
Research Article
Improving Model-Based Deep Reinforcement Learning with
Learning Degree Networks and Its Application in Robot Control

Guoqing Ma ,1 Zhifu Wang ,2 Xianfeng Yuan ,1 and Fengyu Zhou 2

1School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
2Control Science and Engineering, Shandong University, Jinan 250061, China

Correspondence should be addressed to Xianfeng Yuan; yuanxianfeng@sdu.edu.cn

Received 4 November 2021; Revised 15 January 2022; Accepted 2 February 2022; Published 4 March 2022

Academic Editor: Weitian Wang

Copyright © 2022 Guoqing Ma et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deep reinforcement learning is the technology of artificial neural networks in the field of decision-making and control. -e
traditional model-free reinforcement learning algorithm requires a large amount of environment interactive data to iterate the
algorithm. -is model’s performance also suffers due to low utilization of training data, while the model-based reinforcement
learning (MBRL) algorithm improves the efficiency of the data, MBRL locks into low prediction accuracy. Although MBRL can
utilize the additional data generated by the dynamic model, a system dynamics model with low prediction accuracy will provide
low-quality data and affect the algorithm’s final result. In this paper, based on the A3C (Asynchronous Advantage Actor-Critic)
algorithm, an improved model-based deep reinforcement learning algorithm using a learning degree network (MBRL-LDN) is
presented. By comparing the differences between the predicted states outputted by the proposed multidynamic model and the
original predicted states, the learning degree of the system dynamics model is calculated. -e learning degree represents the
quality of the data generated by the dynamic model and is used to decide whether to continue to interact with the dynamic model
during a particular episode. -us, low-quality data will be discarded. -e superiority of the proposed method is verified by
conducting extensive contrast experiments.

1. Introduction

A machine learning method for solving sequential decision-
making problems, reinforcement learning algorithm learns
strategies through continuous interactions with the envi-
ronment and produces the highest cumulative reward. Its
basic principle is to facilitate interaction between the agent
and the environment and optimize the action policy using a
reward system. If the model receives a positive reward, it is
more likely to repeat the rewarded action, and vice versa.

Deep reinforcement learning (DRL) [1, 2], which has
gradually emerged in recent years, has realized end-to-end
learning using the powerful nonlinear representation ca-
pabilities of deep neural networks and has made break-
throughs in various fields, such as gaming and robot control.
However, the problem of low learning efficiency due to trial
and error still exists. A method for guiding the agent to
explore unknown space efficiently as well as a method for

finding an appropriate balance between exploration and
exploitation given limited computing resources is a key
problem that reinforcement learning is currently facing.

Model-free RL algorithms [3–5] have rapidly developed
and been applied in the fields of video games, computer
vision, self-driving automobiles, and robotics in recent years.
-e classification of model-free reinforcement learning is
shown in Figure 1. According to the policy update and
learning methods, they can be divided into value-based
methods and policy-based methods. -e former primarily
focus on updating and training the DNN related to the value
function, while the latter optimize the parameterized policy
directly.

-e Policy Gradient (PG) algorithm [6] is a classic
policy-based method in which the loss function is the
method’s output and the learning rate depends on the ex-
pected total reward. -erefore, if the model obtains a
positive reward, the probability of the model repeating this

Hindawi
Journal of Robotics
Volume 2022, Article ID 7169594, 14 pages
https://doi.org/10.1155/2022/7169594

mailto:yuanxianfeng@sdu.edu.cn
https://orcid.org/0000-0002-5429-9082
https://orcid.org/0000-0003-0367-7861
https://orcid.org/0000-0002-6217-6429
https://orcid.org/0000-0001-5140-7036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7169594

action increases, and vice versa. More specifically, the policy
is updated by continuously calculating the gradient of the
expected total reward with respect to the policy parameters
until an optimal policy is found.-ese kinds of policy search
methods are similar to biological neural networks where the
value functions are unnecessary. In addition, the optimi-
zation of network parameters with respect to an action’s
value is similar to the biological neural network learning
process. Compared with deep Q-networks (DQNs) [7] and
their variants, policy-based algorithms generally have a
wider range of applications and produce better results.
However, the original PG algorithm is easily trapped in local
optima. To solve this problem, the Asynchronous Advantage
Actor-Critic (A3C) [8–11] algorithm was proposed, which
utilizes distributed computing resources and effectively
increases the convergence speed.

However, A3C still has an obvious drawback, in that it
requires a large amount of environmental interaction data to
iterate the algorithm. It is convenient to generate a large amount
of interaction data in simulations. In contrast, implementation in
the real world has to consider security and cost. As a result,
although reinforcement learning has achieved more satisfactory
results in the simulation environment, it has not made many
breakthroughs in real-world tasks.

Model-based reinforcement learning [12–14] uses a
system dynamics model to improve the efficiency of data use
and reduces the interaction times between environments.
Model-based reinforcement learning is not as well developed
as model-free reinforcement learning, but it has its own
theoretical advantages. In addition, model-based rein-
forcement learning is more promising for solving real-world
learning tasks by virtue of its efficient utilization of samples.

-e Dyna algorithm is a simple model-based reinforce-
ment learning framework. In the framework of the Dyna
algorithm, training is carried out using two iterative steps:
first, the algorithm collects interaction data from the real
environment and trains the dynamic environmental model;
then, the policy is updated with respect to the interaction data
generated by the learned dynamic model. Nagabandi et al.

[15] proposed neural network dynamics for model-based
DRL with model-free fine-tuning (MBMF) [16] by estab-
lishing a neural network dynamic model f, fitting the changes
between adjacent states when performing an action a:

fθ st, at(� st+1 − st. (1)

Embed to control (E2C) [17] is used to address high-
dimensional data flow problems. E2C contains a locally
linear latent dynamic model for controlling raw images. -is
process uses an encoder to converge the input into a low-
dimensional hidden space and then considers the dynamic
environment as a local linear model in the hidden space and
calculates the (Kullback-Leibler) KL divergence for model
updates.

World models [18] use RNNs to establish a system
dynamics model. In this method, the predicted state ht and
the current state st are merged into one state, which is fed to
the agent for decision-making.

-ese MBRL models all have the problems of low
prediction accuracy and cumulative errors, which affect the
final training results. In [19], K critic models were applied,
and the probability of obtaining data from the dynamic
model was determined by the variance of the Q-value.
Reference [20] uses a set of dynamic models to determine
whether to continue iterating according to the number of
dynamic models that achieved better performance. -is
article combines the advantages of the above two methods
and proposes a method based on using the learning degree to
determine the probability of using the dynamic model to
solve the problems stated above.

