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To address the problems of the traditional A∗ algorithm in solving paths with many expansion nodes, high memory overhead, low
operation e�ciency, and many path corners, this paper improved the traditional A∗ algorithm by combining jump point search
strategy and adaptive arc optimization strategy. Firstly, to improve the safety of our paths, the risk area of the obstacles was
expanded.  en, the A∗ algorithm was combined with the jump point search strategy to achieve the subnode jump search,
reducing the calculation scale and memory overhead, and improving search e�ciency. Considering the in�uence of the density of
obstacles on search e�ciency, the heuristic function was enhanced according to the special e�ects of the density of obstacles.
Finally, the redundant jump point and adaptive arc optimization strategies were used to shorten the path length further and
enhance the initial path’s smoothness. Simulation results showed that our algorithm outperforms traditional A∗ and literature
algorithms in path length, security, and smoothness, and then was further validated and applied in large-scale marine envi-
ronments and realistic settings.

1. Introduction

With the continuous improvement of automation, mobile
robots have been widely used in various scenarios, such as
warehouse handling robots, service robots, disinfection robots,
and uncrewed express delivery vehicles. Path planning is one of
the critical technologies in mobile robots, and the purpose is to
�nd a collision-free optimal or suboptimal path for the robot
from the starting position to the target position [1].

Many algorithms for path planning have been proposed
by scholars, such as the A∗ algorithm [2], Dijkstra algo-
rithm [3] as the representative of geometric model search
algorithm and particle swarm optimization (PSO) algorithm
[4], and ant colony (ACO) algorithm [5] as the represen-
tative of the intelligent optimization algorithm.  e A∗
algorithm has been widely studied and applied due to its
relatively small computational e�ort, high search e�ciency,
and relatively optimal planning path compared with other
algorithms [6].

In response to the problems of the traditional A∗ al-
gorithm, such as too many traversing nodes, large memory

occupation, and poor path smoothness, some better im-
provement strategies have been proposed by researchers.
Yang et al. [7] extended the search method of the traditional
A∗ algorithm from eight directions in eight neighborhoods
to sixteen directions in sixteen neighborhoods at the expense
of the search e�ciency of the algorithm, which improved the
smoothness and optimality of the path.Wang et al. [8] used a
two-way search strategy to improve the A∗ algorithm, and
the simultaneous iterative search in both positive and
negative directions improved the search e�ciency, but it
ignored the problem of large memory occupation in large-
scale map paths. Zafar et al. [9] used the jump point search
method to improve the node expansion method of the A∗
algorithm, which solved the memory problem of high
overhead and low search e�ciency in large-scale maps [8],
but the smoothness of the paths is not satisfactory yet. Tang
et al. [10] used third-degree B-spline to smooth the paths
planned by the A∗ algorithm but ignored the constraint
problem of the obstacle region, which is prone to cause the
smoothed paths to traverse obstacles in a narrow area. Saeed
et al. [11] solved the problem of Tang et al. [10] by inserting

Hindawi
Journal of Robotics
Volume 2022, Article ID 7682201, 15 pages
https://doi.org/10.1155/2022/7682201

mailto:li_junli@stu.kust.edu.cn
https://orcid.org/0000-0002-5752-1507
https://orcid.org/0000-0003-1526-145X
https://orcid.org/0000-0003-3345-5899
https://orcid.org/0000-0002-6700-022X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7682201


additional path nodes between the original path points until
they could satisfy and generate a smoothed path that does
not occur to traverse obstacles. Song et al. [12] designed
three path smoothers to optimize the paths, but the time
complexity of this algorithm is vulnerable to the scale of the
number of nodes. For the safety of robot movement in
realistic environments, Zhang et al. [13] considered the
distance of nodes from obstacles in the A∗ expansion node,
using the threat generation value as part of the evaluation of
the node cost. -at algorithm ensures path safety but does
not apply to the large-scale complex map environments in a
natural setting.

