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'e kinematic reliability of robots, defined as the probability that the end-effector falls inside the specified safe boundary, is of
great significance in predicting the accuracy achieved in reality. 'is work selects the 7 degrees-of-freedom (7-DOF) redundant
robot as an example to conduct reliability analysis by utilizing the envelope method against time-related issues in this work. Since
variables in industrial robots are very small relative to their means, the motion error functions are commonly linearized by the
first-order Taylor’s formula to simplify calculation, and the failure models in all directions and attitude angles are then established
through the probability method over the entire input interval. As a result, the actual accuracy of the robot in each pose component
will be displayed, instead of merely considering the position error like other scholars. 'e principle of the proposed method is to
transform a time-dependent problem into a time-independent one with the help of the failure extreme points and endpoints, so as
to enhance the operation efficiency under the premise of ensuring accuracy. Finally, the simulation results verify that the relative
error of the envelope method is less than 6.0% compared with that of the Monte Carlo simulation method, and the computational
efficiency is higher than that of the Monte Carlo method, which demonstrates that the envelope method has better
comprehensive performance.

1. Introduction

Industrial robots are critical components of modern
manufacturing because they offer low production costs, high
stability, and high efficiency [1–3]. 'e 7-DOF redundant
robot serves as a current research hotspot, famous for its
tremendous flexibility in completing multiple tasks like
avoiding singularity, avoiding obstacles, and optimizing
pathways. Although the structure of multiaxis and multilink
makes operations more convenient, they further magnify the
uncertainty of the ontology, leading to the error accumu-
lation problem becoming more prominent. Since errors
universally exist in the manufacturing, assembly, and joint
rotation processes [4,5], the actual pose of the end-effector
may differ from the predetermined one where the precision
is in perfect condition. 'erefore, kinematic reliability,
which is widely used in mechanical structures, is proposed as
a method of uncertainty evaluation to quantify the impact of
multiple factors on accuracy.

For the inverse kinematics of 7-DOF redundant robots,
studies have shown that some algorithms can make the pose

of the manipulator almost identical to the ideal state. Dereli
and Köker [6] employed a group optimization technique
called the firefly algorithm to narrow the error between the
end-effector and the target point to 10− 10 mm. 'is did not,
however, imply that robots will be able to achieve such
precision in practical engineering owing to the influence of
external factors that cannot be eliminated. In general, the
link error of industrial robots ranges from 0.01mm to 1mm
[7,8]. On the other hand, the rotation error, as well as other
errors, cannot be overlooked. 'ese variables, in contrast to
the inverse kinematics algorithm, significantly disrupt the
working condition of the manipulator. Furthermore, in-
telligent welding work performed by robots in conjunction
with vision systems has been progressing apace in recent
years [9], whose kinematic error can be effectively predicted
based on the reliability theory. All of this suggests that ki-
nematic robot reliability is an essential study area with
several applications.

'e kinematic reliability problem of robots can be di-
vided into two categories: point reliability and time-de-
pendent reliability [10–13]. 'e instantaneous failure rate at
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a point on the trajectory is reflected in point reliability
regardless of whether motion is valid at other points, which
commonly occurs during the measurement of the repeat-
ability of positioning. Due to the low complexity and fre-
quent occurrences of this problem, it has become the
primary research type for scholars. 'e first-order reliability
method (FORM) and the Monte Carlo simulation (MCS)
method are two typically used calculation methods [14,15],
with the latter serving as a benchmark for the newmethod in
that it has higher accuracy based on a large number of
sample simulations but higher calculation cost [16]. In
addition, Zhang and Xu [17] used a combination of saddle
point approximation (SPA) and dimension reduction (DR)
to forecast the precision of a 6-DOF industrial robot, filling a
gap in the nonlinear error literature. However, in engi-
neering practice, the reliability of continuous trajectory is of
higher application value since it can reveal the laws of robot
terminal motion in global terms, which is why the time-
dependent problem of kinematic reliability receives more
attention.

To be more specific, it refers to the likelihood that an
arbitrary discrete point on its terminal trajectory falls within
a presupposed tolerance zone, the center of which is on the
desired path [18–20]. Nevertheless, the true motion accuracy
is difficult to estimate on account of the high correlation
between discrete points at different times and the accu-
mulation of failure rates over time. Regrettably, almost all
time-dependent problem research objects are four-bar
mechanisms with a single output and few variables in the last
decade, where popular algorithms such as Rice’s formula,
extreme value method, and envelope method [21–23] have
been successfully implemented.