2. Improved MBRL with Learning
Degree Network

-e system dynamics model is a neural network trained with
data generated from interactions with the environment.
When using the Dyna algorithm framework to update the
policy, it is necessary to use the dynamic model to interact

Markov Decision Process

Policy Search Value Function
Approximation

Stochastic
policy

deterministic
policy

Actor-Critic
framework

Q-learning Sarsa

DQN

DQN-PER Dueling-
DQN

Double-
DQN

DDPG A3C

Figure 1: -e development of model-free reinforcement learning.

2 Journal of Robotics

with the agent and update the policy (hereinafter referred to
as imaginary learning), and the interaction process requires
multiple iterations. During this process, the dynamic model
produces errors in each iteration, and the total error will be
accumulated and amplified in the next iteration. Further-
more, the accumulated error will cause deviation between
the final state and the real state and reduce the agent’s
learning ability. -is problem reflects the impact of insuf-
ficient learning on the prediction results. In this paper, we
define the accuracy of the predicted dynamic model, named
the learning degree (LD). A set of neural networks, called the
learning degree network (LDN), is employed to evaluate the
accuracy.

-e cumulative error problem is especially aggravated
when optimizing long sequence tasks, which is very com-
mon inmodel-based reinforcement learning. Analyses of the
source of error are needed to overcome the impact of the
accumulated error. First, underfitting of the dynamic model
trained with limited environmental data will cause bias at the
beginning. In addition, the model’s predicted imaginary
learning state has never been sampled from the perspective
of the agent, meaning that the overfitting of the dynamic
model trained with the partial environmental data also
influences the final results.

Here, we use the human decision-making process as an
example. Suppose that a person has been living in a house
and has never left that house. -en, when he is thirsty, he
imagines the entire water-drinking process, from obtaining
to drinking the water, and, in this case, the result of drinking
water is very certain. Next, this person carries out the
imagined process and is happy. However, he has not ex-
perienced the outdoor environment before and is therefore
unable to imagine the outdoor environment. When this
person leaves the house, he does not know where to find
water and cannot use his imagination to help him achieve
this goal. He therefore needs to explore how to get water by
himself. In this paper, the “degree of certainty of the results
of the imagination” is defined as the parameter “degree of
learning,” and a neural network model is applied to evaluate
the degree of learning. Reference [21] emphasizes the role
imagination plays in our decisions.When we decide between
two possible actions, we imagine ourselves in each situation,
imagine the outcome of these two actions, and then compare
these two imagined scenarios. -erefore, imagination must
play a role in the human decision-making process.

We propose a method (see Algorithm 1) to evaluate the
learning degree (LD) of the dynamic models and determine
whether to proceed with the next iteration. -e A3C al-
gorithm is used as an example to explain the reinforcement
learning exploration strategy based on the learning degree
dynamics model. -e A3C algorithm first creates the actor
and critic network as well as two dynamic model neural
networks M0 and M1 with the same initial parameters and
defines R and I to store the data from interacting with the
real environment and the data from interacting with the
dynamics model, respectively. In Algorithm 1, steps 6 to 16
are taken from the classic A3C algorithm framework. Steps
17 and 18 use data R to train the M1 network, and the
reinitialized environment state is obtained. After Step 19, the

M1 network is used to train the agent. -ere are two ter-
mination conditions for this training. -e first is the state
that triggers the end of the episode; the second is that the LD
predicted by the dynamic model is the probability of con-
tinuing iteration; that is, every step must have a probability
of 1− LD to terminate the iteration.-is makes it possible to
“stop imagining” when the network is not fully trained or
using a state that has not been experienced in the “imaginary
learning” process. In this way, the impact of low-quality data
on the algorithm can be reduced. In Algorithm 1, E rep-
resents the number of episodes of the whole learning pro-
cess, and T is the maximum number of steps in one episode,
used for both the process of iterating with the real envi-
ronment and the process of iterating with the system dy-
namics model. -e Boolean “done” is returned by the real
environment or system dynamics model and its value is true
when the state triggers the end of the episode.

-e system dynamics model training uses the BP neural
network supervised learning algorithm. Combine st+1 and rt

as the target vector yt. -e loss function is defined as

L y, M
1

s, a|βM1
 �

1
N

t

yt − M
1

st, at|β
M1

2
, (2)

where the dimensions of vector yt are l and N � T × l.
-e loss function is optimized using the mean square

error gradient descent method, which is described by the
following equation:

σ2t �
1
2

M
1

st, at|β
M1

 − M
0

st, at|β
M0

2
, (3)

where σ2t is the mean square deviation of the prediction
results from the system dynamics model network M1 and
the original neural network M0.

In this paper, the LD of the dynamics models is defined
as

LDt � 2 ×
1

1 + e
− σ2t

− 1, (4)

where LDt uses the sigmoid function to limit the result to [0,
1].

In the algorithm, LDt is used as the probability of
continuing iteration; that is, every step must have a prob-
ability of 1 − LDt to terminate iteration. -e probability of
termination Pterminate

t is defined as

P
terminate
t � 1 − LDt. (5)

-eMBRL-LDN architecture is shown in Figure 2. In the
first iteration, every worker interacts with Env (environ-
ment) using transfer observation and action. Each worker
contains an actor and critic network. -e actor network uses
a three-layer fully connected network with 200 hidden layer
neurons. -e critic network is also a three-layer fully con-
nected network with 100 hidden layer neurons. -e acti-
vation function of the hidden layer is the ReLU function, and
the output layer of the actor network uses the softmax
function as the activation function. In the interaction period,
interactive data will be generated and stored in R (the real

Journal of Robotics 3

memory space). In this iteration, R was used to train the
global network by updating the gradient. In the second it-
eration, R was used to train the M1 network. In the third
iteration, workers interact with M1. At the same time, st and
at were fed into M1 and M0. -e LD networks M0 and M1

have the same network structure and the same initial pa-
rameters. First, state st and action at are used to predict the
next state st+1 utilizing a three-layer fully connected neural
network, and then the predicted state st+1 is used to predict
reward r for this action through another three-layer neural
network. Neither network has an activation function. -en,
LD will be calculated using s0t+1, r0t , s1t+1, r1t (equations (2) and
(3)). -e LD will decide whether to break during the third
iteration using equation (4). -is paper uses the gradient
descent optimizer to target the network, and the input size is
10 batches.