-e above-improved algorithms [7–13] improve the
search efficiency, path smoothing, and security of the tradi-
tional A∗ algorithm to some degree. Considering the above
issues comprehensively, the main contributions of this paper
are as follows: firstly, the obstacles modeled by the gridmethod
are puffed, and the risk areas are defined, and then, our
improved A∗ does not search the risk region during the
search path so that we reduce the computation of the algo-
rithm and ensure the safety of the planned path. -en, we
integrate the jump point search strategy with the A∗ algo-
rithm to avoid expending unnecessary nodes in the search
process of A∗ , so as to reduce the computational scale and the
computer memory usage. In addition, we introduce the dis-
tribution density of obstacles to adaptively change the weights
of the evaluation function of our enhanced A∗ , which further
improves the search efficiency of the algorithm. Finally, we
utilize the redundant jump point deletion strategy and the
adaptive arc optimization strategy to secondary optimize the
planning path to reduce the turning points and circularize the
corner path to improve the path quality further.

2. Environmental Modeling

-e grid method [14] is widely used to build mobile robots
for various working environments as it has a simple
structure and is easy to implement. Traditional grid mod-
eling methods ignore the mobile robot’s volume constraints
and kinematic constraints, leading to some planned paths
colliding with the edges of obstacles, which increases the risk
of collision in reality [15].

To solve the above problems, we add the identification
processing of risk area based on the modeling approach of
Tsardoulias et al. [16]. Firstly, the actual presence of irregular
obstacles in the environment is considered. In the process of
environment modeling with the traditional (0,1) grid
method, the obstacle areas that do not occupy the whole-cell
grid need to be puffed and filled, and then are considered
obstacle areas that are forbidden to pass, after which they are
represented by “1” in the matrix map. -e area without
filling is the free passage area and is characterized by “0” in
the matrix Map. Next, the outer grid area of the obstacle grid
is determined to be the risk area, and the risk area is rep-
resented as “2’ in the matrix Map. -e steps for identifying
risk areas are as follows:

Step 1 Iterate the coordinate positions of all obstacles
(xi, yi), i � 1, 2, . . . , n in the grid matrix Map.

Step 2 Judge whether the obstacle grid is located in the
nonboundary range according to equation (1). If it is
satisfied, the free grid near it will be judged as the risk
grid according to equation (2), and the corresponding
matrix value will be changed from “1” to “2.”

0, <xi, <xM,

0, <yi, <yN,
 (1)

Map Diri(  � 2, if Map Diri(  � 0,

Map Diri(  � 1, others,

⎧⎨

⎩ (2)

where n represents the number of obstacles; xM rep-
resents the maximum horizontal coordinate of the
Map; yN represents the maximum vertical coordinate
of the Map; Map(Diri) represents the original grid of
obstacle i in the eight fields in the grid matrix Map; and
Map(Diri) is the grid matrix after satisfying the
judgment condition, where Diri � [1 2 3 4 5 6 7 8].

Figure 1 is a schematic diagram of our grid method, and
the orange triangular area in Figure 1(a) is an obstacle in the
actual environment; the black area represents the expanded
grid area that the robot cannot pass and corresponds to “1”
in Figure 1(b); the gray area is the expanded risk area and
corresponds to “2” in Figure 1(b); the white area is the
passable area and corresponds to “0” in Figure 1(b).

While developing the improved A∗ algorithm to gen-
erate path, we avoid extending the search nodes to the risk
region, enhancing algorithm search efficiency and making
the initially planned paths maintain a certain safety distance
from the obstacles. We only consider the distance between
the path and the original obstacle in the path optimization
stage. Our method guarantees the optimality and safety of
the path to a great extent compared with some methods in
the literature and reduces the performance requirements of
the mobile robot for dynamic obstacle avoidance.

3. Improved A∗ Algorithm Based on Jump
Point Search (JPS-A∗ )

3.1. StandardA∗ Algorithm. -eA∗ algorithm is a classical
heuristic search algorithm with a wide range of applications
in solving optimal paths in two-dimensional static envi-
ronments [17]. -e algorithm combines the heuristic idea of
the Breadth-First Search algorithm and the shortest path
search method of Dijkstra to select the optimal node se-
quentially by evaluating the cost of each extended node, and
the evaluation function of the current node is as follows:

f(n) � g(n) + h(n), (3)

where f(n) denotes the total cost of the current node, g(n)

denotes the actual cost from the starting node to the current
node, h(n) denotes the heuristic distance of the current node
from the target node.the -e heuristic function of the
standard A∗ algorithm uses the Manhattan distance dM(n)

(4) and the Euclidean distance dE(n) of equation (5), re-
spectively, which can be expressed as follows:
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dM(n) � xn − xg