With the improvement of relevant theories over time,
some algorithms are appropriately used for robot time-
dependent reliability analysis after reasonable modification.
Zhao et al. [24] introduced the first-passage method into the
analysis of the 6-DOF robot’s pose error, showing that the
method’s accuracy is fairly good when accounting for low
relationships between discrete points, but the calculation
area is limited to situations with a very low failure rate.
Pendey and Zhang [25] effectively computed the fluctuation
range around the intended motion, and the probability
density function of the extreme value distribution points is
derived in terms of the principle of maximum entropy.
Whereas this method requires a large amount of sample
data, its stability may be insufficient for widespread adop-
tion. In order to solve the problem that the failure proba-
bility of the 3R planar robot is difficult to estimate, Vieira
et al. [26] coupled the interval analysis method with theMCS
method, taking advantage of both to formulate the law of
plane motion, but it cannot guarantee its adaptability to
spatial motion. Given the considerable limitations of the
method mentioned above in the investigation of time-de-
pendent reliability, a new method is indispensable to assess
the robot from various perspectives.

Motivated by the abovementioned studies and the huge
application potential of kinematic reliability, this article
chooses the 7-DOF redundant robot as the research object.
'e main contributions are threefold: (1) compared with

planar mechanisms or 6-DOF manipulators, the 7-DOF
redundant robot involves more input variables and higher
coupling in motion function, whose time-dependent reli-
ability problem has not been studied yet. (2) 'e simulation
analysis in this article, conducted by the enveloped method,
including three positions and three attitude angles, is re-
markably distinct from those that just focus on position
errors to better display the components of the total error. (3)
'e error function of the comprehensive pose obeying
nonlinear is approximated on the basis of the multidi-
mensional normal integral.

'e framework of this article is as follows. In Section 2,
we elaborate on the robotic kinematics. Section 3 deduces
error functions and kinematic reliability models. We pro-
pose the envelope method in Section 4. A simulation ex-
ample is presented in Section 5, and the conclusions are
summarized in Section 6.

2. Robot Kinematics

To begin with, the forward kinematics of the robot should be
established to construct the error function, which describes
the transfer relationship between connecting rod move-
ments. A classic method, the improved DH parameter [27],
identifies the internal relativity between two neighboring
links through four parameters in the definite coordinate
systems, as shown in Figure 1. 'e symbols ai−1, αi−1, di, and
θi of four parameters represent link length, link twist, link
offset, and joint angle, respectively, listed in Table 1.

'e homogeneous transformation matrix i−1
i T of adja-

cent frames is described as

i−1
i T �

cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where c is the abbreviation of the symbol cos and s is the
abbreviation of the symbol sin.

According to the progressive relationship between the
connecting rods, the pose matrix 0

i T of end-effector is given
by

0
i T �

0
1T ·

1
2T · · ·

i−1
i T �

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where n � [nx, ny, nz]T, o � [ox, oy, oz]T, and
a � [ax, ay, az]T are all unit vector projected onto the fixed
coordinate frame. p � [px, py, pz]T is a position vector in
the fixed coordinate frame.

3. Kinematic Reliability Model

'e kinematic reliability of a robot can be defined as the
probability that the actual output trajectory of its end-ef-
fector in the specified interval falls within the allowable error
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range. In order to vividly describe the influence of uncertain
factors on the accuracy of the trajectory, Figure 2 is used to
depict the difference between the failed trajectory (red
curve), the qualified trajectory (black curve), and the ideal
trajectory (purple curve).

In the past, it has been discovered that the error of a
robot is primarily caused by the geometric dimension of
the connecting rod and the joint rotation [8]. Further-
more, link offset should be considered due to inevitable
deviation from assembly and joint wear, which is easily
overlooked. In engineering practice, however, the stan-
dard deviation of each variable is controlled within a small
range, usually less than one-thousandth relative to the
corresponding mean value. Based on the research results
from the literature [11,17,28], the error distribution of
each variable is assumed to be normal and mutually in-
dependent. 'en, the error function
gj(X, θ)(j � 1, 2, · · · , 6) of end-effector in three positions
and three attitude angles, is described as

gj(X, θ) � ψj(X, θ) − ψj(θ), (3)

where ψj(X, θ) and ψj(θ) are the actual output value and
theoretical output value, respectively, and n is the dimension
of the vector X � [X1 · · · Xn]T.

