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Aiming at the problem that fixed mobile edge computing (MEC) server is difficult to meet the needs of mobile users and
temporary computing services, this study proposes a network resource allocation strategy based on unmanned aerial vehicle
(UAV) cooperative edge computing. First, a UAV-aided MEC scene is designed, and a single UAV with an MEC server is used to
provide auxiliary computing services for ground multiusers. *en, an optimization model aiming at total system delay is
constructed by considering the system communicationmodel and calculationmodel. Finally, Deep Q-Network is used to solve the
optimization problem to obtain the best resource allocation scheme. Based on the experimental platform, the proposed strategy is
demonstrated and analyzed. *e results show that when the number of user equipment is 40, the total delay is about 33s, which is
35.29%, 31.25%, and 15.38% lower than other comparison strategies and effectively reduces the computing delay of users.

1. Introduction

In recent years, with the development of 5G mobile com-
munication technology and the Internet of *ings (IoT),
smart mobile equipment have shown an explosive growth
[1–3]. In the context of cloud computing, MEC is considered
to be a technical key to improving the computing efficiency
of mobile edge equipment [4]. In MEC systems, task off-
loading is the key for mobile equipment to support resource-
intensive applications by executing on edge cloud resources
[5, 6]. However, computing servers are usually deployed in
fixed base stations. In practical scenarios, fixed base stations
cannot meet dynamic services such as user mobility, base
station damage, and temporary hotspot areas. It is partic-
ularly significant to meet the dynamic communication and
multiequipment access requirements.

According to the existing research, computing servers
can be deployed on an unmanned aerial vehicle (UAV) to
meet the communication requirements. UAV themselves
have the advantages of low cost and high mobility. In UAV-
assisted MEC networks, mobile equipment can offload tasks

to UAV with high computing power and flexible connec-
tivity at the network edge [7, 8]. *is method utilizes the
flexibility of UAV and better channel gain to offload
computing tasks for users, which can not only save com-
puting delay and user energy but also reduce the traffic load
on fixed cloud servers [9]. Reference [10] proposed a two-
stage joint hovering altitude and power control solution for
the resource allocation problem in UAV networks consid-
ering the inevitable cross-tier interference from space-air-
ground heterogeneous networks.

At present, significant progress has been made on the
research of computing task offloading. For example, refer-
ence [11] proposed a collaborative service deployment and
application allocation algorithm to achieve the final edge
service policy deployment. *e minimum energy con-
sumption was obtained through theminimum resource ratio
increasing algorithm, and computing tasks are redistributed
in combination with the load balancing algorithm to balance
the computing load. However, its overall computational
efficiency needs to be improved. Reference [12] proposed a
computing framework for coordinating terminals, edge
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nodes, and cloud centers based on the pipeline offloading
scheme. According to the computing and communication
capabilities of the entire network, they reasonably allocated
computing-intensive tasks to specific terminals or clouds,
effectively improving computing efficiency. Reference [13]
proposed a vehicle-assisted computational offloading ar-
chitecture for UAVs. *e proposed framework used vehicle-
assisted computing offload for UAV computing tasks and
network resource optimization, which has commonality
with the research topic. Reference [14] introduced agents
into computing task offloading and proposed a UAV-MEC
(UMEC) agent-enabled computing task offloading frame-
work to help users, UAV, and edge clouds perform com-
puting task offloading. Reference [15] proposed a
computational offloading scheme to minimize the time and
energy consumption of computational task costs. *e
scheme reduced the execution cost by coordinating the
allocation of computing resources between mobile equip-
ment and edge servers. However, many iterations were
needed to find the optimal solution. Reference [16] designed
a multiround iterative auction algorithm based on auction
theory. But the overall performance of the algorithm needs
to be further optimized. Reference [17] proposed an opti-
mized auction-based incentive mechanism. *e mechanism
can optimize long-term system welfare by operating in an
online fashion. However, it does not have good scalability for
resources that cannot be covered by network hardware.

