Control efort of the lef wheel Control efort of the right wheel

Control efort of the frst link Control efort of the second link

-60

-40

-20

0

20

40
To

rq
ue

 (N
.m

)

3010 15 20 2550
Time (seconds)

-60

-40

-20

0

20

40

To
rq

ue
 (N

.m
)

5 10 15 20 25 300
Time (seconds)

5 10 15 20 25 300
Time (seconds)

0

0.005

0.01

0.015

0.02

0.025

To
rq

ue
 (N

.m
)

5 10 15 20 25 300
Time (seconds)

-4

-2

0

2

4

6

To
rq

ue
 (N

.m
)

Control efort of the payload

-60

-40

-20

0

20

40

60

Fo
rc

e (
N

)

0 10 15 20 25 305
Time (seconds)

Figure 6: System exerted efort with the frst input signal using hybrid controllers.

50 3020 251510
Time (seconds)

-0.05

0

0.05

0.1

0.15

0.2

Pa
yl

oa
d 

D
isp

la
ce

m
en

t (
m

)

Figure 7: Te second input signal applied on the payload.

Journal of Robotics 7



Comparing the simulation results to those reported by
[25], the system successfully stabilised with less control
efort that provided a stable response, and the wheels
stabilised at 36.4 N.m. Te frst link controller efort was

4.15 N.m, which gave satisfactory responses, while in the
previous study, the wheels stabilised with more than
120 N.m further more than 7 N.m controller efort exerted
for the frst link.
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Figure 14: System exerted efort with the fourth input signal using hybrid controllers.
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5. Conclusion and Future Work

Tis paper’s objective was to design a hybrid control system
for a two-wheeled robot vehicle with a movable payload
based on the double-inverted pendulum system. Te hybrid
controller consists of PID with FLC and PD with FLC used
for the system stabilisation.Te PID and PD controllers were
tuned progressively while the FLC was designed with fve
MFs and a 25-rules base. Te simulation results illustrated
that the hybrid control system was successfully designed to
control the robot vehicle. Te validation of the designed
controller has been proved by applying diferent input
signals to the payload actuator. Te simulation results have
shown successful stable responses. Future work should thus
focus on testing the control system's robustness by applying
disturbances on all system parts with various amplitudes.
(see Table 4).
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