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Due to the comprehensive influence of many nonlinear coupling factors within a system, when the input signal provided by an
electrohydraulic servo shaker is sinusoidal, it often leads to the existence of high-order harmonic components of the system, which
makes the output servo signal parameters exist extremely serious. Therefore, the detection of harmonics of the electrohydraulic
servo shaker has very important application significance. In this paper, by using simulated annealing (SA) based harmonic
detection, a kernel function is introduced to study area influence-based particle swarm optimization (PSO). Using a super accurate
and fast global convergence brought by the combination of hybrid particle swarm optimization algorithm and simulated
annealing algorithm, it can quickly jump out of the trap of traditional local optimization algorithms and a more stable, high-
precision, as well as fast global convergence optimal solution can be obtained. Through the detection and simulation of the
amplitude and phase of the harmonics in the system, by comparing the PSO-SA detection with PSO detection, it is proved that the
PSO-SA algorithm can well satisfy the accuracy of the detection system, which has advantages such as a fast convergence speed, a

high search accuracy, etc.; meanwhile, it is simple and easy to implement.

1. Introduction

Due to the existence of nonlinear factors such as component
frictions, installation clearance, and dead zones in the
control system, nonlinear systems often lead to a decrease in
the accuracy of the system output signal or even make the
system in an unstable state [1, 2]. An electrohydraulic servo
system is combined with mechanical, hydraulic, electronic,
and other nonlinear phenomena, that is, the flow and
pressure characteristics and various typical nonlinearities.
The parameters related to flow, pressure, and oil viscosity
also change with time, so the nonlinearity of the hydraulic
system control is an important research direction [3].
Therefore, when an electrohydraulic servo shaker is excited
by a sinusoidal signal, high-order harmonics often appear at
the signal output, which makes the signal obviously

distorted. Therefore, in order to suppress the harmonics
inside a system, it is necessary to analyze them. Factors such
as the order, amplitude, and phase of the harmonics affect
the degree of distortion of the harmonics, which need to be
considered.

However, a complex electrohydraulic servo control
system in practical use is sometimes subject to nonlinear
conditions and various time-varying interactions;
meanwhile, many components often do not satisfy the
principle of linear superposition. The uncertainty caused
by these nonlinear and time-varying factors lead to the
existence of various harmonic components in response
signals when a shaker is used for the sinusoidal acceler-
ation test, where the output signal waveform may have
some serious linear distortion, thus reducing the reli-
ability of the tests [4].
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Tayal et al. proposed a fast and accurate method based on
an artificial neural network (ANN). Using feature extraction
of the input waveform, the unique identification of various
types of equipment and different harmonic characteristics
was realized through the ANN [5]. Gao et al. established a
load equivalent model, model composition, and model
parameter determination method and introduced the dis-
tortion coefficient to determine the harmonic sources [6].
Santiprapan et al. conducted an in-depth analysis of the
harmonic identification algorithm in nonideal systems,
using Fourier with a positive-sequence voltage detector
(DQFP), which was a new harmonic identification algorithm
for filters [7]. In order to improve the detection accuracy of
harmonics in the system, Sun proposed a new harmonic
detection method based on the synchronous serialization
transform and a Hilbert operator based on local spectral
maximum [8]. Abdelsamad et al. suggested a Hammer-
stein-Wiener identification method to establish a black-box
model for a voltage source converter, which could satisfy the
requirement of obtaining harmonic characteristics and a low
computational cost [9]. Taking advantage of the advantages
of the FFT to detect steady-state harmonics and dynamic
harmonics, a method combining FFT and wavelet transform
was put forward by Zheng et al. [10]. To improve the
processing speed and simplify the harmonic detection
process, Temurtas et al. used feedforward and Elman re-
current neural networks to detect the harmonics of distorted
waves instead of Fourier transforms or low-pass filters [11].
Aiming at the contradictions between the convergence speed
of harmonic detection and the steady-state error, Liu pro-
jected a new algorithm for dynamic detection during an
iterative process, through which harmonics could be ef-
fectively detected based on the instantaneous characteristics
of the least mean square harmonic adaptive detection [12].

However, different types of basic methods often have
advantages and disadvantages like different degrees of
theoretical limitations in engineering practice. To solve this
problem, it is necessary to apply enhancements and im-
provements on the basis of the above methods. In practical
engineering applications, there is a high complexity in
solving the global optimization problem, and factors such as
large-scale, high-dimensional, nonlinear, nonconvex, as well
as much local minima should be comprehensively consid-
ered. Algorithms with a single structure and a relatively
single implementation mechanism are generally difficult to
be used to effectively and efficiently optimize an algorithm.
Through the application of the hybrid algorithm, the
computing efficiency can be effectively improved, achieving
the desired effect.