 + yn − yg



, (4)

dE(n) �

��������������������

xn − xg 
2

+ yn − yg 
2



, (5)

where (xn, yn) is the coordinates of the current node, and
(xg, yg) is the coordinates of the target node. -e A∗ al-
gorithm based on Manhattan distance can only achieve the
search of four neighborhoods and four directions. -e A∗
algorithm based on Euclidean distance can investigate eight
neighborhoods and eight directions, so in this paper, we use
the Euclidean distance to calculate h(n) to ensure the op-
timal path. As shown in Figure 2, both methods will in-
evitably search for multiple symmetric paths with the same
start point, endpoint, and path length, which differ only in
the order of the nodes, thus theoretically causing redundant
computations in the algorithm search process [18].

-e A∗ algorithm creates two lists when searching the
path: Open List for the current node’s neighboring nodes
andClose List for the visited nodes. -en, the algorithm
starts from the starting point and expands to the neighboring
nodes, adds the nodes that A ∗ considers for expansion to
theOpen List, calculates their generation values, sorts them
according to their generation values, takes out the node with
the smallest generation value as the next parent node, and
adds the previous parent node to the Close List, then repeats
the above search process until it reaches the target node. -e
search strategy of the traditional A∗ algorithm makes a
large number of nodes constantly maintained and accessed,
which leads to the defects of high computation, serious
memory consumption, and low efficiency when performing
path planning in a large-scale map environment.

3.2. Improving A∗ Algorithm Based on Jump Point Search
Strategy. To solve the problems mentioned earlier, such as
many extended nodes, high memory consumption, and low
search efficiency in a large-scale map environment, we use
the jump point search strategy [19] to improve the con-
ventional A∗ algorithm.

-e jump point search strategy breaks the symmetry of
paths and reduces the computational scale by giving up
evaluating a large number of nodes during path search and
only expanding the nodes that conform to the jump point

rules. -e jump point search strategy will prefilter out the
non-natural neighbor nodes in the map and then search the
suitable nodes from the remaining nodes as jump points.-e
following are the rules for defining non-natural neighbor
nodes, forced neighbor nodes, and jump points in this paper.

3.2.1. Non-Natural Neighbor Nodes. Figure 3 shows the
filtering rules for non-natural neighbor nodes, where p(x) is
the parent node of node x; the direction of the parent node
p(x) pointing to x is the direction of the algorithm extension
node; and the yellow grid is the non-natural neighbor nodes
that do not need to be considered in the search path process.

As shown in Figure 3(a), starting from the parent node
p(x), there are shortest or equivalent paths to all yellow
nodes without going through node x. -erefore, all yellow
nodes in the straight-line direction are nodes that do not
need to be computed, and for such nodes in the straight-line
path that satisfy equation (6), we define them as non-natural
neighbor nodes. All the yellow nodes in Figure 3(b) are
directly reachable by p(x) with a minimum path score
value, and the filtering rule for non-natural neighbor nodes
in the diagonal direction is in equation (7)as follows:

len
〈p(x), . . . , n〉

x
 ≤ len(〈p(x), x, n〉), (6)

len
〈p(x), . . . , n〉

x
 < len(〈p(x), x, n〉), (7)

where len represents the generation value of the path;
p(x), x, n represents the path from parent p(x) to node n via
node x; and 〈p(x), . . . , n/x〉 denotes the path from parent
p(x) to node n directly without going through node x.

3.2.2. Forced Neighbor Nodes. For pathfinding with obstacle
disturbances like Figure 4, there does not exist an optimal
path from p(x) without going through node x to node n

directly in the both linear and diagonal directions.-erefore,
node n is defined as a forced neighbor node of node x with
the following filtering rule.

(1) Node n satisfies the definition of non-natural
neighbor node.
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Figure 1: Improved grid method modeling. (a) Irregular obstacles. (b) Matrix map.

Journal of Robotics 3



(2) Node n satisfies the rule of equation (8).

len(〈p(x), x, n〉)< len
〈p(x), . . . , n〉

x
 . (8)

3.2.3. Jump Point. A nodey is defined as a jump point of
nodex if there exists a minimum value k such that the
formulay � x + kd

→
holds and one of the following three

conditions is satisfied [20].

(1) Node y is the target node.
(2) At least one forced neighbor node of node y.
(3) If d

→
is the diagonal direction and there exists a node

z at the same time ( d
→

is the diagonal horizontal and
vertical decomposition vector direction), node y can

move k steps in that direction to reach node z, while
node z is the defined jump point by condition (1) or
condition (2).