When the magnitude of standard deviation of the
random variable is much smaller than the counterpart of the
mean value, the first-order Taylor formula [29] is an effective
treatment for approximating the error function. As a result,
the error function can be expanded at the mean value of X,
written as

gj(X, θ) ≈ aj0(θ) + aj(θ) · (μ − X), (4)

where aj0 � ψj(μ, θ) − ψj(θ), aj(θ) � (zψj/zXi|μ)n×1.

Remark 1. In this article, all variables follow normal dis-
tribution, so the correlation property can be used to further
simplify the operation.

Property 1. If X ∼ N(μ, σ2), there is

aX + b ∼ N aμ + b, (aσ)
2

 , (5)

where a and b are both real numbers.
'erefore,X subject to the normal distribution should be

transformed into U subject to the standard normal distri-
bution, given by

Ui �
Xi − μi

σi

. (6)

So equation (3) can be rewritten as

gj(U, θ) ≈ Lj(U, θ) � bj 0(θ) + bj(θ) · U, (7)

where bj 0(θ) � aj 0(θ), bj(θ) � (aji(θ)σ i)n×1, aji is the i-th
element of aj, and σi is the standard deviation of Xi.

Since the joint angle changes with time t, gj(U, θ) can be
converted into a time-dependent function. If moving time t

is set in the interval [to, te], taking the position x of the end-
effector as an example, its kinematic reliability model can be
defined as

R1 to, te(  � Pr g1(X, t)


≤ ε,∀t ∈ to, te  . (8)

'e corresponding failure probability model can be
expressed as

pf1 to, te(  � 1 − R1 to, te( 

� Pr g1(X, t)


> ε,∀t ∈ to, te  .
(9)

Similarly, the comprehensive reliability model of the
robot end-effector is

Figure 1: Schematic diagram of the 7-DOF redundant robot.

Table 1: Improved D-H parameters of the 7-DOF redundant robot.

i ai−1(mm) αi−1(°) di(mm) θi(°)
1 0 0 0 θ1
2 0 90 -297.5 θ2
3 0 90 355.5 θ3
4 450 0 -293 θ4
5 400 0 255 θ5
6 0 90 197 θ6
7 0 90 104 θ7

Ideal trajectory
Qualified trajectory

Failed trajectory
Allowable error boundary

Figure 2: Difference of three trajectories.
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R to, te(  � Pr ∩
6

j�1
gj(X, t)



≤ ε,∀t ∈ to, te  . (10)

'e comprehensive pose failure model of the robot end-
effector is

pf to, te(  � Pr ∪
6

j�1
gj(X, t)



> ε,∀t ∈ to, te  . (11)

According to the preceding derivation, if a trajectory is
eligible in interval [to, te], the error of a point at any time
must satisfy the condition that the error is within the tol-
erance sphere. Nonetheless, calculating the error at each
point in reality is unaffordable. As a result, it is critical to
develop a high-precision and high-efficiency algorithm to
replace the MCS method for solving the kinematic reliability
problem.

4. Envelope Method

'e linchpin of the envelope method is to utilize failure
boundary functions G+

j (X) � 0 and G−
j (X) � 0 converting

reliability problem into a time-independent problem.
G+

j (X) � 0 and G−
j (X) � 0 are limit state functions, which

are tangent to hypersurfaces gj(X, t) � ε and gj(X, t) � −ε,
respectively.

According to this nature, there is

gj(X, t + Δt) − gj(X, t)

Δt
� 0. (12)

If Δt⟶ 0, we have

zgj(X, t)

zt
� 0 or _gj(X, t) � 0. (13)

'en, G+
j (X) is expressed as follows:

gj(X, t) � ε,

_gj(X, t) � 0.

⎧⎨

⎩ (14)

We solve equation (14) to obtain

G
+
j (X) � g X, _g

−1
j (X)  − ε � 0, (15)

where _g−1
j (·) is the inverse function of _gj(·) with respect to t.

So are G−
j (X) as

gj(X, t) � −ε,

_gj(X, t) � 0.