In order to further study and solve the problem of
multitarget search accuracy and precision, a hybrid search
algorithm is produced based on regional influence, com-
bining the advantages of the PSO algorithm and the SA
algorithm. PSO search is used for the optimal early search
stage of the hybrid algorithm. If the search results are
stagnant, it is only necessary to restart the SA algorithm at
the searched global optimal position, starting from the
search for the local optimal position, and then jump out
and go back to search for the global optimum. Finally,
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through a comparison of simulation data, the effectiveness
of the hybrid algorithm when detecting harmonics is
proved.

An electrohydraulic servo shaker has a strong ability to
withstand load vibrations, which continuously generates
various large-angle exciting forces and shock vibrations with
a large displacement direction. It is an important test
equipment used in laboratories for load vibration and im-
pact tests, which is widely used in various engineering fields.
Therefore, it is of practical significance and great practical
value to study the electrohydraulic servo shaker in depth.
Based on the current situation, the main object of harmonic
analysis and detection is the power system, and there is
relatively less research on electrohydraulic servo systems.
What is obviously different from other systems is that for
hydraulic transmission systems, the accuracy of response
time required by the test results is relatively high. The
methods applied to power systems are not necessarily ap-
plicable to hydraulic systems, so the research in this paper
has significant practical significance.

A difficulty of harmonic estimation is that harmonic
generation is dynamic and nonlinear in nature. Therefore, a
fast and accurate harmonic estimation method is needed. In
this paper, aiming at the phenomenon that the harmonic
distortion of acceleration response signals occurs in the
sinusoidal vibration characteristic test on a shaker, how to
construct harmonic detection and analyze harmonic com-
ponents using the PSO-SA algorithm is studied. For a
harmonic component detection and analysis system estab-
lished based on the PSO-SA algorithm, various higher-order
harmonic component analyses can be carried out on the
basis of a shaker. At the end of the paper, the comparison
simulation result with PSO algorithm shows that the PSO-
SA algorithm has a good convergence and precision, to-
gether with good stability, performance, and fast conver-
gence speed, which can well complete the task of system
harmonic detection.

2. Simulated Annealing Algorithm

2.1. The Concept of Simulated Annealing Algorithm.
Simulated annealing algorithm (SA) actually refers to the so-
called global optimization of the performance of a serial
structure, through which the global optimization of the final
performance of a system is mainly achieved by avoiding the
local minimum value as effectively as possible and mini-
mizing the probability of complex changes during the search
process. This new idea was first put forward mainly by
N. Metropolis in 1953. In 1983, S Kirkpatrick et al. proposed
to directly introduce the basic control idea of simulated
annealing technology into the field of composite-structure
optimization for the first time, whose main objective was to
try to propose another combinatorial random optimization
algorithm based on the Monte-Carlo iterative optimization
strategy. One of its two basic purposes and starting points is
to seek the similarities between the solid in thermal body
physics experiments and the common combinatorial ran-
dom iterative optimization method in annealing experi-
ments [13, 14].
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The simulated annealing algorithm is used to find the
optimal solution of each global variable in the solution of the
objective function step by step in a spatial range. Starting
from a certain initial temperature parameter value of a
specific variable in an objective function, the initial tem-
perature parameter is gradually reduced, which is gradually
increased by combining its mutation characteristics with the
probability characteristics. The optimal solution is bounced
out randomly and gradually becomes relatively stable, which
finally develops into the optimal solution of one of the global
functions [15]. The simulated annealing algorithm is a kind
of general system optimization design algorithm in which
the performance requirements of stochastic and global
optimization systems are considered on the basis of theories,
which has been widely and maturely applied in many fields
such as industrial control automation engineering, machine
learning, neural networks, and intelligent signal processing
algorithms [16].

The Metropolis algorithm used in the simulated
annealing algorithm refers to the sequence of each combi-
natorial optimization problem generated using each adapted
transition probability P; relative to the Metropolis criterion.

1, f@<f3G),

exp(M), otherwise.