With the continuous development of computer tech-
nology, intelligent algorithms such as machine learning are
continuously applied to edge computing. As in reference
[18], a heuristic-based algorithm with a low time cost is
proposed. Compared with the existing centralized resource
allocation and decision-making algorithms, this scheme
acquired a higher number of successfully offloaded tasks in
different scenarios, but the offloading of computing tasks in
complex situations cannot achieve collaborative optimiza-
tion. Reference [19] proposed a blockchain-driven collab-
orative framework for MEC. Reference [20] proposed a
caching mechanism based on Q-learning to reduce the
backhaul traffic load and transmission delay from the cloud.
Reference [21] proposed a collaborative computing frame-
work based on deep neural networks. *e experimental
results indicate that the proposed method has batter effec-
tiveness than the traditional methods. *e above methods
based on machine learning not only consider the efficiency
and timeliness of MEC network resource allocation to a
certain extent but also do not have good scalability.
*erefore, the offloading strategy based on UAV has been
further researched and developed. Reference [22] proposed a
deep reinforcement learning-based MEC UAV-assisted
computing offloading.*e total cost minimization was taken
as the objective function. Although this method expands the
wireless network to a certain extent, it needs to be further
optimized for efficient offloading of computing tasks and
reasonable allocation of network resources in complex IoT.

Aiming at the problem that it is difficult for fixed MEC
servers to meet the computing needs of mobile users and
computing efficiency of existing UMEC, a network resource
allocation strategy based on UAV collaborative edge

computing was proposed. Compared with the traditional
network resource optimization allocation strategies, the
innovations of this study are as follows:

(1) For the low-latency service guarantee for users, the
UAV carrying MEC server is designed to improve
the auxiliary edge computing systemmodel for users.
Taking the total system delay as the optimization
goal, the transmission delay of user calculation is
greatly shortened.

(2) Due to the huge amount of data and high real-time
requirements of the 5G system, the proposed strategy
uses Deep Q-Network (DQN) to solve the optimal
resource allocation scheme, which improves the
analysis efficiency of the network state.

2. System Model and Optimization Goal

2.1. SystemModel. *e scenario of human-machine-assisted
MEC system uplink communication is studied, as shown in
Figure 1, that is, UAVs provide auxiliary computing services
for multiple ground user equipment. Only the scenario
where a single rotor UAV provides services to N user
equipment on the ground is considered.

For the convenience of theoretical analysis, a three-di-
mensional Cartesian coordinate system is considered, where
Ln � (xn, yn) represents the position of n user equipment on
the ground. *e drone flies in a circle within a specified
range and provides auxiliary computing services to ground
user equipment. Among them, UAV is at a fixed height and
the initial position of UAV that is denoted as d[1], and the
final position is denoted as d[K]. Each ground user
equipment offloads some of computing tasks to UAV and
the rest is locally computed.

It is assumed that the total execution time is denoted T,
and it can be equally divided into K slots and denoted
t � 1, 2, . . . , K{ }, where τ � T/K, where τ refers to the length
of each slot. In the t slot, the position of drone is
d[t] � (x[t], y[t]). Assuming that the maximum flight
speed of UAV is Vmax, the trajectory constraints of UAV are
as follows:

d[1] � d[K],

‖d[t + 1] − d[t]‖

τ
≤Vmax,

(1)

where formula (1) indicates that the flight speed of the UAV
cannot exceed its maximum flight speed. Since UAV flight
energy consumption is related to UAV flight speed, UAV
flight energy consumption expression is as follows:

E
fly

[t] � η‖v[t]‖
2
, (2)

where v[t] � [‖d[t + 1] − d[t]‖/τ] represents the flight speed
of UAV in the t time slot; η represents the proportional
factor of energy consumption and flight speed.

2.2. Communication Model. Assuming that the wireless
channel between UAV and each user equipment is a line-of-
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sight (LOS) channel, the channel power gain between UAV
and user equipment n can be expressed as follows:

hn[t] � β0d
−2
n [t] �

β0
H

2
+ d[t] − Ln

����
����
2, (3)

where β0 represents the channel power gain per unit dis-
tance; d−2

n [t] represents the horizontal distance between
UAV and user equipment n in the t gap; and ‖ · ‖ represents
Euclidean norm.

2.3. Computational Model

2.3.1. Local Computing. When user equipment n selects the
local mode, all computing tasks will be locally performed,
and the computing delay can be expressed by the following
formula:

T
loc
n �

CnDn

fn

, n ∈ N, (4)

where fn is the computing capability of user equipment n

(number of cycles per second); Cn represents the number of
cycles required to calculate 1 bit; and Dn is the size of input
data.

2.3.2. Offload to UAV for Calculation. *e UAV carrying
MEC server periodically flies at a fixed altitude above the
ground user equipment. *e user equipment that selects
MEC mode can offload tasks to UAV through time-division
multiple access (TDMA) [23, 24]. *e set of ground users is
set to be offloaded to MEC as N′, and UAV can choose to
relay some tasks to access point (AP) for calculation.
*erefore, it can be assumed that the ratio of user equipment
n that selects the relay to the ground base station in the t time
slot is ζn[t], n ∈ N′, t ∈ K; then, the task that needs to be
calculated by UAV in the t time slot is (1 − ζn[t])Dn[t].