⎧⎨

⎩ (16)

'ere are also

G
−
j (X) � g X, _g

−1
j (X)  + ε � 0. (17)

After the above derivation about G+
j (X) and G−

j (X), the
kinematic reliability model of the robot becomes

Rj to, te(  � Pr G
+
j (X) < 0∩G

−
j (X)> 0,∀t ∈ to, te  . (18)

Since it is very difficult to obtain the expression of the
inverse function _g−1

j (X) directly, G+
j (X) and G−

j (X) need to
be simplified further.

Substituting equation (7) into equation (14), G+
j (X) is

rewritten as

Lj � bj 0(t) + bj(t) · U � ε,

_Lj � _bj0(t) + _bj(t) · U � 0,

⎧⎨

⎩ (19)

where Lj is the abbreviation of Lj(U, t).
Referring to the research results of literature [30], the

gradient of Lj(U, t+
i ) � ε and U are collinear at some in-

stants, as shown in Figure 3.
Hence, U is equal to

U � c
bj(t)

����������
bj(t) · bj(t)

 , (20)

where c is a constant.
We plug this into equation (19) to yield

bj0(t) + c
bj(t) · bj(t)
����������
bj(t) · bj(t)

 � ε. (21)

'erefore, c is given by

c �
ε − bj0(t) 
����������
bj(t) · bj(t)

 . (22)

Equation (19) can be transformed into

_bj0(t) + ε − bj0(t) 
_bj(t) · bj(t)

bj(t) · bj(t)
� 0. (23)

On the basis of equation (23), the value of t+
i can be

solved. On the other hand, the number of solutions t+
i may

not be fixed due to different intricacies of trajectories. Ul-
timately, expansion point U(t+

i ) is represented by

U t
+
i(  �

ε − bj0 t
+
i(  bj t

+
i( 

bj t
+
i(  · bj t

+
i( 

. (24)

In the same way, t−
i (i � 1, 2 · · · k− ) can be obtained in

line with G−
j (U) � 0 whose expression is

Lj � bj 0(t) + bj(t) · U � −ε,

_Lj � _bj0(t) + _bj(t) · U � 0.

⎧⎨

⎩ (25)

And expansion point U(t−
i ) is described as the following

expression:

U t
−
i(  � −

ε + bj0 t
−
i(  bj t

−
i( 

bj t
−
i(  · bj t

−
i( 

, (26)

where t−
i (i � 1, 2 · · · k− ) is the solution of equation (25).

Remark 2. Directly solving equations (19) and (25), both of
which include about a thousand trigonometric functions, is
difficult and takes an inordinate amount of time. An efficient
way is to take points at appropriate intervals to find the
closest solution among all samples.
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Since the above derivation is reasonable, we use
Lj(U, t+

i ) � ε and Lj(U, t−
i ) � −ε instead of G+

j (U) � 0 and
G−

j (U) � 0 to simplify the kinematic reliability model. 'ere
is

Rj to, te(  � Pr ∩
k+

i
Lj U, t

+
i( < ε ∩ ∩

k−

i
Lj U, t

−
i( > − ε ,∀t ∈ to, te  . (27)

Beside time instant t+
i and t−

i , start time to and end time te

should be also added to improve calculation accuracy.
Consequently, we recast the kinematic reliability model as

Rj to, te(  � Pr ∩
k

i
s ti( Lj U, ti( < εi , (28)

where ti contains to, te, t+
i , t−

i , and k � k+ + k− + 2. s(ti) is the
sign function of Lj(U, ti), defined as

s ti(  �

+1, if ti � t
+
,

−1, if ti � t
−

,

+1, if ti � t0 or te, L U, ti( ≥ 0,

−1, if ti � t0 or te, L U, ti( < 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(29)

Combining the previous descriptions, L(U, t) is similar
to gj(U, t), which leads to the error distribution of L(U, t)

being normal. In light of this property, the mean μL and
covariance matrix Σ can be derived to compute the reliability
R(to, te), whose formula is

R to, te(  � Φ ε, μL,Σ( , (30)

where Φ(·) is the cumulative distribution function (CDF) of
multiple standard normal variables.

'e formula of μL is

μL � s ti( μL ti( ( i�1×k � s ti( bjo ti(  
i�1×k

, (31)

where Σ denotes the covariance matrix with k2 elements,
calculated by

σij � s ti( s tj b ti( b tj . (32)

Remark 3. It is worth noting that Σ must be a positive
definite matrix during the calculation process. 'is is to say,
the Σ is full-rank with a positive determinant value.

