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The proposed assistive hybrid brain-computer interface (BCI) semiautonomous mobile robotic arm demonstrates a design that is
(1) adaptable by observing environmental changes with sensors and deploying alternate solutions and (2) versatile by receiving
commands from the user’s brainwave signals through a noninvasive electroencephalogram cap. Composed of three integrated
subsystems, a hybrid BCI controller, an omnidirectional mobile base, and a robotic arm, the proposed robot has commands
mapped to the user’s brainwaves related to a set of specific physical or mental tasks. The implementation of sensors and the camera
systems enable both the mobile base and the arm to be semiautonomous. The mobile base’s SLAM algorithm has obstacle
avoidance capability and path planning to assist the robot maneuver safely. The robot arm calculates and deploys the necessary
joint movement to pick up or drop off a desired object selected by the user via a brainwave controlled cursor on a camera feed.
Validation, testing, and implementation of the subsystems were conducted using Gazebo. Communication between the BCI
controller and the subsystems is tested independently. A loop of prerecorded brainwave data related to each specific task is used to
ensure that the mobile base command is executed; the same prerecorded file is used to move the robot arm cursor and initiate a
pick-up or drop-off action. A final system test is conducted where the BCI controller input moves the cursor and selects a goal
point. Successful virtual demonstrations of the assistive robotic arm show the feasibility of restoring movement capability and
autonomy for a disabled user.

1. Introduction

In the fields of robotics and biomedical engineering, there is
a growing trend in designing assistive robots to aid users in
demanding tasks. The design parameters for these robots
involve a detailed understanding of the operating envi-
ronment, intended task, and user-control inputs. Sensors,
cameras, and other instrumentation feedbacks have pro-
pelled engineers to create “smart” controllers that allow
assistive robots to detect changes in the working environ-
ment, plan a work around, and execute sensitivity and ac-
curacy. In addition to improving the assistive robot’s
robustness and resilience, researchers are developing ver-
satile controller inputs that allow users, regardless of their
severe physical or neurological limitations, to interface with

the assistive robot. In most cases, the severity of the user’s
condition increases the controller’s complexity and the
robot’s level of autonomy.

This paper focuses on the implementation of an assistive
hybrid brain-computer interface (BCI) semiautonomous
mobile robotic arm for users with debilitating paralysis or
progressive nervous system diseases. While these users have
impaired brain lobes that prohibit motor movement and/or
speech, their cognitive and sensory functions are often
uncompromised. Brain signals from these functional lobes
are obtained from a noninvasive electroencephalogram
(EEG) cap. As a result, a set of specific physical or mental
tasks (i.e., jaw clench and imagined left/right hand squeeze)
are mapped to robot commands with some user training.
Receiving these commands, a mobile robotic arm is a
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solution for everyday object manipulation and trans-
portation in household and occupation environments. To
keep the number of inputs low and prevent users from
getting fatigued, the proposed robot is semiautonomous and
goal position oriented. The omnidirectional mobile robot
base has obstacle avoidance capability and can plan paths
through known free spaces. Likewise, the robot arm uses a
vision system where the user specifies a goal point and the
controller calculates the necessary joint movement to grab or
release the recognized object.

The three integrated subsystems, BCI controller, input,
mobile base, and arm, are developed separately to ensure
that the individual criteria are met before the system level
testing. For the BCI controller input, the active electrodes for
the specified tasks are identified, a proper machine learning
algorithm is selected, and the final controller configuration is
created. For the robot base, rapid prototyping is used to
generate the SLAM algorithm that localizes the robot within
its environment while building a map of obstacles and free
space from sensor data. For the robot arm, the incoming
camera stream cloud data is calibrated to link kinematic
algorithms and physical markers. To verify the subsystems,
the software communicates and operates cohesively; virtual
testing is performed in a simulation environment called
Gazebo. The final version of the BCI controller input is
paired with the robot base and arm. A simulated brainwave
stream is used to run through every command and dem-
onstrate the successful action. The following sections of the
paper summarize the development of the subsystems:
modeling of the proposed robot and the simulated envi-
ronment, simulation and testing verification, results, and
conclusions.