Compared with the traditional RL algorithm, the pro-
posed method applies multiple neural networks (LD net-
works) to judge the dynamic model, and these networks are
employed by the agents and use sampled data in the memory
buffer to conduct supervised learning. -e key to this al-
gorithm is that the LD network evaluates the LD of its own
estimation results by comparing the predicted difference
between the dynamic model network M1 and the initial

network M0. It can be seen from equations (3) and (4) that
the higher the learning degree is, the more obvious the
difference between the outputs of the two dynamic model
networks is, meaning that the dynamic network has
extracted the environment features effectively. Conversely, it
is difficult for the system dynamics model learning network
to describe the real environment accurately when it accu-
mulates error. It is appropriate to stop training while the
learning degree is low.

3. Improved A3C-Model Experiment in Gym

3.1. Experimental Settings. -is experiment is based on
CartPole-v0 and CartPloe-v1 from Gym as well as a cus-
tomized CartPole-v2. CartPole-v2’s task is the same as
CartPole-v0 and CartPole-v1. In the experiment, forces are
applied to themovable bottom plate in different directions to
keep the straight pole deflection angle within ±12°, and the
maximum displacement of the plate does not exceed ±2.4.
For every step, if the iterations are not terminated, the
environment rewards 1 score. -e difference between
CartPole-v2 and the others is that the two unmodified
versions have only 2 discrete actions in the action space, and
the maximum step size per episode is 200 and 500,

1 Input: Interactive data generated by interaction with the environment
2 Output: Policy μ
3 Initialize critic network parameters Q, actor network μ’s parameters θ
4 Initialize real memory space R and imaginary memory space I

5 Initialize LD network M0 and M1’s parameters βM0
and βM1

6 for e � 1. . . E do
7 Get the initialized state s1
8 for t � 1. . . T do
9 Get the action corresponding to the current state

at � μ(st|θ
μ) + ξ (Search by adding noise)

10 Get the next state st+1 and reward rt

11 Store (st, at, s1t+1, r1t) in Real Memory R

12 If done:
13 Train Q and θ with batch data in R

14 Break
15 end for
16 Train βM1

of M1 with batch data in R

17 Initialize the state s1
18 for t � 1. . . T do
19 Get the action corresponding to the current state

at � μ(st|θ
μ) + ξ

20 Get the next state and reward
s0t+1, r0t � M0(st, at|β

M0
)

s1t+1, r1t � M1(st, at|β
M1

)

21 Store (st, at, s1t+1, r1t) in Imaginary Memory I

22 Calculate learning degree LDt (equation (3))
23 Generate random numbers rand ∈ [0, 1)
24 Calculate termination probability Pterminate

t (equation (5))
25 if rand<Pterminate

t or done
26 Train Q and θ with batch data in I

27 Break
28 end for
29 end for

ALGORITHM 1: Model-based Deep Reinforcement Learning using an LD Network (MBRL-LDN)

4 Journal of Robotics

respectively, while the customized CartPole-v2 has 5 discrete
actions in the action space, and the maximum step size is
1000. -e difficulty of using CartPole-v2 is higher than that
of the former two versions, which is expressed by the
abundant action choices and long horizons. -e environ-
mental parameters are shown in Table 1. Figure 3 shows the
stable process of CartPole; in the beginning, CartPole shifts
between a and b. -e pole is unstable, and the plate moves
left and right with large fluctuations. After the agent learned
part of the control strategy, the pole would be situated as it is
in c, where the angle of the pole is close to 0°; nevertheless,
the plate is not stable and keeps moving until it falls. Finally,
when the agent can control the environment, such as in d,
the angle of the pole is close to 0°, and the position of the
plate can be stable at 0.

3.2. Results andDiscussion. In this paper, the traditional A3C,
A3C-Model, and the proposed MBRL-LDN are compared by
training three Gym environments, CartPole-v0, CartPole-v1,
and CartPole-v2. -e learning rate, mini-batch, and other
hyperparameters of the three algorithms are the same. Each
algorithm is independently trained in three environments for
250–300 episodes, and each episode is trained for 200, 500, or
1000 steps (decided by the environment). -e cumulative
reward of each episode is used as an evaluation indicator for
the current policy. In the A3C-Model and MBRL-LDN al-
gorithms, each training episode is divided into three stages: in
the first stage, the agent interacts with the real environment to
update the actor and critic network; in the second stage, the
dynamics model uses the data in real memory to train M1 100
times; and, in the third stage, the agent interacts with M1 and
updates the actor and critic networks at the same time. -e
cumulative rewards of the three algorithms in each Gym
environment are shown in Figure 4, and the confidence in-
terval is 95%.

In each episode, agent will collect the same amount of data,
so the axis of episode can be regarded as “data usage.” Figure 4
compares the rewards of three algorithm with the same usage
of data. It can be seen from the experimental results that both
the A3C-Model and MBRL-LDN produce better results when
compared with the model-free reinforcement learning A3C
algorithm in terms of the growth rate, initial growth time, and
training episode required for convergence. In the CartPole-v0
experiment, the traditional A3C algorithm converges after 400
training episodes, and the model-based A3C-Model algorithm
tends to converge at approximately 330 episodes, while the
MBRL-LDN converges within 250 episodes and the cumulative
reward after convergence is better than that of the A3C-Model
and A3C algorithms. For the CartPole-v1 experiment, the
A3C-Model grew earlier than A3C andMBRL-LDN.However,
due to the large amount of low-quality data it learned, the A3C-
Model did not utilize the advantages of model-based algo-
rithms in later periods, which hinders later learning in com-
parison to the proposed MBRL-LDN. -is reflects the
advantages of collecting high-quality data and discarding low-
quality data based on the learning degree. -e CartPole-v2
experiment has more action space and requires the environ-
mental model to calculate higher prediction accuracies. -e
cumulative reward curve in the CartPole-v2 experiment shows
that the proposed MBRL-LDN demonstrates better perfor-
mance than the A3C and A3C-Model algorithms.