(1) *e transmission speed of user equipment n in time
slot t:

v
u
n[t] � B1log2 1 +

Pnhn[t]

σ2
􏼠 􏼡, n ∈ N′, (5)

where B1 is the bandwidth between UAV and user n;
Pn is the maximum transmission power of the user n,
and the user equipment uses the maximum power
transmission; and hn[t] is t time slot channel gain
between the user n and UAV communication.

(2) Transmission delay of user equipment n: assuming
that the bits offloaded by the user n in time slot t are
Dn[t], so the user n needs to offload all bits in K time
slots, and the constraints are expressed as follows:

􏽘

N

n�1
Dn[t] � Dn. (6)

*e total transmission delay of the user equipment is
expressed as follows:

T
mec
n � 􏽘

K

t�1

Dn[t]

vn[t]
. (7)

(3) *e calculation delay of UAV: according to the relay
ratio, the task calculated by UAV for user equipment
n in the t time slot and then the calculation delay of
user equipment in one time slot inMECmode can be
obtained, and finally, the calculation task of UAV for
a single user equipment can be obtained. *e total
delay is as follows:

T
u
k � 􏽘

K

t�1

1 − ζn[t]( 􏼁Dn[t]Cn

fc

, (8)

where fc represents the computing power of MEC
server.

2.3.3. Offload to Base Station on the Ground for Calculation.
UAVs can choose to relay part of computing tasks to AP
computing.*e proportion of UAVs choosing relays in time
slot t is ζn[t] ∈ [0, 1], n ∈ N′. Since the ground base station
can have multiple MEC servers built in, the calculation delay
of ground base station is considered to be ignored. At the
same time, the result of the calculation task is usually very
small, and it is considered to ignore the transmission delay of
calculation result. *us, the delay of UAV relaying tasks to
the computing part of the ground base station only includes
the transmission delay of the UAV.

*e flying height of the UAV is relatively high from the
ground base station and has a good line-of-sight link. It is
considered that the communication between the UAV and
ground base station adopts LOS channel. *e transmission
rate of UAV relaying the task to AP in the time slot is
calculated as follows:

v
U2E
n [t] � B2log2 1 +

Puhu[t]

σ2
􏼠 􏼡, (9)

where B2 is the bandwidth between UAV and AP; Pu is the
transmission power of UAV; and hu[t] is the communi-
cation channel between UAV and AP.

(x,y,H)

Figure 1: System model.
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*e transmission delay from UAV relay to ground AP
can be expressed as follows:

T
U2E
n � 􏽘

K

t�1

ζn[t]Dn[t]

v
U2E
n [t]

. (10)

Assuming that UAV can calculate and transmit part of
computing tasks to the ground AP at the same time, the total
calculation delay offloaded to UAV is as follows:

T
max
n � max T

U2E
n , T

u
n􏽮 􏽯. (11)

When the user equipment selects MEC mode, the total
delay of offloading computing tasks to UAV is as follows:

T
Ω
n � T

mec
n + T

max
n . (12)

2.4. Model Constraint Description. *e system goal is to
minimize the total delay of all requesting user equipment, so
the system goal can be defined as follows:

T􏽐 � 􏽘
N

n�1
Tn, (13)

where Tn represents the calculation delay of the user n.
Considering different computation and offloading

modes, Tn is defined as follows:

Tn � 1 − αn( 􏼁T
loc
n + αnT

Ω
n , (14)

where αk represents the mode selected by the user equipment.
When the variable is 1, itmeans that the offloading to the drone
is selected, and when the variable is 0, it means that the local
calculation is selected. Tloc

n represents the total delay locally
calculated by the user equipment; TΩn represents the total delay
calculated by the user to select all offload to the drone.