Decide whether to accept the transformation of the
current solution i to j. Equation (1) in the formula t € R*
represents the control parameter. The calculation starts from
a relatively large value (corresponding to the melting
temperature of the solid). After the transferring to the
temperature, slowly and gradually reduce the temperature ¢
(corresponding to “slow” cooling), repeat the calculation
until the cooling temperature satisfies the characteristic
temperature, and then stop it. Therefore, the simulated
annealing algorithm can also be considered as an iteration of
the Metropolis algorithm, which reduces the value of the
control parameters [17].

The simulated annealing algorithm can also directly ac-
cept some new types of optimization solutions according to
the Metropolis standard, so it is usually not limited to
accepting these optimization solutions completely, but those
optimization solutions can also be accepted based on a limited
degree of performance degradation. If the value of ¢ is found
to be large from the beginning, a less degraded solution is
likely chosen to be accepted. As the range of the value of ¢
decreases gradually, only a better degraded solution can be
considered. Finally, when this ¢ value tends to be zero, the
degenerate solution becomes unacceptable, which undoubt-
edly further makes the simulated annealing problem more
likely to jump out of its local optimal solution range, and the
overall optimal solution to the combinatorial optimization
problem is obtained [18]. Therefore, for most optimization

P (i=j) = (1)

problems of search combination algorithms, the simulated
annealing algorithm is better than the local search algorithm.

2.2. Simulated Annealing Algorithm Flow. SA algorithm is
used to automatically generate a random solution in the solution
space model of a problem and then automatically simulate the
process of energy state transition among energy particles in the
solid model within a specific temperature range by calculating
the random alteration of its temperature. The solution of ran-
dom disturbance is automatically evaluated, and its effect on the
results of the current solution is comprehensively compared,
which can be replaced according to the current Metropolis
standard. Any number of random perturbation solutions is
performed in multiple same temperature ranges. The change
curve of its own temperature parameters is usually used to
simulate the process of solid temperature drop until it reaches a
specified temperature value. The solution of the equation ob-
tained at this time is generally considered to be a final solution
[19, 20]. Figure 1 shows the basic flowchart of SA algorithm
implementation.

The simulated annealing algorithm has a strong global
optimization search ability, which is not constrained by
search space or finite hypothesis space, nor do it need
continuity, derivations, unimodality, or other assumptions.
It indicates that the value of the objective function is not very
good with a certain probability, which may cause the al-
gorithm to fall into a local optimization trap. But in theory, it
will pop up after a time that is long enough and converge to
the global optimization. Therefore, through the annealing
algorithm, a high initial temperature, a low annealing rate, a
large number of iterations, and disturbances are generated
under two environmental conditions with an identical initial
temperature. It is proved that the disadvantages of this al-
gorithm is obvious, which lies in the contradiction between
the solution quality and the long solution time.

3. Particle Swarm Algorithm

Particle swarm optimization, abbreviated as PSO, is an
evolutionary algorithm similar to the simulated annealing
algorithm, which starts from solving a random solution,
repeating, and iterating continuously, and finally another
known optimal solution is found. In fact, it may also need to
conduct a comprehensive analysis to evaluate the overall
implementation and quality of a solution through applica-
bility test indicators, which is obviously more intuitive and
simpler than the genetic algorithm [21, 22].

The application field of PSO has gradually expanded from
a simple function optimization problem at the beginning to a
wider application field. Various research results of the most
advanced algorithm theory are introduced into PSO, such as
the coevolutionary PSO with bottleneck learning, which uses
the bottleneck objective learning (BOL) strategy for multi-
objective optimization [23]; the fuzzy multiobjective feature
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FIGURE 1: Flowchart of the simulated annealing algorithm.

selection method with PSO can achieve feature sets with
excellent performance in approximation, diversity, and fea-
ture cost [24]; the dual substitution assisted cooperative PSO
algorithm simultaneously obtains multiple competitive op-
timal solutions at a lower computational cost [25]; PSO based
on adaptive parameters and strategies has good global and
local search ability when it dealt with large-scale problems
[26]; the performance optimization improvement of the
neighborhood topology based on PSO facilitates the

simulation and verification of various types of social systems
[27]. These optimization supplements are essential experi-
ences in expanding and deepening the research of PSO.
Through the standard particle swarm optimization al-
gorithm, it is assumed that each particle swarm i in the
swarm space represents a feasible solution in the solution
space. In the space flight of a solution, each particle flies
freely in the whole solution space at a certain speed. The
speed direction and position are dynamically adjusted by
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flight experience, so that they can be used for space infor-
mation exchange [28].