-e learning degree distribution in Figure 5 intuitively
illustrates the variation trend of the learned model. First, in
the CartPole-v2 experimental environment, the LD of the
learned model within 10,000 steps clearly increases. How-
ever, the probability distribution is random. -e fluctuation
represents the inaccuracy of the predicted data. In other
words, there is a recognizable prediction bias. During the
subsequent 40,000 steps, the LD of the environmental model
is generally higher. When the LD increases, the predicted
data become increasingly accurate. Second, in general, the

Grad
ien

t u
pdate

s

Netw
ork W

eig
hts

Asyn
ch

ronous W
orkers

Global Network

EnvEnvEnv

Env Env

EnvEnvEnvA
ct

io
n

O
bs

er
va

tio
n

Store the
Interaction Data

Training A3C
With Chosen Data

Supervised
Training Model

Dynamics
model

Learning degree network

M1 M0

Real (R)
LD

Imaginary (I)

CartPole-vN Env

Store the Model
Interaction Data

Figure 2: MBRL-LDN architecture.-e classic A3C algorithm framework is depicted on the left and carries out its normal learning episode.
Other structures, such as the LDN, are depicted on the right. -ese structures assist in the imaginary learning process.

Journal of Robotics 5

dense locations of peak show that the LD is distributed close
to 1 in most steps. A high LD means that the state has been
learned in that step. -e peak distribution means that most
of the states have been experienced, while few states have not
been experienced.

-e ablation experiments cover all combinations of al-
gorithm and environments.-e experiments are repeated 10
times. -e maximum, minimum, average, and standard
deviation of the episode with the same threshold reward are
recorded for analysis. -e reward threshold is 150. Since the
CartPole-v2 environment is complex and the cumulative
reward is generally low, the threshold reward is set to 100.
-e experimental results are shown in Table 2.

Table 2 shows that the average number of iterations
required by the MBRL-LDN algorithm is generally lower
than that of the A3C and the A3C-Model algorithms. In
addition, the standard deviation of the MBRL-LDN algo-
rithm is slightly better than that of the A3C algorithm, while
the standard deviation performance of the A3C-Model al-
gorithm is the worst.-e box plot of the experimental results
is shown in Figure 6.

Figure 6 indicates that the median and the quartile of the
convergence episodes of the proposed MBRL-LDN are
smaller than those of the competitors. In addition, from the
CartPole-v2 experiment, the proposed MBRL-LDN algo-
rithm performs better in a more complex environment.

In summary, reinforcement learning with an LD net-
work has a great advantage in terms of convergence speed.

-e detailed comparison shows that MBRL-LDN greatly
improves upon the A3C-Model and A3C. In the three en-
vironments, performance was improved by 31.1% and
14.6%, and the standard deviation was reduced by 6.6% and
29.0%, on average.-e proposed MBRL-LDN can effectively
reduce the number of interactions between the agent and the
environment. In these experiments, the utilization of sample
data was improved.

3.3. Computing Time Analysis. Regarding the computing
time, we deployed a computing time ablation experiment
based on the Gym environment. Table 3 lists the computing
time with the same reward. -eoretically, the model-free
algorithm A3C should take less time than the model-based
algorithms to achieve the same reward. Meanwhile, the time
cost should be nearly the same between two model-based
algorithm, A3C-Model and MBRL-LDN. -e ablation ex-
periments cover all three algorithms and environments 10
times, and the maximum, minimum, average, and standard
deviation of the computing time for the reward threshold
experiments are recorded for analysis. -e reward threshold
is 150. Since the CartPole-v2 environment is complex and
the cumulative reward is generally low, the time when the
cumulative reward of this environment reaches 100 is
counted. -e time is measured in seconds.

Table 3 shows that the average computing time required
by the MBRL-LDN and A3C-Model is generally longer than
that of the A3C. More specifically, MBRL-LDN is the same
as the A3C-Model. MBRL-LDN is a little faster than A3C-
Model, because MBRL-LDN will terminate in advance in
some early imaginary learning steps. In addition, the
standard deviation of the three is generally the same. -e
standard deviation of model-based algorithm MBRL-LDN
and A3C-Model is slightly higher than that of the model-
based algorithm A3C, because the dynamics model will
bring randomity.

However, the major advantage of the model-based al-
gorithm is that it has a higher efficiency of data usage, which
enables model-based algorithms to perform better in real-
world applications. -is manuscript also tries to demon-
strate that when getting the same number of data, MBRL-
LDN will perform better than the competitors. -e main
idea of the proposedMBRL-LDN is to improve the efficiency
of data usage. -e cost of getting plenty of training data is
very high; therefore, an RL algorithm that has a higher rate of
data usage is required.

Table 1: State space and action space of the OpenAI Gym.

Environment State space Action space Max step
size

CartPole-v0 4D continuous space displacement:
x ∈ [−2.4, 2.4]

1D discrete action: action ∈ 0, 1{ } 200

CartPole-v1 Speed: v
Corresponding to the actual forces in the environment:

F ∈ −10, 10{ }
500

CartPole-v2
Angle: θ ∈ [−12 · π/180, 12 · π/180] 1D discrete action: action ∈ 0, 1, 2, 3, 4{ }

1000Angular velocity: θ′ Corresponding to the actual forces in the environment:
F ∈ −10, −5, 0, 5, 10{ }

(a) (b)

(c) (d)

Figure 3: Stabilization process of the CartPole.

6 Journal of Robotics

Distribution of Learning Degree by Number of Steps

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

0

0.90.80.70.60.5
LD Step × 104

0.40.30.20.1 5 4.5
4 3.5

3 2.5
2 1.5

1 0.5
0

Figure 5: Distribution of learning degree in CartPole-v2 Training. -e step-axis represents the total number of steps when using the
dynamic model. -e steps are calculated during the entire training process. -e LD-axis represents the LD in each step. -e step-axis and
LD-axis form a set of square areas, each of which has an area measuring 500 steps and 0.1 LD. Each step locates a point in a certain area. -e
height of each square area represents the frequency of a point falling in this area. -e frequency is normalized.

Table 2: Iterative episode with the same reward.