Otherwise, we must eliminate the point with the lowest
failure rate one by one until the covariance matrix Σ meets
the above condition. 'e calculation formula for failure
probability is written as

pjf ti(  � Pr s ti( L U, ti( > εi 

� 2 − 2∗Φ
s ti(  ε − bj0 ti(  

�����������
bj ti(  · bj ti( 


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(33)

Immediately after this process, the r effective points are
kept to reconstitute the new mean μL′ and matrix Σ′, namely,

μL′ �� s ti
′( bjo ti
′(  

i�1×r
, (34)

Σ′ � σij
′ 

r×r
, (35)

where σij
′ � s(ti
′)s(tj
′)b(ti
′)b(tj
′).

Accordingly, the reliability of the robot end-effector is
calculated by

R to, te(  � Φ ε, μL′,Σ′( 

� 
ε

−ε

1
(2π)

r/2 Σ′



exp −

1
2

x − μL′( Σ′ x − μL′( 
T

 dx.
(36)

Finally, we summarize the flow of kinematic reliability,
as shown in Figure 4.

When the reliability values for the specified tolerances
are obtained, the performance of the robot can be evaluated
according to the quality indicator of the industry. In general,
product accuracy must meet at least 'ree-Sigma (reliability
≥ 99.7%) requirement for enterprises, but such a production
situation is not clearly competitive due to a certain amount
of profit applied to after-sales links and the low loyalty of
customers.'erefore, the Six Sigma principle [31] (reliability
≥ 99.99966%) has gradually become a new quality measure

L (U,t2
+)=ε

L (U,t1
+)=ε

Actual envelope

O U1

U2

Figure 3: Intersections at instant time t+
i .
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since it was proposed in the 1990s. If the precision of the
robot can meet such situation, it means that the product is
almost impossible to defect.

5. Simulation Results

In this article, the simulation platform MATLAB 2019a is
employed, and the CPU is an AMD Ryzen 7 3700X 8-Core.
For example, to replicate the shipyard welding task, a 7-DOF
redundant robot is chosen, with Table 2 displaying the
corresponding variable distribution. Based on the robot
kinematics literature, the cyclic coordinate descent (CCD)
method [32] is used to calculate the corresponding joint
angles of the robot, and we have θo � [−58∘, 45∘, −7∘,
48∘, 6∘, −46∘, 37∘] and θe � [−31∘, 121∘, 69∘, 90∘, 85∘, 27∘, −8],
which are the starting angle and the ending angle, respec-
tively. Furthermore, the following motion function of the
robot joint angles within 3 s is planned:

θj(t) � θj(0) +
θj(0) − θj(0)

T
t −

T

2π
sin

2π
T

t  , (37)

where θj(·)(j � 1, 2, · · · , 7) represents the value of the joint
angle θj and T � 3 represents the total time of executing the
task.

Figure 5 depicts the motion trajectory of the robot end-
effector in the Cartesian coordinate system from the starting
point to the ending point.

In order to demonstrate the validity of the envelope
method, the equivalent extreme value (EEV) method [33]
and MCS are introduced for comparison, with the latter
serving as a desired value benchmark with 1 × 106 random
trajectories simulated. For the MCS method, only 31 points
on a trajectory with a 0.1 s interval are taken into account due
to unaffordable computation of points at each time. If all of
these points are within the allowable tolerance, this

trajectory is regarded as valid. Otherwise, this course is
unqualified. When t is at 3 s, for example, failure samples
and valid samples are displayed, as illustrated in Figure 6,
with the comprehensive position error (

������


3
i�1 g2

i



) of rep-
resentative trajectories shown in Figure 7.

Figure 8 plots the results of three algorithms. It can be
seen that the failure rate of three algorithms decreases with
the increment of error. From a global perspective, however,
the envelope method has higher agreement with the MCS
method. Since the EEV is commonly applied in conditions
where there is an extreme point, it is not suitable for the case
of small fluctuations in trajectory.'is is why the accuracy of
EEV is unstable for kinematic reliability.