Optimization of user equipment offloading strategy,
UAV relay ratio, UAV trajectory, and user bit allocation are
combined tominimize the total delay of user equipment.*e
mathematical expression is as follows:

P1: min 􏽘
N

n�1
1 − αn( 􏼁T

loc
n + αnT

Ω
n􏼐 􏼑,

C1: αn ∈ 0, 1{ }, n ∈ N,

C2: ζn[t] ∈ [0, 1], n ∈ N′,

C3: Tn ≤T
max
n , n ∈ N,

C4: 􏽘
K

t�1
Dn[t] � Dn, n ∈ N′,

C5: d[1] � d[K],

C6: ‖d[t + 1] − d[t]‖
2 ≤ vmaxΔ( 􏼁

2
, t ∈ τ,

C7: 􏽘
N′

n�1Dn[t]≤Cu, t ∈ K,

(15)

where C1 represents that the user equipment n can only
choose one mode; C2 represents that the relay ratio of UAV
is a variable between 0 and 1. C3 represents that the

calculation delay for each user equipment n must be less than
the maximum tolerated delay. C4 represents that the user
equipment n that selects the MEC mode needs to complete
the offloading of tasks within K time slots. C5 means that the
drone flies in cycles; C6 means that the maximum horizontal
distance of the drone in one time slot cannot exceed the
threshold. C7 represents that the bits offloaded by all user
equipment to UAV in a time slot cannot exceed the com-
putational threshold of UAV.

3. Solutions Based on Deep
Reinforcement Learning

3.1. Reinforcement Learning Modeling. *e optimization
problem in equation (15) is solved by a single-agent
Q-learning algorithm based on reinforcement learning. *e
algorithm model consists of four parts, namely, agent, state,
action, and reward [25].

(1) Agent: Using UAV as the agent of the algorithm,
UAV will be responsible for collecting the infor-
mation of each equipment in the system and making
scheduling decisions.

(2) Action: a � [λ,ϖn] is defined to represent each ac-
tion decision variable of UAV. Among them, λ � n

indicates that the drone will provide on-demand
services for the n user equipment in the current state,
and λ ∈ N is satisfied. ϖn represents the computing
mode of required computing task of n user
equipment.

(3) State:*e state variable s � [ω, z, tserve, tfly] is defined
to represent the service state in the system. *e state
quantity consists of the following four parts: the user
equipment serves state quantity ω � [ω1, . . . ,ωN]

and satisfies ωn ∈ 0, 1{ }. ωn represents whether the n

user equipment in the system has been serviced by
drone and the service status has been completed,
ωn � 1 represents that the drone has completed the
on-demand service for the first user equipment, and
otherwise, ωn � 0. *e maximum tolerant delay
amount z � [z1, . . . , zN] and satisfies zn � Tmax

n , that
is, zn represents the maximum tolerant delay of n

user equipment in the system. Waiting service delay
amount tserve � [tserve1 , . . . , tserveN ]; flight delay amount
tfly � [t

fly
1 , . . . , t

fly
N ].

(4) Rewards: *e proposed optimization problem aims
at maximizing the number of network user equip-
ment services under UAV-MEC system architecture,
while the proposed Q-learning algorithm based on
reinforcement learning aims to obtain maximum
reward feedback. Combining the above two points,
and based on the current system state variable, s �

[ω, z, tserve, tfly] and the selected action variable
a � [λ,ϖn]. *e system reward feedback function is
defined as r(s, a) � 􏽐

N
n�1 ωn, that is, when UAV

selects the action decision variable as a in the state s,
the total number of network equipment in the system
can meet the service requirements [26, 27].
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*e training iterative process of the Q-learning algo-
rithm based on reinforcement learning satisfies the Bellman
equation. *e selection principle of action decision per-
formed by UAV under different state variables is based on
ε-greedy mechanism.

3.2. DQN-Based Offloading Strategy Optimization Algorithm.
*e pseudocode of the DQN-based offloading strategy
optimization algorithm is shown in Algorithm 1.

First, the network parameters are initialized, including
the capacity C1 of replay experience pool, the parameter θ of
action value function Q(s, a; θ), the parameter 􏽢θ � θ of
target action value function 􏽢Q(s, a; 􏽢θ), and the initial state s.
*en, at each episode t, each user equipment randomly picks
an action from the feasible action space according to
ε-greedy policy. A random action with probability ε or an
action satisfying the formula a � argmaxQ(s, a; θ).

*en, resource allocation is performed according to the
action selected by user equipment. If the local processing
task is selected, let the local CPU cycle frequency be the
maximum computing power of equipment, namely,
Fn � floc

n . If the user equipment chooses to upload tasks to
UAV for processing, let its uplink transmission power be the
maximum available power, i.e., pn � Pn.