-e jump point search starts by finding jump points
along the straight line and diagonal directions, adding the
nodes that meet the definition of jump points to the
OpenList, and then selecting the node with the lowest
generated value as the new extended node for calculation up
to the target point. As shown in Figure 5, it is the starting
point, T is the target point, the green grids represent the
nodes extended to in the path search, the red grids represent
the forced neighbor nodes of the jump point search, and the
solid black line is the final path. In the same map envi-
ronment, both algorithms can plan a safe path.

However, jump point search prunes a large number of
non-natural neighbor nodes in the process of expanding

P (x) x

n

(a)

P (x)

x

n

(b)

Figure 3: Non-natural neighbor nodes. (a) Linear direction. (b) Diagonal direction.
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Figure 2: Symmetric path search. (a) Four-neighborhood search and symmetric path. (b) Eight-neighborhood search and symmetric path.
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n

x

(b)

Figure 4: Forced neighbor node. (a) Straight line direction. (b) Diagonal direction.
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nodes and expands only natural neighbor nodes as well as
forced neighbor nodes. Compared with the A∗ algorithm, it
dramatically reduces the computation of nodes and speeds
up the search time. It is evident from Figure 5 that the
number of green search grid points of our algorithm is small,
and the jump point search can achieve a long-distance jump
between two nonadjacent jump points according to the
definition of the jump point, which means the computa-
tional scale is small. In summary, the improved algorithm
can significantly reduce the computational complexity and
thus the time scale. Also, the number of path nodes is further
reduced, which is a more pronounced improvement in large-
scale maps, as demonstrated in subsequent sections 5.1 and
5.2.

Our jump point search strategy is suitable for 2D static
planar path planning. It considers only distance cost and
greatly outperforms the traditional A∗ algorithm since it
removes many neighboring nodes with suboptimal spaces.
Moreover, it does not apply to 2D environments considering
nonflat terrain [13] because it focuses on the distance
constraint of the node rather than other factors, such as the
terrain height difference between that node and the sur-
rounding nodes.

3.3. Improving the Heuristic Function of JPS-A∗ Algorithm.
-e heuristic function of the traditional A∗ algorithm is
shown in equation (3), which does not consider the influence
of obstacle density on search efficiency. Since there are
usually many obstacles between the starting point and the
target point, the algorithm will occupy ample memory space
and reduce the efficiency during the search process, and
generate more redundant nodes [21]. When the number of
obstacles in the environment space is small, the value of the
heuristic function of A∗ is closer to the actual distance
value, so the weight of the heuristic function can be in-
creased appropriately to reduce the algorithm’s search space
and improve the search efficiency. When the number of
obstacles in the region is more complex, the heuristic
function value of the algorithm will be smaller than the

actual distance value, so the weight of the heuristic function
can be reduced appropriately to increase the number of
expansion nodes of the algorithm, which will improve the
search capability of the optimal path by expanding the search
space.

To this effect, equations (9) and (10) are used to calculate
the obstacle density P within the rectangular region com-
posed of the current node and the target node, and the
obstacle density P is introduced into the heuristic function
for improving A∗ .

P �
N

xt − xn


 + 1  × yt − yn


 + 1 

, (9)

f(n) � g(n) +(ln(e + P)) · h(n), (10)

where (xt, yt) is the coordinates of the current node;N is the
number of obstacles in the rectangular region composed of
the current node and the target node; and xn and yn are the
lengths of the boundaries in the horizontal and vertical axis
directions of the map, respectively. -e improved heuristic
function enables the algorithm to adaptively adjust the
weights of the heuristic function according to the obstacle
rates in different regions.

To verify the effectiveness of the improved heuristic
function, we use the heuristic function as the only variable. It
is evident from Figure 6 that the number of extended nodes
of the improved heuristic function is reduced to 28 com-
pared with 41 under the traditional method for both
planning path lengths of 20.9706m. -e 31.7% reduction in
the expansion nodes improves the search speed of the al-
gorithm by 32.8%. -e main reason is that the algorithm
searches in the region with a low obstacle rate by reducing
the search space and thus improving the search efficiency.