According to the trajectory given above, taking the y

direction as an example, the time t is obtained by equation
(25) as 0 s, 1.62 s, 3 s, and the covariance matrix Σ can be
further obtained as

Start

Establish the improved DH
parameters of the robot

Linearize error motion function gj (X,θ)

Find extreme points ti

Calculate the covariance matrix ∑

Whether ∑ is positive definite

Yes
Calculate reliability value R (to, te)

Stop

Eliminate the point with
the lowest failure rate

No

Figure 4: Flowchart of the envelope method.

Table 2: Mean and standard deviation of variables.

Variables Mean Standard deviation Distribution
x1 � a3 μ1 � 0.45 mm σ1 � 2.9 × 10− 4 mm Normal
x2 � a4 μ2 � 0.4 mm σ2 � 2.8 × 10− 4 mm Normal
x3 � d2 μ3 � −0.2975 mm σ3 � 1.6 × 10− 4 mm Normal
x4 � d3 μ4 � 0.3555 mm σ4 � 2.4 × 10− 4 mm Normal
x5 � d4 μ5 � −0.293 mm σ5 � 2.2 × 10− 4 mm Normal
x6 � d5 μ6 � 0.255 mm σ6 � 1.7 × 10− 4 mm Normal
x7 � d6 μ7 � 0.197 mm σ7 � 1.9 × 10− 4 mm Normal
x8 � d7 μ8 � 0.104 mm σ8 � 1.4 × 10− 4 mm Normal
x9 � d8 μ9 � 0.15 mm σ9 � 1.9 × 10− 4 mm Normal
x10 � θ1 μ10 � θ1 σ10 � 4.16 × 10− 4° Normal
x11 � θ2 μ11 � θ2 σ11 � 3.64 × 10− 4° Normal
x12 � θ3 μ12 � θ3 σ12 � 1.34 × 10− 3° Normal
x13 � θ4 μ13 � θ4 σ13 � 1.13 × 10− 3° Normal
x14 � θ5 μ14 � θ5 σ14 � 9.4 × 10− 4° Normal
x15 � θ6 μ15 � θ6 σ15 � 1.1 × 10− 3° Normal
x16 � θ7 μ16 � θ7 σ16 � 1.42 × 10− 3° Normal

1000
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-2000

0

2000

1000 0 -1000 -2000
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Figure 5: Motion trajectory of the end-effector.
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Σ �

0.1763 0.1729 0.1562

0.1729 0.1881 0.1673

0.1562 0.1673 0.1621

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 10−6
, (38)

which is positive definite.
'erefore, reliability at different errors in the y direction

can be calculated by equation (36). If ε � 0.8mm, then

pf � 1 − 
0.8

−0.8

1
(2π)

r/2 Σy




exp −

1
2

x − μy Σ x − μy 
T

 dx

� 8.40 × 10−2
,

(39)

where μ � 0 0 0 
T.

'e specific values at the error of 0.6mm, 0.8mm, and
0.1mm are counted in Table 3. When the error is 0.6mm in
x-, y-, and z-directions, the relative errors of the envelope
method are 5.8%, 4.1%, and 2.9% compared with the MCS
method, and the counterparts of the EEVmethod are 43.8%,
24.9%, and 46.4%, respectively.

Figure 9 provides the difference in the failure rate of the
robot end-effector between the envelope method and the
MCS method. As the position error increases, the difference
between them becomes smaller, with 90 percent of the data
concentrated in the −1 × 10− 2 ∼ 0 region. In conjunction
with the preceding analysis, the envelopemethod is adequate
for the kinematic reliability of the redundant robot in a
specific direction.

'ree algorithms are again introduced to compare their
characteristics for the kinematic reliability of the attitude
angles, as shown in Figure 10. 'e envelope method pro-
duces results that are slightly closer to those of the MCS
method than to those of the EEVmethod.'e reason for this
phenomenon is that the deviation of a specific point, which
has a large impact on the accuracy of the trajectory of at-
titude angles, is much larger than the deviation of other
points on the trajectory.

According to the data in Table 4, which contains failure
rate values for various errors, the envelope method is still
superior to the EEV method. In addition, the error of the
attitude angle β can be ignored, which is too small relative to
the other two angles. When the error is 0.015°, the failure
rates of the three attitude angles obtained by the envelope
method are 4.4% (α) and 5.5% (c) relative to the MCS
method, better than the result of the EEV.'is further shows
that the envelope method has high robustness.