2. Motivation and Literature Review for
Semiautonomous Mobile Robotic
Assistive Systems

2.1. Motivation of Semiautonomous Mobile Robotic Assistive
System. In 2011, the World Health Organization (WHO)
reported that over a billion people (or about 15% of the
world’s population) were living with a disability [1]. This
significant number of people worldwide shows that access to
education and work opportunities, even performing activ-
ities of daily living (ADLs) at home, is unreachable by
themselves and require caregiving personnel [2]. The ad-
ditional impact of COVID-19 and epidemiological measures
(i.e., stay-at-home orders) has added to the burden of
caregivers and care recipients; one journal points that about
one out of five care recipients had difficulty in obtaining care
from outside the household and states the need for inter-
vention [3]. While health policymakers and social organi-
zations can certainly improve aid to the disabled, the
deployment of semiautonomous mobile robotic assistive
systems can empower one of the more severe handicap
conditions, a quadriplegic, to perform daily tasks at home
that normally require personnel in stay-at-home scenarios.
In the journal, improving the autonomy for people suffering
from paralysis in all four limbs is the primary focus.
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2.2. Literature Review for Semiautonomous Mobile Robotic
Assistive Systems. Semiautonomous mobile robotic assistive
systems are in development in the forms of smart wheel-
chairs and robotic arms. For quadriplegics, or people suf-
fering from amyotrophic lateral sclerosis (ALS), controlling
the advance devices requires input from the user generating
specific signals from the brain. Some researchers utilized the
user’s brain signal that mimicked the frequency of a specific
flashing light on a screen [4, 5]. However, this approach is
not optimal for operating a mobile robotic device due to the
following: (1) driving a robot or operating a robotic hand
requires the user’s undivided attention of the surroundings
and (2) waiting on the brain to mimic one of the flashing
frequencies may take longer time to implement and become
ineffective if the environment suddenly changes. As a result,
the control chosen for this study is an asynchronous ap-
proach, where the user has to perform mental tasks and
clench his/her jaw. Studies that favor this approach show
that the action implemented by the user is quicker and
accurate as if the training is conducted in real time [6-8]. In
terms of hardware, combined smart wheelchairs and robotic
arms are developed by universities and companies [9, 10].
While these have greatly increased the mobility and func-
tional ability of the disabled, the end user is still required to
operate either the wheelchair or the arm by either the
joystick or the eye tracker. The assistive robotic system
presented in this paper is designed to operate solely on the
user’s brain signals. In addition, since this proposed mobile
robotic arm is separate from a wheelchair, the end user can
retrieve objects without having the hassle of leaving his/her
current position.

3. BCI Input Signal

3.1. 6-Class BCI Mobile Arm Controller: Schematic.
Similar to a truck crane, the user operates the 6-class BCI
mobile arm’s base and arm separately (Figure 1). First, the
robot base is moved to a desired location; then, the user
switches to operating the arm’s focus cursor to select an
object that will be picked up. Likewise, to drop off the held
object, the user navigates using the robot base to the new
location and then switches to the robot arm once again to
select the location to place the item. Since these two op-
erations are isolated, the same mental tasks can be assigned
multiple commands.

In this case, the asynchronous signals of the imagined
right foot, left foot, right hand, and left hand correspond to
the robot base moving forwards, backwards, right, and left;
the robot arm cursor moves up, down, right, and left on a
camera screen with the same mental tasks. An electro-
myogram signal of the user’s jaw clench is used for tran-
sitioning between the robot base and arm and initiating a
pick-up or drop-off action. When switching from the robot
arm to the base, the jaw clench first confirms the desired
object selected by the cursor. A built-in software calculates
the distance between the robot and the object and moves the
proper arm motors to pick up. Likewise, when dropping off
the object, the user first guides the cursor and clenches his/
her jaw to confirm the location point; the smart robot arm
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FIGURE 1: A 6-class BCI mobile arm controller with commands.

software then performs the action, freeing the user from the
complexity of controlling every mechanical joint like the
fingers and wrist. Additional sensors on the mobile base help
detect obstacles or walls and avoid collisions while the user is
giving movement commands.