4. Path Optimization Strategy

-e improved A∗ algorithm based on jump point search
can significantly improve the search efficiency, but the
planned path still has more turning points and the robot
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Figure 5: Comparison of path planning. (a) Traditional A∗ algorithm. (b) Improved A∗ algorithm based on jump point search
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needs to make several unnecessary attitude adjustments to
track path [22]. In order to satisfy the nonholonomic
constraints of mobile robots, we propose a redundant jump
point deletion strategy and an adaptive arc optimization
strategy to optimize the path further.

4.1. Redundant Jump Point Removal Strategy. -e path
generated by the traditional A∗ algorithm is composed of a
continuous grid containingmore turning points. Jump point
search can achieve long-distance jumps between nodes, but
the smoothness of the path is not improved more signifi-
cantly, so we propose a redundant jump point removal
strategy to eliminate the redundant turning points.

4.1.1. Step 1 Extract key jump points. Extract three con-
secutive jump points Nodei+1, Nodei , and Nodei−1 from the
initial path compare the slope of the line formed by Nodei+1
and Nodei with the slope of the line formed by Nodei and
Nodei−1. If the slopes are equal, we delete jump point Nodei.
We iterate through all jump points, delete all common
jump points, and generate a path sequence containing only
the start point, key jump points, and endpoint.

4.1.2. Step 2. Remove redundant jump points. -e path se-
quence generated after Step 1 is Pi, 1≤ i≤ n  and connects
the point P1 with the point P3, and if the line segment P1P3
does not cross the obstacle area, then we continue to connect
P1P4 until the line segment P1Pi crosses the obstacle area,
and then, we determine P2, P3 . . . Pi−2, which are the re-
dundant jump points, and the corresponding path sequence
is deleted. We repeat the above operation from point P2
again until all the jump points in the path have been
detected.

As shown in Figure 7, the path optimized by the re-
dundant jump point removal strategy breaks through the
limitation of eight neighborhood search directions and can
realize the connection between nodes in noneight directions.
-e length of the path is further shortened, and the number
of turning points is also reduced. But the same problem of an
unsmooth path at the turning point still exists [23].

4.2. Adaptive Arc Optimization Strategy. As shown in
Figure 8, the starting position of the mobile robot is
A1(x1, y1), and the end position is A1(xn, yn). -e algo-
rithm starts from the starting point and circularizes the
corner areas in the path until the endpoint [24], and the
specific steps are as follows:

Step 1. Compare the lengths of the line segments Ai−1Ai and
AiAi+1, choose the short side of them as the initial tangent
side, whose endpoint P(xp, yp) is the initial tangent point,

S 10

10

T

(a)

10

S 10

T

(b)

Figure 6: Heuristic function ablation experiment based on JPS-A∗. (a) Traditional heuristic function with 4.994 ms. (b) Improved heuristic
function with 3.355 ms.
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Figure 7: Redundant hop removal policy.
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Figure 8: Adaptive arc optimization algorithm.
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andmake a vertical line through the initial tangent point P to
intersect with the angle bisector AiQi−1 of ∠Ai−1AiAi+1 at the
point Oi−1(x0, y0); then, the center of the circle of the
tangent circle is as follows:

x0 �
xp + k01yp + k01 k0x2 − y2(  

1 + k0k01

y0 � k0 x0 − x2(  + y2

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

-e radius of the tangent circle is as follows:

R �

�����������������������������

x
2
0 − 2x0xp + y

2
0 − 2y0yp + x

2
p + y

2
p



. (12)

-e equation of the tangent circle is as follows:

x − x0( 
2

+ y − y0( 
2

� R
2
, (13)

where k01 is the slope of the short side, and k0 is the slope of
the angle bisector.

Step 2. Judge whether the tangent circle intersects the long
side at a point S. If yes, we execute Step (3); otherwise, we go
to Step (4).

Step 3. Determine whether the arc PS crosses the obstacle
area. If yes, then execute Step (4); otherwise, we replace the
fold line Ai−1AiAi+1 with the arc PS and go to Step (5).

Step 4. -e tangent point P(xP, yP) moves to the point
P2(xp2, yp2) along the line segment, and xp2 can be
expressed as follows:

xp2 � xp + λ x2 − xp



, λ ∈ (0, 1), (14)

where λ is set according to the actual situation, while P2 is set
as the initial tangent point, and return to Step (1).

Step 5. Determine whether all the jump points in the path
are traversed. If yes, the algorithm is finished; otherwise, we
return to Step (1). -e result of adaptive arc optimization is
shown in Figure 9.