Env
A3C A3C-model MBRL-LDN

V0 V1 V2 V0 V1 V2 V0 V1 V2
1 321 280 371 264 205 197 184 179 243
2 293 320 407 253 218 242 221 179 265
3 299 320 376 376 333 301 288 157 228
4 411 400 327 209 195 237 207 236 212
5 310 275 381 362 299 323 298 263 241
6 304 245 400 266 329 301 229 230 211
7 377 280 377 310 286 245 260 182 239
8 348 320 367 233 255 259 236 297 197
9 398 304 395 254 400 249 284 313 232
10 403 221 407 334 286 244 239 279 227
Min 293 221 327 209 195 197 184 157 197
Max 411 400 407 376 400 323 298 313 265
AVG 346.4 296.5 380.8 286.1 280.6 259.8 244.6 231.5 229.5
S.D. 44.5 46.7 22.7 53.4 61.1 35.7 35.4 52.6 18.4

CartPole-v0CartPole-v0

00

200200
175175
150150
125125
100100

7575
5050
2525

00
100100 200200 300300 400400

To
ta

l m
ov

in
g

re
w

ar
d

To
ta

l m
ov

in
g

re
w

ar
d

episodeepisode

regionregion
A3CA3C
A3C-ModelA3C-Model
MBRL-LDNMBRL-LDN

CartPole-v1CartPole-v1

00

250250

200200

150150

100100

5050

00
100100 200200 300300 400400

To
ta

l m
ov

in
g

re
w

ar
d

To
ta

l m
ov

in
g

re
w

ar
d

episodeepisode

regionregion
A3CA3C
A3C-ModelA3C-Model
MBRL-LDNMBRL-LDN

CartPole-v2CartPole-v2

00 5050

200200

150150

100100

5050

00
100100 150150 200200 250250 300300 350350 400400

To
ta

l m
ov

in
g

re
w

ar
d

To
ta

l m
ov

in
g

re
w

ar
d

episodeepisode

regionregion
A3CA3C
A3C-ModelA3C-Model
MBRL-LDNMBRL-LDN

Figure 4: Learning curves of our method versus state-of-the-art methods.-e horizontal axis indicates the number of steps in the real-world
data. It can be also regarded as data usage. -e vertical axis denotes the average return. -ese figures clearly demonstrate that our proposed
method significantly outperforms other methods (best viewed in color).

Journal of Robotics 7

4. MuJoCo Experiments and Ablation Study

-is paper uses the MuJoCo environment in OpenAI Gym as
the experimental environment to prove the improvement in
data efficiency. MuJoCo is a general-purpose physics engine
that aims to facilitate research and development in robotics,
machine learning, and decision-making. It is widely used in
reinforcement learning for algorithm evaluation. Ant-v2,
HalfCheetah-v2, Hopper-v2, Reacher-v2, Walker2D-v2, and
InvertedPendulum-v2 are the most classic games used in
MuJoCo. Besides, there are some differences in reward
mechanism, action, and state space between games. Com-
pared with the classic control environment like CartPole,
MuJoCo simulated high-dimensional continuous action
space, which is more suitable for real robotics tasks. We chose
6 MuJoCo games to test the performance of the A3C-Model
and MBRL-LDN. -e MuJoCo games are similar to those in
[22]. MuJoCo games are widely used as benchmarks in the
field of reinforcement learning [23–25]. -e A3C-Model uses
the same algorithm and network structure as the model-based

actor-critic learning in [26]. To evaluate the influence of the
choice of equation (4), comparative experiments are also
conducted where equation (4) has been modified as below:

LDt � 2 ×
1

1 + e
− K×σ2t

− 1. (6)

Each game has a series of comparative experiments, each
of which has a single K. From equations (4) and (5), the
monotonicity between K and Pterminate

t is confirmed.
-erefore, the probability of iteration termination can be
changed, and the impact of LDN can be changed. -ere are
three candidate K values in MBRL-LDN: 0.5, 1, or 2. Finally,
we analyzed the stability and performance of the proposed
MBRL-LDN algorithm in detail.

-e experiment aims to solve the following problems:

(1) Compared with the A3C-Model, can the MBRL-
LDN improve the performance of learning policies?

(2) Does the choice of equation (4) affect the perfor-
mance of the MBRL-LDN?

Table 3: Computing time with the same reward.

Env/s
A3C A3C-model MBRL-LDN

V0 V1 V2 V0 V1 V2 V0 V1 V2
1 658 625 749 964 963 1574 916 895 1521
2 628 590 698 923 928 1467 932 854 1515
3 652 616 723 966 953 1573 894 897 1486
4 623 636 742 1019 998 1584 943 932 1494
5 616 589 697 962 953 1494 932 914 1496
6 583 614 658 986 951 1496 889 941 1573
7 627 642 752 970 976 1535 950 952 1489
8 593 580 725 984 965 1583 956 977 1538
9 651 642 753 996 1012 1548 964 1003 1584
10 624 598 734 974 956 1527 939 968 1528
Min 583 580 658 923 928 1467 889 854 1486
Max 658 642 753 1019 1012 1584 964 1003 1584
AVG 625.5 613.2 723.1 974.4 965.5 1538.1 931.5 933.3 1522.4
S.D. 23.2 21.9 29.0 23.8 23.1 39.5 23.7 42.2 32.6

400

350

300

ep
iso

de

250

200

150
CartPole-v0 CartPole-v1

Env
CartPole-v2

A3C
A3C-Model
MBRL-LDN

Figure 6: Iterative episode with the same reward.

8 Journal of Robotics

4.1. Experimental Environment and Setup. -e purpose of
our experimental evaluation is to understand how the per-
formance and stability of the learning policy in our method
compare with the previous A3C-Model algorithm, especially
in more complex and continuous control tasks. Six MuJoCo
games are conducted: Ant-v2, HalfCheetah-v2, Hopper-v2,
Reacher-v2, Walker2D-v2, and InvertedPendulum-v2. -e
aim of Walker2D-v2, Ant-v2, Hopper-v2, and HalfCheetah-
v2 is to walk as far as possible while expending minimal
energy.-e aim of Reacher-v2 is to control the two sticks and
reach the goal point. -e aim of InvertedPendulum-v2 is to
keep the pole up and the chassis stable by applying force to the
chassis. -ese games are shown in Figure 7. Although a
variety of different algorithms can be used to solve simpler
tasks [27], it is sometimes difficult to achieve stable perfor-
mance in some tasks using model-free algorithms, such as 8-
dimensional Ant. We aim to show how LD affects the per-
formance of the A3C-Model and how K affects the perfor-
mance of MBRL-LDN.