3.2. 6-Class BCI Mobile Arm Controller: Development.
Development of the 6-class BCI controller involved iden-
tifying responsive electrodes on the scalp and selecting the
appropriate machine learning algorithm for the targeted
mental tasks. Three male subjects participated in a series of
experiments where their brainwaves were recorded in re-
sponse to physical and imaginary tasks (i.e., hand squeezes,
foot taps, and jaw clenches). These recordings were pre-
processed and analyzed using event-related potential plots
and topographical maps [11, 12]. The results for each subject
showed that the twelve electrode locations with respect to
the 10-20 international system, FC3, FC4, FC5, FC6, C1, C2,
C3, C4, C5, C6, CP4, and CP4, were capable of recognizing
the unique brain signal characteristics of each task; as a
result, this electrode layout is finalized and incorporated into
the BCI controller headset (Figure 2(a)). To overcome the
nonstationary nature and incoming clusters of other
brainwaves, the next step is to downselect the appropriate
machine learning algorithm between linear discriminant
analysis (LDA) and relevance vector machines (RVM)
(Figure 2(b)). Using the same preprocessed recordings, the
error rate percentages for each algorithm were calculated
and compared for two-, three-, five-, and six-class con-
trollers. The results showed that RVM had a higher accuracy
than LDA on multiclass controllers among all three subjects.
As a result, RVM is selected for the final 6-class BCI con-
troller configuration.

3.3. 6-Class BCI Mobile Arm Controller: Virtual Testing
Architecture. With the 6-class BCI controller fully func-
tional, the software architecture needed to support virtual
testing is developed. Referencing to Figure 3, the block
diagram starts with a compiled set of brainwave recordings
that are looped to simulate a twelve-electrode channel EEG
input stream from a user. The combined brainwave file of

one male subject contains fifteen consecutive examples of
each mental task and is placed in nearly sequential order:
right foot (RF), left foot (LF), right hand (RH), left hand
(LH), and jaw. By systematically running through the se-
quence of tasks, any discrepancy or deviation from this order
is ruled as an error.

The “rest” mental task did not follow the order since it
was embedded in the five other examples. Having more
examples of the “rest” task is strategically done to bias the
controller to keep the robot idle if it is unable to classify the
user’s brainwaves; this increases the controller’s overall
safety and reliability. With a complete runtime of 6 minutes
and 25 seconds, the simulated brainwave stream is fed to the
lab streaming layer (LSL). LSL is an open source multisignal
acquisition system that collects unified measurement time
series data and allows compatible programs to retrieve or
add to the data [13]. This system’s built-in code has libraries
and wrappers that allow the transaction of data to occur
across platforms with different languages (ie., C/C++,
MATLAB, Java, and Python). BCILAB, an open source
MATLAB plug-in that contains the 6-class RVM BCI
controller, is linked to LSL and retrieves the incoming
stream of brainwaves. The controller actively compares the
sequenced brainwaves to its trained examples and outputs a
stream of integers that are uniquely associated with each
mental task (Table 1); note that this integer represents the
controller’s highest calculated probability out of the six
mental tasks. BCILAB then adds the controller’s command
stream of integers back to LSL for the virtual robot code to
retrieve. Since both the robot mobile base and the arm
subsystem’s control center use Python, LSL converts the
stream of integers into a compatible data type in Python.
These control centers receive additional feedback from its
semiautonomous simulated sensors before performing the
intended action. In summary, the virtual testing block di-
agram starts with a raw stream of brain signals and ends with
a robotic action dictated by a command stream.

4. Robot System

The robot system consists of 3 degrees of freedom (DoF)
omnidirectional mobile base, to which a 3 DoF robotic arm
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Machine Learning Comparison
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FIGURE 2: (a) Finalized electrode layout [1] and (b) LDA vs. RVM performance comparison.
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FIGURE 3: A detailed block diagram showing the virtual testing of the 6-class BCI controller.