In PSO, each particle i has four components: position
X; = (x},x%,...,xP), velocity V, = (v},v%,...,vP), histor-
ical optimum P; = (p}, p?,. .., pP), and historical optimum
G, = (G,G?,...,GP). The standard PSO search can be
described as

d_ d . d_ d
v{ =v; +¢; X unifrnd,; x(pi - X ) +c,
. d_ . d 2)
x unifrnd, ><(G - X ),
X = xfl + vfl, (3)

1

where i=1,2,...N,d=1,2,...,D. N is the number of
particles in the group and D is the dimension of the particles.
¢; and ¢, are the acceleration constants. unifrnd;, and
unifrnd, are the two mutually independent and uniform
distributions on random number [0 1].

It can be seen from equation (2) that the equation is
divided into the following three parts in the right part,
namely, the original velocity, the influence of the particles’
previous optimal position on the current position, and the
influence of the historical optimal position of the particle
population on the current position [29]. In a real natural
social system, the long-distance transmission of information
is affected by some huge social influence caused by spatial
and geographical factors. Two or more individuals who are
relatively close or adjacent to each other often transfer in-
formation immediately and obtain a large amount of
identical information. Based on this principle, research is
changed as follows [30]:

vfl = vfl + ¢, x unifrnd, x(pf - xfl)
(4)
+cy X f(‘Gd - xﬂ) x unifrnd, X(Gd - x?),
where f (x) is a diagonal function defined as follows:
—ix+c+e, x < wg,
@o

)= (5)

c, X2 w,.

Here, ¢ and e are the given constants, and wg is an
adjustable parameter that represents the distance among
particles.

Considering that f (x) does not have asymptotic prop-
erties, a kernel function K, (u) = exp(—|u|2/202) is intro-
duced, in which ¢ is a parameter that controls the size of the
kernel window. The particle swarm velocity update formula
of the PSO algorithm is as follows:

vlfi = vl‘.i + ¢, X unifrnd, X(pf —X?) +¢, X K(D)
(6)

x unifrnd, X(Gd - xf),

where D is the Euclidean distance from the current particle
position to the historical optimal position.

4. PSO-SA Algorithm

Based on the fast convergence ability of PSO and the ability of
SA to jump out of local traps as well as find the global opti-
mization, the standard particle swarm optimization algorithm
is a simulated annealing particle swarm optimization algorithm
with fast improvement performance combining with a sim-
ulated annealing algorithm for synthesis and improvement. By
combining PSO with SA algorithm, more effective hybrid
intelligent algorithm is obtained for more accurate solution.
When the PSO evolution is stagnant, SA is used to optimize the
detected global optimal position. Because the value of iden-
tification amplitude and phase, especially the value of phase, is
relatively close, it is easier to jump out of local convergence by
selecting random selection. Although it may increase the
corresponding calculation time, it also makes the calculation
results more accurate. The basic flow of the algorithm is as
follows, and the basic process is shown in Figure 2.

Step 1: The number of iterations of the current iteration
particle is #;=1; the number of iterations of the
maximum particle is T, The current particle pop-
ulation is N and the current dimension is D.

Step 2: Evaluate the fitness of each particle to obtain the
historical optimal fitness and the global optimal
population.

Step 3: If it can meet the requirements, jump to Step 6
directly.

Step 4: Make t; = t; + 1, and turn to Step 6 if it is reached
to Trhax-

Step 5: Update the position, move speed of particles,
and turn to Step 2.

Step 6: The number of iteration cycles of the current
cycle is t,=1, and the maximum number of internal
iteration cycles is Tjpax-

Step 7: Calculate the fitness values and select the
updated solution according to the Metropolis criteria.
Step 8: If the solution cannot satisfy the requirements
under this temperature range, make the solution
ty=t,+ 1. If t, does not reach Tj,,, turn to Step 7.

Step 9: Cool down and return to Step 7 until an ideal
solution is obtained.
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v
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FIGURE 2: Amplitude curves of each degree detected based on PSO-SA algorithm.

5. Harmonic Detection Based on
PSO-SA Algorithm

Any periodic nonsine wave is defined as a periodic harmonic
as long as it conforms to Dirichlet’s definition conditions.
The total harmonic can also be simply expressed by any
periodic fundamental sine wave plus a series of other sine
waves. The definition standard is that “a harmonic is a sine
wave component of a periodic quantity, whose frequency is
an integer of the fundamental wave frequency.” Since the
fundamental frequency range used for the generation of
periodic harmonics must be a maximum integer multiple of
the frequency amplitude of periodic fundamental waves, the

phenomenon of high periodic harmonics is sometimes
called high-order harmonics.