4.3. Algorithm Flow. -e flow chart of the pathfinding
optimization based on our improved A∗ algorithm is
shown in Figure 10.

5. Simulation Experiment

5.1. Small- andMedium-ScaleMap Simulation. To verify the
effectiveness of our improved algorithm, the following ex-
periments were conducted, and the 30× 30, 50× 50, and
100×100 grid environments of Li et al. [25] were used as test
maps for simulation and compared with the traditional
ACO, improved ACO [26], traditional A∗ algorithm, secure
A∗ algorithm, bidirectional A∗ smoothing algorithm [25],
and PRM, and experimental environment such as Windows
10 (64 bit), AMD Ryzen5-4600H, CPU 3Ghz, memory
16GB, and Matlab 2019a. Simulation experimental results
are shown in Table 1 and Figures 11–16.

As shown in Figures 11 and 12, the paths planned by
traditional ACO and traditional A∗ both collide with ob-
stacles and do not meet the safety requirements for robot
motion. Based on the environment modeling approach we
proposed, the safe A∗ algorithm, the improved A∗ [25],
PRM, and our algorithm can all plan safe paths as shown in
Figures 13–16, and the paths obtained by our algorithm
outperform the safe A∗ algorithm, the improved A∗ [25],
and PRM in terms of length. As shown in Figures 14–16, in
terms of smoothness, we combine adaptive circular arc
optimization and achieve similar smoothness as Li et al. [25],
who use Bézier curves for optimization, but our optimiza-
tion in terms of distance length is significantly better. Since
the paths planned by PRM have some turning points, the
smoothness of its planned paths is worse. Besides, the time
spent by our algorithm is significantly better than PRM and
slightly better than the improved A∗ [25].

From the experimental results in Figure 11, the IACO of
Yang et al. [26] also guarantees the path security, but the
length of the planned paths, the smoothness, and the run-
ning time of that algorithm is not as good as ours in the
30× 30, 50× 50, and 100×100 environments. In addition,
the number of nodes extended in this paper is significantly
better than the traditional A∗ algorithm and slightly better
than the improvedA∗ [25], so it is also the best among the
compared algorithms in terms of computational efficiency
and the algorithm search time.

Based on the statistical tests, we draw a conclusion that
the comprehensive performance of our algorithm is better
than that of the other algorithms in the experiments.

5.2. Large-Scale Marine Environment Simulation. To verify
the performance of the improved algorithm in the super-
scale map scenario, Figure 17(a) of the area around Zhubu
Island (7 km∗7 km) in Qingdao, Shandong Province, China,
and Figure 18(a) of the area around Changhai County
(64 km∗48 km) in Liaoning Province, China, were selected as
the sea maps for testing [27]. -e satellite map of the area
was first acquired, binarized, and then modeled the ultra-
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Figure 9: Adaptive arc optimization.
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large-scale grid map with our method, where the accuracy is
10m. -e two areas’ binarization maps are shown in
Figure 17(b) and 18(b). Due to the limited performance of
our computer, this experiment again divided three groups of
maps: Map_1 with a simple obstacle environment but a

more extensive map size of 7 km∗7 km, and Map_2 and
Map_3 with a slightly smaller scale of 5 km∗5 km. -ree
environments are in increasing order of complexity, and we
compared our algorithm with the A∗ . -e experimental
results and data are shown in Figures 19 and 20 and Tables 2

Initialization the map model

Start

Add the starting point S to the
OPEN List

OPEN List is empty?

Select the jump point with the smallest evaluation value in
the OPEN List, Set the node as the current node N, and

move n to the CLOSE List

N is goal point?

Expand Nodes Ni horizontally and vertically according
to the direction of the parent node

Ni is obstacle or off the map?

Ni is jump point?

Add Ni to the OPEN List, update the f (Ni) value

Generate path by tracing backwards
from the target node to the starting node

Delete redundant 
jump points

Adaptive arc 
optimization

Generate final path

Expansion along the 
diagonal direction

Ignore Ni

End

Y

Y

N

N

Y

N

Y

N

Path search failed

Figure 10: Flow chart of the improvement algorithm.
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and 3, where the yellow grid area in Figure 19 is the ex-
panded node area of A∗ .