On the other hand, we note that the EEV method
performs better when calculating the reliability of the atti-
tude angle rather than the position in light of Figures 8 and
10. 'e summary is important for two reasons: (1) when
computing kinematic reliability of attitude angles, the cor-
relation between points at various times is higher, resulting
in the accuracy of a single point being similar to the total
accuracy. (2) 'e error in attitude angles of the trajectory is
highly volatile, with a certain point having a significant
impact on the trajectory.

Figure 11 shows the difference in the failure rate of
attitude angles between the envelope method and the MCS
method from 0.015° to 0.042°. 'e curves in the figure show
that the difference between the envelope method and the
MCS method is less than 1.5 × 10− 2 and approaches 0 with
the increment of error. 'is also proves that the envelope
method has stronger stability and a wider range of
applications.

Another key factor to consider when deciding whether
or not a method may be implemented is its efficiency. 'e
envelope method requires 5502 s to calculate, which is
slower than the 2038 s from the EEVmethod but much faster
than the 36050 s simulated by the MCS method. Although
the calculation efficiency of the envelope method is not as
good as that of the EEV method, its accuracy is higher.
'erefore, it is more appropriate to use the envelope method
to evaluate the kinematic reliability of the robot while taking
into account the computation efficiency and accuracy.
Taking advantage of the enveloped method, the tolerances of
x-, y-, and z-directions are 2mm, 2.3mm, and 2mm, re-
spectively. In the same way, the tolerances of α-, β-, and
c-attitude angles can be obtained as 0.063°, 0.0012°, and
0.054°, respectively.
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'e comprehensive error function of the robot does not
usually follow a normal distribution, which is hard to an-
alyze directly through the envelop method. As a result, in
this article, the time expansion points in three directions re-
approximated as those of the comprehensive error function
since the error of three attitude angles is smaller to be ig-
nored based on Tables 3 and 4. 'e reliability data collected
are depicted in Figure 12, which is calculated approximately

by I-PCM (Improved Product of Conditional Marginal) [34]
for multidimensional (n≥ 4) normal integral. When the
error is 0.6∼1.5mm, the error of the envelope method
relative to the MCS method is 7%∼68%, which is far inferior
to 46%∼76% yielded by the EEV method, indicating the
envelope method has better performance. Although the
calculated result of the envelope method may not reach the
ideal state, it obtains a more accurate value close to MCS,
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Figure 8: Reliability of the robot position. (a) Failure probability in the x direction. (b) Failure probability in the y direction, and (c) Failure
probability in the z direction.

Table 3: Reliability of the position.

Error (mm) Envelope method EEV MCS
x 0.6 2.28 × 10− 1 1.36 × 10− 1 2.42 × 10− 1

x 0.8 7.17 × 10− 2 4.70 × 10− 2 7.77 × 10− 2

x 1 1.79 × 10− 2 1.30 × 10− 2 2.08 × 10− 2

y 0.6 2.12 × 10− 1 1.66 × 10− 1 2.21 × 10− 1

y 0.8 8.40 × 10− 2 6.51 × 10− 2 8.87 × 10− 2

y 1 2.74 × 10− 2 2.85 × 10− 2 2.91 × 10− 2

z 0.6 2.15 × 10− 1 1.12 × 10− 1 2.09 × 10− 1

z 0.8 6.09 × 10− 2 3.42 × 10− 2 6.39 × 10− 1

z 1 1.35 × 10− 2 8.12 × 10− 3 1.47 × 10− 2
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Figure 9: Differences between the envelope method and MCS method in directions.
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Figure 10: Reliability of robot attitude. (a) Failure probability of angle α. (b) Failure probability of angle β. (c) Failure probability of angle c.
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and the maximum difference between them is 9.3 × 10− 2. On
the whole, it still proves to be a good solution for the ki-
nematic reliability of the robot.

6. Conclusion

'e kinematic reliability of a robot is an important indicator
for evaluating its performance, and it is inextricably linked to
product quality. Although the MCS method is commonly

applied to reliability analysis, it often comes with a huge
computational cost, which is unbearable in reality. For a 7-
DOF redundant robot, this work constructs the error model
of the robot trajectory using probabilistic methods and
determines the kinematic reliability of the trajectory using
the envelope method. 'en, the reliability value can be
obtained by solving the equation and calculating the mul-
tidimensional normal integral, instead of a large number of
stochastic simulations.