With the increasingly mature development of science
and technologies of system application research methods in
recent years, especially the further popularization and
practical application of the nonlinear system load optimi-
zation technology, some high-order harmonics existing in
the system of electrohydraulic servo shaker itself become
more and more acute and complex. There are harmonics
whose frequency is not only an integer multiple of power
frequency but also a large number of noninteger harmonics.
If harmonics of different frequencies can be located in
different frequency bands, those including integer orders can
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be separated. Therefore, harmonic detections and analyses
can be realized.

Due to the existence of nonlinear loads, the actual
harmonic of a hydraulic servo system has characteristics
including nonlinearity, randomness, and nonstationarity.
Therefore, there are some nonstationary harmonic problems
such as the waveform. Harmonics with a known magnitude
and phase are as follows:

N
x(t) =) X;sin(lot +¢), (7)

I=1

where X; and ®; (I=1, 2, 3, ..., n) are, respectively, the
amplitude and phase of the Ith harmonic; w is the funda-
mental frequency.

Using the PSO-SA algorithm, the objective function
value is optimized to make the relative difference between x
(tx) and the expected value dj as small as possible. It is
required that the corresponding parameters is obtained
directly and quickly through harmonic detection. The basic
method steps of optimization using the objective function
method are as follows:

(1) Establish an objective function according to the
demand

Assuming that the expected value of harmonics is x
(), the actual sampling value is d, and the estab-
lished objective function is

& =[x(te) - i)’ (8)

N 2
& = { Y X;sin(lot) - dj, } . 9)

I=1

(2) The constructor, i.e., E=¢, is processed with the
objective function so that its minimum value cor-
responds to the optimal solution to the problem.
From the formula and its corresponding derivations,
it can be seen that the function E is monotonically
decreasing. If and only if (dE/dt) =0, E is the
smallest, and the system reaches a stable point at this
time.

(3) Optimize the objective function using an optimi-
zation algorithm. The input vector is generated by
referencing the harmonic. The error between the
actual value and the estimated value is iteratively
optimized using the algorithm. The harmonic de-
tection problem is expressed as an optimization
problem.

6. Case Analysis

Through an electrohydraulic servo shaker, the performance
of a product itself is effectively tested, such as the vibration
resistance to fatigue loads, so as to ensure that the product
still satisfies the performance requirements of itself when
being subjected to vibrations and impact loads. The elec-
trohydraulic servo shaker is shown in Figure 3. A hydraulic
system structure includes a hydraulic oil source, a hydraulic

FIGURE 3: Schematic diagram of equipment.

power mechanism, and a shaker control system. The hy-
draulic oil source system is generally composed of a hy-
draulic pump station, an accumulator, and an oil source
control system, which provides necessary and stable hy-
draulic power for the vibration test system. The function of a
variable piston pump is to provide a certain pressure and
system flow for an accurate control of the entire hydraulic
system. The flow and pressure change correspondingly at
any time according to the actual hydraulic working con-
ditions between different working conditions under the
whole system.

The control system of a shaker is mainly composed of
structural components such as an electrohydraulic servo
valve, a connecting rod, a platform, and supports. The
electrohydraulic servo valve plays the role of directly con-
necting the control electric signals as well as transforming
and outputting them into the controlled hydraulic flow and
pressure signals. The structure and composition of the
control system are shown in Figure 4. The main components
include a computer, a data acquisition card with complete
functions such as digital to analog conversion, a signal
conditioner, and various electronic sensors.

Considering that in the actual analysis and detection of
harmonics, with the gradual increase of harmonic frequency
detected by analysis, the harmonic frequency also increases
accordingly. Therefore, a harmonic model for detecting the
fundamental wave and the 2nd to 6th is established. Set the
detected simulation harmonic source as follows:

y =6.8sin(2m x 4t + 0.5) + 5.5sin (27 x 8¢ + 0.4)
+ 2.6 sin (27 X 12t + 0.3)
+ 1.1sin (27 x 16t + 0.1) + 0.7 sin (277 X 20t + 0.05)
+ 0.2 sin (277 x 24t — 0.1).
(10)