4.2. Experimental Results of MBRL-LDN and the A3C-Model.
We tested the performance ofMBRL-LDN in the game tasks.
We chose 6 MuJoCo games: Ant, HalfCheetah, Hopper,
Reacher, Walker2D, and InvertedPendulum. During train-
ing, the performances of MBRL-LDN and A3C-Model are
compared. -e results are shown in Figure 8. -ese results
show that, generally, MBRL-LDN for all 6 MuJoCo games is
better than the A3C-Model. In the MuJoCo environment,
each episode includes 1000 steps. First, the performance of
MBRL-LDN is shown in red and compared to the A3C-
Model, shown in blue. For all game environments, the
hyperparameters of MBRL-LDN and A3C-Model are the
same as those in Experiment 1. Figure 8 illustrates that
MBRL-LDN consistently outperforms the A3C-Model in all
environments and all training stages. More specifically, in
Ant-v2, MBRL-LDN’s total reward in each episode is always
higher than its competitor. It reaches the top at 4178 epi-
sodes, which is earlier than A3C-Model at 5123 episodes. At
4178 episodes, the performance of MBRL-LDN is 1.4 times
that of the A3C-Model; in HalfCheetah-v2, using high-
quality data from the dynamic model, the total reward
value of MBRL-LDN increases faster than A3C-Model and
it reaches a score of more than 8000 at episode 753, while
the A3C-Model reaches a score of just 6624; in Hopper-v2,
the total reward value of MBRL-LDN reaches a score of
4000, which is 1.5 times faster than the A3C-Model, and the
total performance of MBRL-LDN is higher than that of the
A3C-Model; in Reacher-v2, the A3C-Model goes faster
than MBRL-LDN, but this result may be because the
random data used by A3C-Model improves its exploration
space and, therefore, the A3C-Model achieves better
generalization. Nevertheless, MBRL-LDN’s total reward in
each episode reaches its maximum at episode 6592 with a
score of 8835, which is 2 times that of the A3C-Model; in
Walker2D-v2, MBRL-LDN’s accumulated reward in each
episode reaches its maximum at episode 4742 with a score
of 8035, which is 1.5 times that of the A3C-Model; in
InvertedPendulum-v2, MBRL-LDN’s total reward in each

episode reaches its maximum at episode 2500 with a score
of 10935, which is 1.2 times that of A3C-Model. However,
MBRL-LDN is less stable than A3C-Model during training.

4.3. Ablation Study of K Values. Figure 9 shows the per-
formance of MBRL-LDN in 6 different MuJoCo game en-
vironments with different K values. When the K value is 1,
the corresponding MBRL-LDN algorithm is better than it
with other K values. However, there is little difference in the
performance with various K values, especially in the Wal-
ker2D and InvertedPendulum games. As a result, we can
draw the following conclusions: suitable K improves the
ability of the agent, but the difference is not obvious, so the
choice of equation (4) does not greatly impact the results
(Figure 9).

In addition, to compare the performances of MBRL-
LDN and the A3C-Model more intuitively, we use a table to
list their total reward per episode. -e results are shown in
Table 4. Overall, the performance of MBRL-LDN is better
than that of the A3C-Model.

5. Model Generalization Experiment with PPO

To verify the effectiveness of LDN in different rein-
forcement learning algorithms, additional PPO2 com-
parative experiments were carried out. -e PPO solved the
problem that the learning rate is hard to determine in the
PG algorithm. PPO2 abandons the KL divergence loss
function and introduces the clip loss function to improve
the performance. PPO is widely used as benchmark in the
field of reinforcement learning. It is also one of the
baseline algorithms in OpenAI. In this experiment, we
introduce the dynamics model into PPO2 and define it as
PPO2-Model, which makes it a model-based algorithm.
Besides, LDN is employed into PPO2 and the variant is
named as PPO2-LDN. -is experiment also uses the
MuJoCo environment in OpenAI Gym as the experi-
mental environment. -ree MuJoCo games are selected to
test the performances of the PPO2, PPO2-Model, and
PPO2 -LDN. -e MuJoCo games are similar to those in
[22]. MuJoCo games are widely used as benchmarks in the
field of reinforcement learning [23–25]. -e PPO2-Model
uses the same algorithm and network structure as the
model-based actor-critic learning in [26].

5.1. Experimental Environment Setup. -e purpose of the
additional comparative experiments is to check if LDN keeps
advantages over other methods without LDN. -ree
MuJoCo games are conducted: HalfCheetah-v2, Hopper-v2,
and InvertedPendulum-v2. -ese games are shown in Fig-
ure 7. In this experiment, the model-free algorithm PPO2
was selected as the comparison algorithm. Although a va-
riety of different algorithms can be used to solve simpler
tasks [27], it is difficult to achieve stable performance in
some tasks using model-free algorithms, such as the 8-di-
mensional Ant. -erefore, we chose these three games that
are relatively easy to converge.

Journal of Robotics 9

5000

4000

3000

To
ta

l m
ov

in
g

re
w

ar
d

2000

1000

0
0 1000 2000 3000

episode
4000 5000 6000

A3C-Model
MBRL-LDN

(a)

10000

8000

6000

To
ta

l m
ov

in
g

re
w

ar
d

4000

2000

0
0 200

episode
400 600 800

A3C-Model
MBRL-LDN

(b)

5000

4000

3000

To
ta

l m
ov

in
g

re
w

ar
d

2000

1000

0
0 1000 2000 3000

episode
4000 5000 6000

A3C-Model
MBRL-LDN

(c)

10000

8000

6000

To
ta

l m
ov

in
g

re
w

ar
d

4000

2000

0
0 2000

episode
4000 6000 8000

A3C-Model
MBRL-LDN

(d)

Figure 8: Continued.

Figure 7: MuJoCo games: Ant-v2, HalfCheetah-v2, Hopper-v2, Reacher-v2, Walker2D-v2, and InvertedPendulum-v2.

10 Journal of Robotics

5000

4000

3000

To
ta

l m
ov

in
g

re
w

ar
d

2000

1000

0
0 1000 2000 3000

episode
4000 5000 6000

MBRL-LDN K=0.5
MBRL-LDN K=1
MBRL-LDN K=2

(a)

20000

15000

10000

To
ta

l m
ov

in
g

re
w

ar
d

5000

0
0 200

episode
400 600 800

MBRL-LDN K=0.5
MBRL-LDN K=1
MBRL-LDN K=2

(b)

Figure 9: Continued.

8000

6000

4000

To
ta

l m
ov

in
g

re
w

ar
d

2000

0
0 1000 2000 3000

episode
4000 5000 6000

A3C-Model
MBRL-LDN

(e)

12000

10000

8000

6000

To
ta

l m
ov

in
g

re
w

ar
d

4000

2000

0
0 500

episode
1000 1500 2000 2500

A3C-Model
MBRL-LDN

(f)

Figure 8: Experimental results of MBRL-LDN and the A3C-Model in 6 MuJoCo games. (a) Ant-v2. (b) HalfCheetah-v2. (c) Hopper-v2.
(d) Reacher-v2. (e) Walker2D-v2. (f) InvertedPendulum-v2.