In Map_1, both algorithms can successfully plan paths,
and our improved algorithm achieves significant results in
this type of large-scale map. -e algorithm in this paper is
771.752m shorter and 1268 times less than the A∗

algorithm in terms of path length and the number of ex-
tended nodes, respectively, and the number of nodes visiting
the obstacle is also significantly better than A∗ . In Map_2
and Map_3, which have higher complexity, both our al-
gorithm and A∗ perform three sets of path planning. From
Tables 2 and 3, we can see that our algorithm still has

Table 1: -ree sets of static map simulation data.

Map Algorithm Path
length/m

Path length
optimization

ratio

Number of
turning
points

Turning point
optimization

ratio

Number of
extended
nodes/
number

Path
safety

Algorithm
search time/

ms

Path
convergence

or not

1

Traditional
ACO 43.9411 — 5 — — N 107.87 Y

Improved
ACO [26] 47.4558 — 2 — — Y 98.71 Y

Traditional
A∗ 43.9411 — 5 — 346 N 9.47 —

Safety A∗ 45.6985 — 11 — 370 Y 9.18 —
Improved
A∗ [25] 43.10 4.9% 0 100% 40 Y 6.82 —

PRM 43.3658 — 4 — — Y 15.44 —
-is paper 42.4743 7.0% 0 100% 52 Y 6.20 —

2

Traditional
ACO 77.6396 — 18 — — N 266.32 N

Improved
ACO [26] 76.4392 — 6 — — Y 180.54 Y

Traditional
A∗ 72.2254 — 7 — 504 N 13.48 —

Safety A∗ 76.9117 — 13 — 772 Y 19.96 —
Improved
A∗ [25] 71.69 5.7% 0 100% 64 Y 8.700 —

PRM 72.1034 — 4 — — Y 25.67 —
-is paper 71.3966 7.1% 0 100% 47 Y 8.37 —

3

Traditional
ACO 352.374 — >30 — — N 458.62 N

Improved
ACO [26] 173.9828 — 5 — — Y 82.6 Y

Traditional
A∗ 148.2048 — 9 — 2527 N 85.82 —

Safety A∗ 151.7229 — 9 — 2750 Y 85.70 —
Improved
A∗ [25] 143.35 5.5% 0 100% 120 Y 15.50 —

PRM 148.4120 — 3 — — Y 35.27 —
-is paper 143.0791 6.0% 0 100% 22 Y 14.29 —

5
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Figure 11: Traditional grid method environment modeling + traditional ACO and improved ACO [26]. (a) 30∗30. (b) 50∗50. (c) 100∗100.
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apparent advantages in path length, the number of extended
nodes, and the number of nodes visiting the obstacle. -e
paths of our algorithm in path_1 of Map_2 are smoother

when traversing narrow areas, and the comparative indexes
are more prominent. We do not consider the secondary path
optimization in the experiments in Figure 20 due to the
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Figure 12: Traditional grid method environment modeling + traditional A∗ . (a) 30∗30. (b) 50∗50. (c) 100∗100.
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Figure 13: -is paper grid method environment modeling + traditional A∗ (security A∗ ). (a) 30∗30. (b) 50∗50. (c) 100∗100.
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Figure 14: Improved A∗ algorithm [25]. (a) 30∗30. (b) 50∗50. (c) 100∗100.
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Figure 15: PRM algorithm. (a) 30∗30. (b) 50∗50. (c) 100∗100.
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broader sea area, and the number of path turns is less, but it
is still better than A∗ from the results. To reflect the effect of
adaptive arc optimization, we optimize path_3 with the path
length of 3472.792m in Map_3 as the target and get a
smooth path with the length of 3406.679m, as shown in
Figure 21.

5.3. ROS Cart Experiment. To verify the applicability of the
improved algorithm in a natural environment, a two-wheel

differential speed mobile robot was composed of a McNa-
mee wheel chassis, an STM32 underlying control board, a
Lidar, and equipped with an Ubuntu 16.04 system including
ROS-kinetic. -e ROS cart experiment was conducted in an
environment 1.5m long and 0.5m wide, and the experi-
mental conditions are shown in Figure 22.