The detected magnitude and phase based on the PSO-SA
and PSO algorithm are shown in Figures 5 and 6, respec-
tively. It can be seen from the two algorithms that in the
process of amplitude and phase detection, the curve oscil-
lation is small and the convergence time is short. The graph
of the relationship between fitness and the number of it-
erations is shown in Figure 7. The convergence speed and
accuracy of the POS-SA detection algorithm are better than
those of the PSO detection algorithm. The comparison
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iteration times.

between the harmonic diagram based on the detected am-
plitude and phase and the actual harmonic is shown in
Figure 8. Figure 9 shows the comparison error signal be-
tween the detection signal and the actual signal. It can be
seen from the figure that the stable state is basically reached
at the beginning, and the error value detected by the PSO-SA
algorithm is smaller than that of the PSO algorithm. Fig-
ure 10 shows the waveforms of each order. Both algorithms
can reflect the amplitude and phase characteristics of each
harmonic. Table 1 lists the comparison results between the
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(=]
=
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PSO-SA and PSO algorithm. The values are very close, and ’ Time; o) -
the PSO-SA algorithm detects harmonic information better

than the PSO algorithm. — 528 "

During the amplitude detection process, there is little
fluctuation in the detection process, and the safety FIGURE 9: Error comparison curve.
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F1GUREe 10: Waveform diagram of each order: (a) fundamental wave, (b) second harmonic, (c) third harmonic, (d) fourth harmonic, (e) fifth
harmonic, and (f) sixth harmonic.

performance of the system itself is better; in the process =~ harmonic detection should also be able to reach a stable
of phase detection, the curve fluctuates slightly, tending  state quickly and stably in a short time, with a detection
to be stable in a very short time, and the convergence  speed that is almost the same. Meanwhile, with the
time is short, satisfying the detection requirements. The = gradual increase of harmonic number, the time spent
detection curve of fundamental wave and high-order  does not increase significantly.
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TaBLE 1: Results of harmonic detection based on PSO-SA and PSO algorithm.

Harmonic order Harmonic amplitude PSO-SA result PSO result Harmonic phase PSO-SA result PSO result
Fundamental 6.8 6.797 6.887 0.5 0.500 0.507
Second 5.5 5.498 5.534 0.4 0.402 0.382
Third 2.6 2.622 2.661 0.3 0.302 0.298
Fourth 1.1 1.098 1.039 0.1 0.096 0.106
Fifth 0.7 0.700 0.663 0.05 0.049 0.055
Sixth 0.2 0.197 0.184 -0.1 -0.100 -0.102

It can be seen intuitively from the actual operation and
test that the simulation detection results obtained based on
the PSO-SA algorithm have better convergence performance
and robustness, achieving a faster convergence speed. The
operation convergence time of the PSO-SA algorithm is
reduced, and the solution results are more accurate than that
of the PSO algorithm. Therefore, the optimal method based
on the PSO-SA algorithm is more acceptable and easier to
apply. From the basic steps and flowchart of the PSO-SA
algorithm, the computational complexity of this algorithm
has increased some computational steps. However, from the
comparison curve between the fitness of PSO-SA and PSO
and the number of iterations, it can be seen that the op-
eration speed of iteration is not slowed down, and the
convergence is achieved faster. However, if there are too
many target values to be detected, the population number N
needs to be increased accordingly, which may increase the
calculation time and increase the complexity of calculation
and application memory. Therefore, it is necessary to choose
the detection number carefully.

7. Conclusions

With the increasingly extensive application of various hy-
draulic servo device technologies in the manufacturing of
complex mechanical systems and the increasing require-
ments of nonlinear working loads, the harmonic conditions
encountered in the system become more and more complex.
The harmonic of the hydraulic system not only affects the
output signal quality but also causes errors in the sensors and
instruments. In the actual system operation, when a serious
harmonic amplification occurs in equipment, the stable and
safe operation of the system equipment itself is also en-
dangered. In order to reduce the influence of the harmonic
of the hydraulic servo system on the operation, it is im-
portant to detect the harmonic accurately and take corre-
sponding measures to suppress it, so as to improve the
output accuracy and quality.

Due to the inherent nonlinear effect of the hydraulic
servo system, the input sinusoidal signal response is a time-
varying signal. Therefore, the fast and accurate harmonic
estimation algorithm is required. In this paper, the PSO-SA
algorithm is mainly used for harmonic detection, and the SA
algorithm is used to urge the PSO search in the stagnant
stage, so as to jump out of the local extremum as much as
possible. The comparison between PSO-SA detection and
PSO detection simulation results shows that the PSO-SA
detection time through this method is relatively short with
small error, which can better meet the actual needs of the

hydraulic system device for harmonic detection. However, a
disadvantage is that the more sufficient the algorithm search
is, the more likely it is to find the global optimal solution,
meanwhile, also increasing the algorithm search time ac-
cordingly. In addition, whether this algorithm is suitable for
more complex multidegree of freedom electrohydraulic
servo system or not, it needs further verification.