Journal of Robotics 11

5.2. Experimental Results of PPO2, PPO2-Model, and PPO2-
LDN. During training, the performances of three algo-
rithms are compared. -e results are shown in Table 5 and
Figure 10, where the green, orange, and blue lines represent
the performances of PPO2-LDN, PPO2-Model, and PPO2.
In the MuJoCo environment, each episode includes 1000
steps. For all game environments, the hyperparameters of
the three methods are the same as those in Experiment 1.
Figures 10(a) and 10(b) illustrate that PPO2-LDN consis-
tently outperforms PPO2 in all environments and all
training stages, which means it needs fewer data for learning.
More specifically, in Figure 10(a), PPO2-LDN’s total reward

in each episode is always higher than its competitors. It
reaches the top at 2175 episodes, which is earlier than PPO2-
Model at 2465 episodes. At 2175 episodes, the performance
of PPO2-LDN is 3.25 times that of PPO2-Model and PPO2;
in Figure 10(b), using high-quality data from the dynamic
model, the total reward value of PPO2-LDN increases faster
than PPO2-Model and it reaches a score of more than 7000
at episode 1753, while PPO2-Model reaches 7000 at episode
2201 and PPO2 reaches 7000 at episode 2632. Affected by the
inaccurate data, the reward of PPO2-Model has great
fluctuation after reaching the top. PPO2-Model begins to go
up at 1760 episodes which is earlier than PPO2’s 1920, which

MBRL-LDN K=0.5
MBRL-LDN K=1
MBRL-LDN K=2

5000

4000

3000

To
ta

l m
ov

in
g

re
w

ar
d

2000

1000

0
0 1000 2000 3000

episode
4000 5000 6000

(c)

MBRL-LDN K=0.5
MBRL-LDN K=1
MBRL-LDN K=2

10000

8000

6000

To
ta

l m
ov

in
g

re
w

ar
d

4000

2000

0
0 2000

episode
4000 6000 8000

(d)

MBRL-LDN K=0.5
MBRL-LDN K=1
MBRL-LDN K=2

6000

5000

4000

3000

To
ta

l m
ov

in
g

re
w

ar
d

2000

1000

0
0 1000 2000 3000

episode
4000 5000 6000

(e)

MBRL-LDN K=0.5
MBRL-LDN K=1
MBRL-LDN K=2

12000

10000

8000

6000

To
ta

l m
ov

in
g

re
w

ar
d

4000

2000

0
0 500

episode
1000 1500 2000 2500

(f)

Figure 9: Results of MBRL-LDN with different K values in 6 MuJoCo games. (a) Ant-v2. (b) HalfCheetah-v2. (c) Hopper-v2. (d) Reacher-
v2. (e) Walker2D-v2. (f) InvertedPendulum-v2.

12 Journal of Robotics

means its performance is not much better than PPO2. In
Figure 10(c), during 1795 to 2251 episodes, PPO2-LDN and
PPO2-Model outperform PPO2 slightly. However, in gen-
eral, the performance of PPO-LDN is similar to its com-
petitors. -e possible reason is that Hopper-v2 contains
some inertial mechanisms; that is, the present state will affect
the next several states. -e dynamics model we used is not a
recurrent neural network; it cannot handle time-series data
effectively.

6. Conclusion

In this paper, we introduce a model-based reinforcement
learning method with learning degree networks, an algo-
rithm for managing imperfect system dynamics models
using estimations from learning degree networks. -e
learning degree is defined and performs as the probability of
continuing iteration in the model-based framework. Our
approach provides improved sample complexity on a set of
OpenAI Gym benchmark tasks, and the experimental results
indicate that the model’s learning degree gradually increases

with training, which makes our method converge faster than
traditional DYNA-like algorithms and is more efficient than
model-free algorithms. In particular, the threshold reward
test showed that the LDN-based method trained faster be-
cause low-quality data was discarded. Our work provided
further exploration of improved accuracy model data for
model-free sample complexity reduction. MBRL-LDN is
also verified in MuJoCo games, and the results illustrate that
MBRL-LDN performs better than model-based actor-critic
learning. Future directions include designing an accumu-
lated reward-based error degree estimation benchmark and
deploying it on real-world robotic tasks.

Data Availability

-e experiments were performed on six MuJoCo games.-e
MuJoCo games are commonly used public environments,
which can be found at http://www.mujoco.org.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Table 4: -e total moving rewards of MBRL-LDN and the A3C-Model in 6 MuJoCo games.

Environment A3C-model MBRL-LDN
Ant-v2 3124.7± 249.1 3882.4± 183.6
HalfCheetah-v2 5963.3± 524.7 6593.2± 624.8
Hopper-v2 4153.8± 362.9 4984.0± 423.1
Reacher-v2 5546.3± 382.6 7624.9± 375.6
Walker2D-v2 5923.6± 381.6 6124.7± 274.9
InvertedPendulum-v2 7842.1± 125.4 10864.3± 173.2

Table 5: -e episodes of PPO2, PPO2-Model, and PPO2-LDN when reaching the top in 3 MuJoCo games.

Environment PPO2 PPO2-model PPO2-LDN
InvertedPendulum-v2 2463± 16 2465± 17 2175± 12
HalfCheetah-v2 2601± 32 2254± 31 1734± 22
Hopper-v2 2603± 56 2504± 68 2397± 63

00

1000010000

80008000

60006000

40004000

20002000

00
500500 10001000 15001500 20002000 25002500

To
ta

l m
ov

in
g

re
w

ar
d

To
ta

l m
ov

in
g

re
w

ar
d

episodeepisode

PPO2PPO2
PPO2-ModelPPO2-Model
PPO2-LDNPPO2-LDN

(a)

80008000

60006000

40004000

20002000

00

To
ta

l m
ov

in
g

re
w

ar
d

To
ta

l m
ov

in
g

re
w

ar
d

PPO2PPO2
PPO2-ModelPPO2-Model
PPO2-LDNPPO2-LDN

00 10001000 15001500500500 20002000 25002500 30003000

episodeepisode

(b)

50005000

40004000

30003000

20002000

10001000

00

To
ta

l m
ov

in
g

re
w

ar
d

To
ta

l m
ov

in
g

re
w

ar
d

PPO2PPO2
PPO2-ModelPPO2-Model
PPO2-LDNPPO2-LDN

00 10001000 15001500500500 20002000 25002500

episodeepisode

(c)

Figure 10: Additional comparative experiments with PPO2, PPO2-Model, and PPO2-LDN. -e virtual environment is in MuJoCo.
(a) InvertedPendulum-v2. (b) HalfCheetah-v2. (c) Hopper-v2.