'e simulation example shows that the envelope method
is more accurate than the EEV method and closer to the
MSC method, with relative errors between the envelope
method and MCS of less than 6% in all orientations and
attitude angles. Furthermore, the difference between the
envelope method and MCS is no more than 1.5 × 10− 2,
implying that the envelope method is precise. On the other
hand, in terms of efficiency, the envelope method, EEV
method, and MCS method take 5502 s, 2038 s, and 36050 s,
respectively, to calculate kinematic reliability. Considering
the synthesizing capacity of the solution accuracy and cal-
culation efficiency, the envelope method is the best method
for evaluating the kinematic reliability of the robot.

Furthermore, we do not demonstrate whether this
method can be used to calculate the reliability of other error
models with nonnormal distributions. In the future, we plan
to apply this method to implement other tasks, such as
spraying and assembly performed by various robots, in order
to fully exploit the potential of the proposed method.

Data Availability

'e parameters of the aerial robot we used have been shown
in the article. 'e data of simulation and experiments can be
provided if necessary.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Authors’ Contributions

Jiahui Gu, Ziyi Li, Shaopeng Kang, and Rui Ma contributed
equally to this work.

Acknowledgments

'is work was partially supported by the National Natural
Science Foundation of China (52005231), Social Develop-
ment Science and Technology Support Project of Changzhou
(Grant nos. CE20215050 and CE20209002), and Natural
Science Research Foundation of Jiangsu Universities (Grant
no. 20KJB580005).

References

[1] W. Xu, L. Han, X. Wang, H. Yuan, and B. Liang, “Intelligent
modularized reconfigurable mechanisms for robots: devel-
opment and experiment,” Chinese Journal of Mechanical
Engineering � Ji Xie Gong Cheng Xue Bao, vol. 33, no. 1, 2020.

Table 4: Reliability of attitude.

Error (mm) Envelope method EEV MCS
α 0.015 2.39 × 10− 1 2.30 × 10− 1 2.50 × 10− 1

α 0.021 9.58 × 10− 2 9.28 × 10− 1 1.00 × 10− 1

α 0.027 3.15 × 10− 2 3.07 × 10− 2 3.29 × 10− 2

β 0.003 2.30 × 10− 2 2.19 × 10− 2 2.57 × 10− 2

β 0.004 1.04 × 10− 1 1.01 × 10− 1 1.16 × 10− 2

β 0.005 4.11 × 10− 1 4.05 × 10− 2 4.41 × 10− 4

c 0.015 2.05 × 10− 1 1.95 × 10− 1 2.17 × 10− 1

c 0.021 7.23 × 10− 2 6.96 × 10− 1 7.87 × 10− 1

c 0.027 2.02 × 10− 2 1.96 × 10− 2 2.14 × 10− 2

0

-0.005

-0.01

-0.015

D
iff

er
en

ce
 v

al
ue

0.015 0.021 0.027 0.033 0.039
Error of angle (º)

Difference in angle α
Difference in direction γ

Figure 11: Differences between the envelope method and MCS
method in angles.

0.6

0.4

0.2

0

pf

0.6 0.8 1 1.2 1.4
Error (mm)

Envelope method
EEV
MCS

Difference1
Difference2

Figure 12: Comprehensive reliability of the robot.

10 Journal of Robotics



[2] A. Zakhama, L. Charrabi, and K. Jelassi, “Intelligent selective
compliance articulated robot arm robot with object recog-
nition in a multi-agent manufacturing system,” International
Journal of Advanced Robotic Systems, vol. 16, no. 2, Article ID
1729881419841145, 2019.

[3] Z. Wang, Z. Zhen, Z. Lin, T. Wen, C. Guo, and H. Che, “An
adaptive industrial robot spraying planning and control
system,” in Proceedings of the 46th Annual Conference of the
IEEE Industrial Electronics Society (IECON 2020), pp. 4739–
4743, IEEE, Singapore, October 2020.

[4] X. Luo and L. Xu, “On research progress and trend of motion
control in industrial robot applications,” in Proceedings of the
2020 Chinese Automation Congress (CAC), pp. 5944–5947,
IEEE, Shanghai, China, November 2020.

[5] T. Chen, J. Lin, D. Wu, and H. Wu, “Research of calibration
method for industrial robot based on errormodel of position,”
Applied Sciences, vol. 11, no. 3, p. 1287, 2021.
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