An electrohydraulic servo shaker system is complex, and
there are many requirements for nonlinear and driving
control factors. In order to achieve the overall technical goal
of correctly realizing analog input signals and reproducing
the characteristics of input system signals as accurately as
possible, many professional research fields are involved,
which need to be further explored. The frequency response
characteristics of signals on a multidegree of freedom shaker
and the detection of harmonic characteristics of those are
still in the research stage, and further relevant research as
well as test work are needed.

Data Availability

Figures and equipment parameters data used to support the
findings of this study are included within the article.

Conflicts of Interest

The authors declare that thy have no conflicts of interest.

Acknowledgments

This project was supported by the HTC3250un precision NC
lathe and turning center and is a subproject attached to the
National Science and Technology Major Project
(2009ZX04001-053) and the Scientific Research Support
Plan of Shenyang Ligong University to introduce high-level
talents (1010147001113).

References

[1] Y. Sun, J. Xu, G. Lin, and N. Sun, “Adaptive neural network
control for maglev vehicle systems with time-varying mass
and external disturbance,” Neural Computing & Applications,
vol. 34, no. 19, pp. 1-12, 2021.

[2] Y. Sun,J. Xu, C. Chen, and W. Hu, “Reinforcement learning-

based optimal tracking control for levitation system of maglev

vehicle with input time delay,” IEEE Transactions on In-

strumentation and Measurement, vol. 71, pp. 1-13, 2022.

L. Feng and H. Yan, “Nonlinear adaptive robust control of the

electro-hydraulic servo system,” Applied Sciences, vol. 10,

no. 13, p. 4494, 2020.

[3



Journal of Robotics

(4]

(10]

(11]

(12]

(13]

(14

(15]

(16

(17]

(18]

B. Rabaoui, H. Hamdji, N. Ben Hadj Braiek, and M. Rodrigues,
“Descriptor observer-based sensor and actuator fault tolerant
tracking control design for linear parameter varying systems,”
International Journal of Robust and Nonlinear Control, vol. 31,
no. 17, pp. 8329-8352, 2020.

A. Tayal, L. Dewan, and J. S. Lather, “Artificial neural net-
work-based source identification producing harmonic pol-
lution in the electric network,” Lecture Notes in Electrical
Engineering, vol. 667, pp. 49-58, 2021.

P. Gao, M. Tian, and L. Wang, “Harmonic source identifi-
cation method based on sinusoidal approximation,” Journal of
Physics: Conference Series, vol. 2290, no. 1, p. 012054, 2022.

P. Santiprapan, K. Areerak, and K. Areerak, “A novel har-
monic identification algorithm for the active power filters in
non-ideal voltage source systems,” Journal of Power Elec-
tronics, vol. 17, no. 6, pp. 1637-1649, 2022.

L. Sun, J. Song, and Y. Jin, “Inter-harmonic parameter
identification method based on transform with local maxi-
mum spectrum,” Archives of Electrical Engineering, vol. 71,
no. 1, pp. 189-209, 2022.

A. S. Abdelsamad, M. A. J. Myrzik, and E. Kauthold,
“Nonlinear identification approach for black-box modeling of
voltage source converter harmonic characteristics,” in Pro-
ceedings of the 2020 IEEE Electric Power and Energy Con-
ference (EPEC), pp. 1-5, Edmonton, AB, Canada, November
2020.

E. Zheng, Z. Liu, and L. Ma, “Study on harmonic detection
method based on FFT and wavelet transform,” in Proceedings
of the 2010 2nd International Conference on Signal Processing
Systems, pp. 413-416, Dalian, China, July 2010.

F. Temurtas, R. Gunturkun, N. Yumusak, and H. Temurtas,
“Harmonic detection using feed forward and recurrent neural
networks for active filters,” Electric Power Systems Research,
vol. 72, no. 1, pp. 33-40, 2004.

C. Liu and K. Liu, “On instantaneous characteristic of
adaptive harmonic detection based on LMS,” in Proceedings of
the 2010 Asia-Pacific Power and Energy Engineering Confer-
ence, pp. 1-3, Chengdu, China, March 2010.