Journal of Robotics 13

http://www.mujoco.org

Acknowledgments

-is work was supported by the National Natural Science
Foundation of China (Grants nos. 61803227, 61773242, and
61973184), National Key Research and Development Plan of
China (2020AAA0108903), Independent Innovation Foun-
dation of Shandong University (Grant no. 2018ZQXM005),
and Young Scholars Program of Shandong University,
Weihai (Grant no. 20820211010).

References

[1] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep deterministic
policy gradient (DDPG)-Based energy harvesting wireless
communications,” IEEE Internet of ;ings Journal, vol. 6,
no. 5, pp. 8577–8588, 2019.

[2] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the game
of Go with deep neural networks and tree search,” Nature,
vol. 529, no. 7587, pp. 484–489, 2016.

[3] G. Jing, H. Bai, J. George, and A. Chakrabortty, “Model-free
reinforcement learning of minimal-cost variance control,”
IEEE Control Systems Letters, vol. 4, no. 4, pp. 916–921, 2020.

[4] F. Wang, H. Yu, H. Li, X. Li, J. Ye, and H. Yu, “Deterministic
diagnostic pattern generation (DDPG) for compound de-
fects,” in Proceedings of the 2008 IEEE International Test
Conference, pp. 1–10, IEEE, Santa Clara, CA, USA, October
2008.

[5] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of
deep Q-learning,” Proceedings of the Learning for Dynamics
and Control, vol. 120, pp. 486–489, 2020.

[6] H. Chung, S. J. Lee, H. B. Jeon, and J. G. Park, “Semi-su-
pervised speech recognition acoustic model training using
policy gradient,” Applied Sciences, vol. 10, no. 10, p. 3542,
2020.

[7] D. Lee, Y. G. Sun, S. H. Kim et al., “DQN-based adaptive
modulation scheme over wireless communication channels,”
IEEE Communications Letters, vol. 24, no. 6, pp. 1289–1293,
2020.

[8] V. Mnih, A. P. Badia, M.Mirza et al., “Asynchronous methods
for deep reinforcement learning,” in Proceedings of the In-
ternational Conference on Machine Learning, pp. 1928–1937,
New York, NY, USA, 2016.

[9] T. Tongloy, S. Chuwongin, K. Jaksukam,
C. Chousangsuntorn, and S. Boonsang, “Asynchronous deep
reinforcement learning for the mobile robot navigation with
supervised auxiliary tasks,” in Proceedings of the 2017 2nd
International Conference on Robotics and Automation Engi-
neering, pp. 68–72, IEEE, Shanghai, China, 2017.

[10] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and
A. A. Bharath, “Deep reinforcement learning: a brief survey,”
IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38,
2017.

[11] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[12] G. Hartmann, Z. Shiller, and A. Azaria, “Model-based rein-
forcement learning for time-optimal velocity control,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6185–6192,
2020.

[13] A. Rajeswaran, I. Mordatch, and V. Kumar, “A game theoretic
framework for model based reinforcement learning,” in
Proceedings of the International Conference on Machine
Learning, pp. 7953–7963, Vienna, Australia, 2020.

[14] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural
network dynamics for model-based deep reinforcement
learning with model-free fine-tuning,” in Proceedings of the
2018 IEEE International Conference on Robotics and Auto-
mation (ICRA), pp. 7559–7566, IEEE, Piscataway NJ, USA,
May 2018.

[15] L. Zou, L. Xia, P. Du et al., “Pseudo dyna-Q: a reinforcement
learning framework for interactive recommendation,” in
Proceedings of the 13th International Conference on Web
Search and Data Mining, pp. 816–824, Houston, TX, USA,
February 2020.

[16] J. P. Corriou, “Model predictive control,” in Process Control,
Springer, Cham, pp. 631–677, 2018.

[17] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller,
“Embed to control: a locally linear latent dynamics model for
control from raw images,” in Proceedings of the Advances in
neural Information Processing Systems. NIPS, Montreal,
Quebec, Canada, pp. 2746–2754, Massachusetts, USA, De-
cember 2015.

[18] D. Ha and J. Schmidhuber, “World models,” 2018, https://
arxiv.org/abs/1803.10122.

[19] G. Kalweit and J. Boedecker, “Uncertainty-driven imagination
for continuous deep reinforcement learning,” in Proceedings
of the Conference on Robot Learning, pp. 195–206, Mountain
View, CA, USA, 2017.

[20] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel,
“Model-ensemble trust-region policy optimization,” in Pro-
ceedings of the International Conference on Learning Repre-
sentations, Vancouver, Canada, 2018.

[21] B. Nanay, “-e role of imagination in decision-making,”Mind
& Language, vol. 31, no. 1, pp. 127–143, 2016.

[22] F. Ding, G. Ma, Z. Chen, J. Gao, and P. Li, “Averaged soft
actor-critic for deep reinforcement learning,” Complexity,
vol. 2021, no. 39, 16 pages, Article ID 6658724, 2021.

[23] L. Lü, S. Han, W. Zhou, and J. Zhang, “Recruitment-imitation
mechanism for evolutionary reinforcement learning,” Infor-
mation Sciences, vol. 553, pp. 172–188, 2021.

[24] H. Zhan, F. Tao, and Y. Cao, “Human-guided robot behavior
learning: a GAN-assisted reference-based reinforcement
learning approach,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3545–3552, 2021.

[25] C. Yu and A. Rosendo, “Risk-aware model-based control,”
Frontiers in Robotics and AI, vol. 813 pages, 2021.

[26] X. Zhao, B. Tao, and L. Qian, “Model-based actor-critic
learning for optimal tracking control of robots with input
saturation,” IEEE Transactions on Industrial Electronics, vol. 6,
no. 68, pp. 5046–5056, 2020.

[27] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A novel DDPG
method with prioritized experience replay,” in Proceedings of
the 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 316–321, IEEE, Banff, AB, Canada,
October 2017.

14 Journal of Robotics

https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122