TaBLE 1: 6-class BCI controller reference showing the mental task input and associated robot action.
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with a 4 DoF end-effector is attached. The total system
together consists of 10 DoF which is controlled together.
The principle idea of an omnidirectional wheel is that the
central wheel is surrounded by rollers which are placed at
an angle of either 45° or 90° around the periphery of the
wheel. The rollers introduce a linear slip perpendicular to
the face of the wheel, which does not exist in a fixed
standard wheel [14]. Combined with the rotational motion
of the wheel and the rotational twist at the contact point of
the ground, omnidirectional wheels can achieve 3 DoF. As
such, a mobile system which utilizes omnidirectional
wheels is also capable of 3 DoF and can travel through an
environment under any orientation. To achieve this, each
omnidirectional wheel requires its own motor and

controller. Referencing to Figure 4, the overall motion of
the mobile robot is dictated by the rate of rotation of each
wheel [15].

The wheels of a mobile robot must rotate at appro-
priate speeds to achieve a desired chassis speed, which
includes both the linear and the rotational velocities. To
determine the required speeds of each wheel, the kine-
matics of the mobile robot are studied. The kinematic
calculations were derived from the works of [16] and were
modified to the specific notations as shown in Figure 5.
The work was also simplified by using the body twist V,
which does not rely on the robot’s orientation relatively to
the work environment but rather the angular velocity of
the chassis:
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FIGURE 4: Robot body motion and required wheel rotation.
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As referenced in Figure 5, d is the distance from the
center of the robot to the contact point of each wheel and f;
is the driving angle of each omnidirectional wheel relative to
the X,-axis of the body reference frame. Thefollowing
equation is the solution of the kinematic model and ex-
presses the wheel rotational velocities with respect to the
body twist:

Letting d = 0.1554 m and the wheel radius r=0.05m, the
wheel velocity can be expressed as

1
u = m(—0.1554 * w, +0.866 % v, —0.5%v,),

1
u, =m(—0.1554*wb—0.866*vx—0.5*vy), (3)

1
=50 (-0.1554 % wy, +v,).

The 3 Dof robot arm consists of an elbow, shoulder, and
wrist joint. The arm is rigidly attached and has a planar
workspace parallel to wheel 2 as shown in Figure 6. The end-
effector used is the Brunel Hand 2.0 and is attached to the
wrist joint of the arm. The kinematics of the manipulator is
solved using the mobile base as the fixed reference. For the
end-effector to reach a goal target, the inverse kinematics
first solves for a goal location of the mobile base that places
the goal target in the arms workspace. This goal location is
solved based on a desired arm pose when grabbing an object.

The goal target is the input from a user interface that uses
BCI commands to select a point from a camera feed. The
camera feed provides the point cloud data used to measure



FIGURE 6: Robot arm 3D model.

distance from the robot. Using end-effector control allows
the robot to automatically solve for the movement of the
entire system [17]. This semiautonomous mode uses the
camera system to facilitate the user input while providing the
more complex robot movements required for object ma-
nipulation [18]. Once the robot arm achieves the desired
pose, the Brunel Hand initiates a grabbing command which
has been physically tested on objects [19].

5. Virtual Software Interface

Due to the restrictions caused by COVID-19, a physical
build of the robot was not possible, and the project was
moved to a virtual environment. Robot Operating System
(ROS) and Gazebo are used to visualize and simulate the
entire assistive robot system. The user interface is created
using RViz, a visualization tool available in ROS, and is
shown in Figure 7.

The user interface consists of a visualization display on
the left and a camera feed for user input on the right. During
operation, a cursor is bounded within the right camera feed.
The cursor moves and can select points using BCI com-
mands. The camera cannot move since it is not connected to
the mobile robot; therefore, visualization markers are cre-
ated to show the intended motion of the mobile base and
appear in the visualization display. The motion is also
simulated in the Gazebo environment, which offers the use
of joint torque limits and collision physics. The simulation
environment uses the robot’s collision and inertial models
alongside joint torque and velocity limits to simulate the
results of input commands. PID controllers are used for each
joint and the outputs of these controllers are sent to the
Gazebo environment.