K. Bouleimen and H. Lecocq, “A new efficient simulated
annealing algorithm for the resource-constrained project
scheduling problem and its multiple mode version,” European
Journal of Operational Research, vol. 149, no. 2, pp. 268-281,
2003.

S.Z. Selim and K. Alsultan, “A simulated annealing algorithm
for the clustering problem,” Pattern Recognition, vol. 24,
no. 10, pp. 1003-1008, 1991.

O. Araz and V. Kahya, “Design of series tuned mass dampers
for seismic control of structures using simulated annealing
algorithm,” Archive of Applied Mechanics, vol. 91, no. 10,
pp. 4343-4359, 2021.

V. Ravi, B. Murty, and J. Reddy, “Non-equilibrium simulated-
annealing algorithm applied to reliability optimization of
complex systems,” IEEE Transactions on Reliability, vol. 46,
no. 2, pp. 233-239, 1997.

V. Ilin, D. Simi¢, S. D. Simi¢, S. Simic, N. Saulic, and
J. L. Calvo-Rolle, “A hybrid genetic algorithm, list-based
simulated annealing algorithm, and different heuristic algo-
rithms for travelling salesman problem,” Logic Journal of
IGPL, 2022.

W. Fan and R. B. Machemehl, “Using a simulated annealing
algorithm to solve the transit route network design problem,”
Journal of Transportation Engineering, vol. 132, no. 2,
pp. 122-132, 2006.

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

13

M. Andresen, H. Brdsel, M. Morig, J. Tusch, F. Werner, and
P. Willenijus, “Simulated annealing and genetic algorithms for
minimizing mean flow time in an open shop,” Mathematical and
Computer Modelling, vol. 48, no. 7-8, pp. 1279-1293, 2008.

Q. K. Pan, L. Wang, and B. H. Zhao, “An improved iterated
greedy algorithm for the no-wait flow shop scheduling
problem with makespan criterion,” International Journal of
Advanced Manufacturing Technology, vol. 38, no. 7-8,
pp. 778-786, 2008.

Y. H. Shi and R. C. Eberhart, “Empirical study of particle
swarm optimization,” Proceedings of the 1999 Congress on
Evolutionary Computation, vol. 3, pp. 1945-1950, 1999.

Y. S. Eberhart, “Particle swarm optimization: developments,
applications and resources,” Proceedings of the 2001 Congress
on Evolutionary Computation, vol. 1, pp. 81-86, 2001.

X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and
J. Zhang, “Coevolutionary particle swarm optimization with
bottleneck objective learning strategy for many-objective
optimization,” IEEE Transactions on Evolutionary Compu-
tation, vol. 23, no. 4, pp. 587-602, 2019.

Y. Hu, Y. Zhang, and D. Gong, “Multiobjective particle swarm
optimization for feature selection with fuzzy cost,” IEEE
Transactions on Cybernetics, vol. 51, no. 2, pp. 874-888, 2021.
X.Ji, Y. Zhang, D. Gong, and X. Sun, “Dual-surrogate-assisted
cooperative particle swarm optimization for expensive mul-
timodal problems,” IEEE Transactions on Evolutionary
Computation, vol. 25, no. 4, pp. 794-808, 2021.

Y. Xue, T. Tang, W. Pang, and A. X. Liu, “Self-adaptive pa-
rameter and strategy based particle swarm optimization for
large-scale feature selection problems with multiple classi-
fiers,” Applied Soft Computing, vol. 88, Article ID 106031,
2020.

J. Kennedy and R. Mendes, “Neighborhood topologies in fully
informed and best-of-neighborhood particle swarms,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C, vol. 36,
no. 4, pp. 515-519, 2006.

K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to
global optimization problems through particle swarm opti-
mization,” Natural Computing, vol. 1, no. 2/3, pp. 235-306,
2002.

L. Guo and X. Zhang, “Adaptive sliding mode active dis-
turbance rejection control of PMLSM based on simulated
annealing particle swarm optimization algorithm,” in Pro-
ceedings of the 2021 13th International Symposium on Linear
Drives for Industry Applications, pp. 1-6, Wuhan, China, July,
2021.

K. J. Binkley and M. Hagiwara, “Balancing exploitation and
exploration in particle swarm optimization: velocity-based
reinitialization,” Transactions of the Japanese Society for Ar-
tificial Intelligence, vol. 23, no. 1, pp. 27-35, 2008.