Figure 23 shows our observation of the ROS vehicle in
motion, in which the red color is the outline of the obstacle
scanned by lidar; the black area is the risk area extension; the
white box is the lidar detection range; and the solid green
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Figure 16: -e improved A∗ algorithm in this paper. (a) 30∗30. (b) 50∗50. (c) 100∗100.
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Figure 17: 700∗700 (7 km∗7 km) scale sea area map. (a) Original map. (b) Binarized map.
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Figure 18: 6400∗4800(64 km∗48 km) scale sea area map. (a) Original map. (b) Binarized map.

Journal of Robotics 11



line is the global route planned by our A∗ algorithm. From
Figure 23, it can be seen that a collision-free global path is
preplanned for the ROS cart by our algorithm, and then, the
cart tracks the global path to move. From the experimental
data in Figure 24, it can be seen that due to the expansion of

the risk region and the optimization strategy of adaptive arc,
the position change and speed change amplitude of the
trolley in the driving process are relatively gentle, and the
ROS cart finally avoids the obstacles safely and smoothly to
reach the target position.

(a) (b) (c)

Figure 19: A∗ algorithm path planning result. (a) Map_1. (b) Map_2. (c) Map_3.

Table 3: Our algorithm for large-scale map path planning.

Map number Route Start point coordinates End point coordinates Path length/m Number of
extension nodes

Number of nodes
visiting the obstacle

Map_1 (700∗700) 1 (160.5 20.5) (230.5 90.5) 8791.764 48 31378

Map_2 (500∗500)
1 (160.5 20.5) (230.5 90.5) 1099.080 42 42016
2 (80.5 360.5) (300.5 437.5) 2415.358 29 39487
3 (290.5 250.5) (450.5 480.5) 2807.652 37 39494

Map_3 (500∗500)
1 (80.5 310.5) (150.5 420.5) 1478.851 38 38302
2 (80.5 80.5) (220.5 250.5) 2220.133 26 35850
3 (310.5 60.5) (400.5 370.5) 3472.792 40 35865

Table 2: A∗ algorithm for large-scale map path planning.

Map number Route Start point
coordinates

End point
coordinates

Path length/
m

Number of extension
nodes

Number of nodes visiting the
obstacle

Map_1
(700∗700) 1 (160.5 20.5) (230.5 90.5) 9020.012 60955 88431

Map_2
(500∗500)

1 (160.5 20.5) (230.5 90.5) 1124.680 2608 41794
2 (80.5 360.5) (300.5 437.5) 2518.944 13699 52596
3 (290.5 250.5) (450.5 480.5) 2962.742 16072 54706

Map_3
(500∗500)

1 (80.5 310.5) (150.5 420.5) 1518.823 4308 39775
2 (80.5 80.5) (220.5 250.5) 2309.188 4809 40116
3 (310.5 60.5) (400.5 370.5) 3472.792 24460 59488

(a) (b) (c)

Figure 20: -e path planning result of the algorithm in this paper. (a) Map_1. (b) Map_2. (c) Map_3.
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Figure 21: Smoothing optimization results of the algorithm in this paper.

(a) (b)

Figure 22: Experimental scenario. (a) ROS trolley. (b) Dormitory hallway environment.

(a) (b)

Figure 23: ROS simulation results. (a) Path planning. (b) Obstacle avoidance.
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Figure 24: Parameter output results. (a) Linear velocities. (b) Attitude angle.

Journal of Robotics 13



6. Conclusion

To solve the problems of smoothness, safety, and memory
occupation of the path planned by the traditional A∗ al-
gorithm, we improve it by combining the jump point search
strategy and the adaptive arc optimization strategy. To
improve the safety of the planned paths, we expand the risk
area of the obstacles. Combining the efficient search method
of jump points, we improve the node expansion strategy of
A∗ and improve the heuristic function by combining the
obstacle density effects of the environment to enhance the
execution efficiency further and reduce the computer
memory requirement. Considering the actual motion re-
quirements of the mobile robot, the redundant jump point
optimization strategy and the adaptive arc optimization
strategy are used to shorten the path length and improve the
smoothness. Comparative experiments with the traditional
A∗ algorithm and other algorithms [25,26] in small- to
medium-scale environments validate the effectiveness of our
algorithm in optimizing path length, smoothness, and safety.
Simulation tests in mega-island environments demonstrate
the advantages of our algorithm in terms of path metrics and
low memory usage under large-scale maps. Finally, path
planning experiments for mobile robot in a natural envi-
ronment based on the ROS platform further verify that our
improved algorithm can design a safe and smooth route, and
meet the actual robot motion requirements.
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