Figure 8 shows a portion of the block diagram for the
robot system. After including the torque and velocity limits
of the selected motors to the robot definition, the PID
controller of each joint is tuned. The arm uses position
controllers and is tuned to reach different grabbing poses
with no steady state error. The controllers for the omnidi-
rectional wheels are designed with the assistance of the Joint
Effort Interface. This ROS controller converts the desired

Journal of Robotics

joint speed into a torque or force required for the joint to
achieve the goal velocity. The resulting speed is recorded by
the sensors and compared to the desired speed to determine
the error of the system.

6. SLAM

The ability of accurately estimating the position of a mobile
robot as it travels through an environment is a computa-
tionally challenging problem, as it is difficult to calculate
the instantaneous speed of a robot. Without an accurate
measure of the speed, it is hard to estimate how far it has
traveled after a period. To produce an estimate, a robot
must perform odometry by identifying obstacles within its
immediate vicinity. Tracking obstacles and calculating the
change of the robot’s distance between them can help
estimate the speed at which the robot is traveling. The
collected odometry data can be used to achieve any high
level of autonomous control. The inclusion of a map of the
environment can assist in localizing the robot around
known obstacles and completing path planning calcula-
tions. A robot which can also produce or update a map of
the environment while localizing itself to the map can
achieve even higher levels of autonomous control as it can
account for known obstacles. This computational capability
is what is known as Simultaneous Localization and Map-
ping (SLAM). There are many different SLAM algorithms
which can achieve the same purposes [19-22]; most just
rely on differing sensors employed in the system. The
SLAM algorithm employed in this project is developed with
the use of ROS nodes which rely on the sensor data of the
entire system.

The localization node runs a function called Adaptive
Monte Carlo Localization (AMCL) [23]. AMCL parses the
data from laser scans and cameras to determine the distance
from the robot to obstacles. The obstacles are compared to
those identified on the map to create an approximation of
the robot’s current location. The AMCL algorithm compares
to the robot odometry which is calculated by the data
recorded by encoders on the motor which estimates how fast
the robot is moving and therefore how far it traveled. This
cross-reference is used to verify the measurements from the
sensor data and improve the accuracy in the localization
approximation.

The mapping node, known as Move Base [24], is re-
sponsible for updating costmaps by marking obstacles and
free space as well as running the trajectory planning algo-
rithm. This project is developed with the use of a prebuilt
map of the environment, which is provided to the robot
upon deployment. Move Base is responsible for creating two
separate costmaps which are built on top of the existing map.
In this setup, the boundaries of the environment remain
consistent, but the changes of obstacles within the envi-
ronment are updated as they change. One of the costmaps is
a global costmap, which will mark and record obstacles even
once they are out of range of the robot’s sensors and no
longer an immediate obstacle. The other costmap is a local
costmap, which only keeps track of obstacles observed
within a defined distance from the robot. Both costmaps are
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FiGure 7: User interface using RViz.
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updated at the same time; the only difference is how long
each one records the obstacles.

Move Base handles trajectory planning with the Dy-
namic Window Approach (DWA) planner [25]. Given a goal
destination, a global path is set within the global costmap. It
follows the free space and avoids as many obstacles as
possible, while still following the shortest path. The DWA
planner then performs a sampling of forward simulations, by
calculating the outcomes of running the robot a short
distance along the global plan at varying speeds. Each for-
ward simulation is scored by weighted criteria which de-
termine the safest and shortest route possible for the robot.
Forward simulations which result in collisions are imme-
diately discredited. The trajectory of the best forward sim-
ulation is sent to the robot system and the DWA planner
performs another round of simulations based on the change
of location of the robot since the last simulation. The de-
ployment of this SLAM algorithm permits the robot to safely
navigate from one goal to the next. The routine checks

accurately account for the robot and allow for precise remote
BCI control. They also keep the robot from crashing into any
obstacles which may have been moved and also account for
any delays in the data stream.

7. Methods

7.1. Experimental Setup. To ensure that the BCI controller,
the robotic base, and the arm subsystems all work cohesively
and a virtual demonstration is built to run through every
command, the virtual version of the robot assembly is
designed with coded sensors and cameras to closely rep-
resent the real hardware. In addition, naturally occurring
phenomena, like coefficients of friction between the wheels
and floor, and moments of inertia for the motors driving the
arm, hand, and wheels, are included. The virtual environ-
ment in Figure 9 is a single-floor space with typical objects
(i.e., chairs, tables, and trash cans) and walls. This is used as a
sandbox for testing the entire assistive robot system.



FiGURE 9: Environment in Gazebo.

7.2. Experimental Procedure. To generate the command
input stream used for the tests, the BCILAB MATLAB plug-
in is launched. The incoming EEG signal stream is config-
ured to read the recorded brainwave data with the following
parameters: input stream name “laststream,” an update
frequency of 20 Hz, an internal buffering length of 10, a
conversion to double precision data type, and a looped
playback. With the incoming stream being processed by the
6-class RVM BCI controller, the controller’s output stream
of integers is then configured to be written to LSL with the
following parameters: command stream name “bci,” output
form “mode,” and an update frequency of 10 Hz. A verbose
output is checked to ensure that the command stream
generated in MATLAB is being sent correctly to LSL. The
robotic base and arm have a shared node which reads the
stream as it comes in over LSL and collects data over the span
of five seconds. The BCILAB “modes” form outputs what the
BCI controller identifies as the most likely user input
command, which can fluctuate slightly with artifacts and
other oddities in the EEG signals. By recording all output
during a five-second interval, the intended command output
as determined by the controller is guaranteed to fall into that
window; that is, how the EEG data is epoch. The ROS node
reading the LSL stream then takes the mode of input signals
to determine the appropriate action that the robotic base or
arm should perform as referenced in Table 1.

Because both robotic subsystems operate independently,
the virtual demonstration of controlling the mobile robotic
arm is done in a modular approach. First, the recorded
brainwaves and controller are used to move the robot base in
the simulated environment based on the actions in Table 1.
Next, the 6-class BCI controller goes through the string of
commands in Table 1 to control a cursor on the user input
camera feed and creates a goal point to initiate a pick-up or
drop-off action. The entire system is tested using the goal
point control. The processed BCI input signals move a cursor
over a video feed and selects an object for the arm to grab
with its manipulator. A grabbing pose is selected, and the
corresponding inverse kinematics solves for the goal
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location of the mobile base to place the goal object on the
arms grabbing point. The user selects an arm pose that
dictates the set of inverse kinematic equations which needs
to be solved. An application may require the manipulator to
keep an object in its original orientation or to fully reach out
to the end of the workspace. These conditions allow for a
unique solution of joint angles with minimal user input. A
sample of the inverse equations to solve an arm pose to keep
the end manipulator horizontal is shown in Figure 10. With
a selected goal point TP, the shoulder and elbow joints are
solved to satisfy the final arm pose ends at TG after rotating
and moving the mobile base a distance Ry.

The shoulder angle 6, is calculated using the first fol-
lowing equation, a horizontal arm pose desired 0, is cal-
culated using the second following equation, and the last
equation is used to find the mobile base goal location Ry.. The
vector space approach is used to derive the equations of
different arm poses, including a fully extended pose that
reaches the end of the workspace and is used in testing to
verify max load conditions:

LCO,=("P,+d;), (4)
0, + 6, =90, (5)
TPy = LSO, + (L, + hogreet) + Ry. (6)

With the assistance of the implemented SLAM algo-
rithm, the mobile base maneuvers until it reaches the goal
location. Once the goal location is reached, the arm moves to
the grabbing point and the grabbing/releasing operation
begins. For these tests, the system did not use a live feed of
BCI commands but rather a loop of prerecorded signals.

8. Results

The developed 6-class RVM BCI controller had an error rate
percentage of 34.5%. When applying the recorded brainwave
file to the controller, BCILAB recalculated the controller
accuracy on the simulated data to 18.5%. The increase in
accuracy is most likely due to the combination of reused
brain recording segments used to train the controller. While
this is not entirely representative of in-person testing, the
overall objective is to demonstrate that the 6-class BCI
controller can use brainwaves as a command input to
control the robot. The controller designed for the three
wheels of the omnidirectional mobile system only utilized
the proportional and integral gains to achieve the desired
results. Issues within the physics simulation prevented the
controllers from removing all errors from the wheel velocity
goal, but, as Table 2 shows, the steady state error was reduced
as much as possible to produce acceptable results.

Figures 11-14 show the results of the experimental
procedure for the entire system. Figure 11 shows the robot in
the Gazebo environment waiting for a command. A point is
selected through the user interface and the goal position
visualization markers are created, as shown in Figure 12. The
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FiGUre 10: Workspace plane view of horizontal grabbing pose.

TaBLE 2: PI gains and error for each omnidirectional wheel.

Controller p 1 Error %
Wheel 1 0.060375 0.04 4.5
Wheel 2 0.06035 0.04 1.26
Wheel 3 0.052 0.04 3.93

ROS Time: S8.36

Wall Time: (160472792296 wall Elapsed: 266.28

ROS Elapsed: 5835

FIGure 11: Starting robot position in Gazebo.

green vector is the user input and points to the goal point
from the camera. The red vector points to the goal point
from the manipulator frame and is used to solve for the
movement of the mobile base. The blue vector is the location

of the manipulator after it moves to its grabbing pose, in this
case extending to the edge of the arm workspace.

The white vector is the difference between the goal point
and the grabbing point, which defines the goal destination
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Figure 12: BCI cursor control to select point from camera feed in RViz.

(@OB|%% %% bk 0.

ROS Time: 6642 ROS Elapsed: 66.42 Wall Time: 160472795812 Wall Elapsed: 301.35 Experimental

FIGURE 13: Robot moving in Gazebo after BCI input is processed.

for the mobile base. With the solved mobile base goal lo-  algorithm. Figure 14 shows a top view of the robot arm pose
cation, a path is planned for the robot to move in the Gazebo ~ to grab an object after the mobile base reaches its goal
environment, as shown in Figure 13, using the SLAM  destination.
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interact | G Move Camera [ ] Select FocusCamera = Measure 2DPosefstimate .~ 2DNavGoal @ Publish Point * = @

© Time

ROS Time: |1603592863.10

ROS Elapsed: |412.50

Wwall Time: |1603592863.17 | wall Elapsed: 412.54

Reset

FIGURE 14: Robot arm movement to grabbing point.

9. Conclusion

This study implemented three independently developed
subsystems: a hybrid BCI controller, an omnidirectional
mobile base, and a robotic arm into one semiautonomous
assistive robot. Each subsystem of the robot was tested
independently and allows for changes to be easily made
based on the desired application. In these tests, goal location
steady state errors were minimized to ensure successful
grabbing operations. The errors associated with the velocity
controller performance of the wheels are addressed to have
more realistic simulations, but the goal location of the
mobile base using SLAM places the robot on the desired
location. The process to tune the controllers of a physical
robot follows the same procedure and can be done in the
ROS environment, allowing for quick deployment based on
simulation results and errors. Future work is to use the live
data to test robot usability with added delays in the system.
This test will accurately highlight the aspects of the system
which need improvement to design a responsive, intuitive
BCI controlled robot. The camera feed comes from an Intel
RealSense Depth Camera D435 to verify its use in the
physical build of the robot. To develop more robust tests
using live data in this environment, virtual point cloud data
should be used to interact with the virtual environment
directly before physical testing. The manipulator was tested
independently in a lab environment, but, due to pandemic
access restrictions, different end-effectors were imported to
this virtual environment to test the grabbing and placing
command loops and confirmation using BCI. The robot
control environment developed during this research allows a
user to interact with a simple interface to achieve complex
robot movements.
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