After the resource allocation is completed, reward r can
be calculated according to the designed reward function, a
new state s′ can be obtained, and a new sample (s, a, r, s′)
can be stored in the experience pool. Finally, a batch of
samples is randomly sampled from the experience pool, and
these samples are used to update the parameters θ of
Q-Network, synchronizing the parameters 􏽢θ � θ of target
Q-Network every e steps. Note that although each user
equipment independently selects actions, since the resources
of UAVs are shared, the results of their action selections
influence each other [28, 29]. Assuming that all users have
selected the same drone for association, the drone may be
overloaded, resulting in the user’s equipment mission not
being able to complete within the specified latency limit, or
the drone running out of energy. In order to balance the load
as much as possible to avoid this extreme situation, an
invalid action pool is added. After all user equipment
complete the action selection, if the action set composed of
all the user equipment cannot meet the energy consumption
constraints of the base station or the load is too concentrated
so that most of the user equipment cannot meet the delay
limit Tmax

n , the action set is added to invalid action pool [30].
In this way, when the user equipment performs action se-
lection again, if the current action combination has already
appeared in an invalid action pool, it is ignored and the
selection is made again. *is avoids invalid calculations to
improve efficiency.

4. Experiments and Analysis

Simulation results are used to evaluate the performance and
efficiency of the proposed strategy. It is assumed that the user
equipment is randomly distributed in a two-dimensional
area of 200 m× 200m, and the AP is located in the upper

right corner of the two-dimensional area. Each user
equipment has different computing tasks, time delay tol-
erance, and the number of cycles required for computing a
1 bit task. *e specific parameters are shown in Table 1.

4.1. Average Reward of Algorithm Training Process. *e av-
erage reward value of multiple episodes in the training phase
of the DQN-based offloading strategy optimization algo-
rithm is shown in Figure 2. In order to increase the ex-
ploratory nature, a certain amount of noise is added to the
action during the experiment, which makes the original
image have many glitches and become unsmooth. Figure 2
shows the reward curve after taking the moving average.

It can be seen from Figure 2 that the proposed algorithm
has converged at 2,000 time slots, and the average reward
value fluctuates around 220. It can be seen that the algorithm
has a fast convergence speed and an ideal average reward
value.

4.2. Relationship between the Number of Convergence Itera-
tions and the Number of IoT Equipment. As the number of
equipment in the system increases, the number of times that
the proposed algorithm training reaches convergence also
increases, as shown in Figure 3.

As can be seen from Figure 3, when the number of
system equipment increases, more iterations are required to
achieve convergence. But when the number of equipment
exceeds 35, the increase in the number of iterations in-
creases. *is is mainly because the Q-table size of the al-
gorithm is closely related to the number of equipment
present in the system. When the number of equipment
exceeds the threshold, the processing pressure of the algo-
rithm sharply increases, resulting in a rapid increase in the
number of iterations required for convergence. However, the
algorithm can achieve convergence regardless of the number
of equipment, thus demonstrating the effectiveness of the
proposed algorithm.

4.3. Relationship between theCalculatedEnergy Efficiency and
Maximum Energy Consumption of Different Loading Models.
*e relationship between the computing energy efficiency of
user equipment and the maximum energy consumption
under different loading models is shown in Figure 4.

As can be seen from Figure 4, the local computing model
is that the user equipment only performs local computing,
while the global offloading model is that the user equipment
completely offloads computing tasks to UAV for computing.
Both schemes optimize the flight trajectory of UAV. Using
the DQN-based offloading optimization algorithm for
partial offloading can achieve higher computational energy
efficiency. When the maximum energy consumption is 4J,
the computing energy efficiency of its user equipment ex-
ceeds 200 bits/J. *is is because the user equipment can
flexibly allocate resources according to the quality of channel
state information, so as to select offload computation or local
computation under the partial offload model. Furthermore,
the global offload model outperforms the local computing

Journal of Robotics 5



model, and the computing energy efficiency of user
equipment increases with the increase in maximum con-
sumed energy. *e reason is that as the energy of user
equipment increases, the user equipment has more energy to
perform local computations or offload computations. In
addition, in the local computing mode, the computing
energy efficiency does not change as the energy increases. It
can be considered that when the maximum energy con-
sumption value is 1J, the computing energy efficiency of user
equipment has reached the maximum value. Subsequently,
the user equipment does not need to consume more energy
to improve the computing energy efficiency.

4.4. Relationship between Total Delay and the Number of IoT
Equipment. As the number of equipment in the system
changes, the total latency of the IoT system will also ac-
cordingly change. In order to demonstrate the performance
of the proposed strategy, it is compared with reference [13],

reference [14], and reference [22], and the results are shown
in Figure 5.

As can be seen from Figure 5, as the number of
equipment increases, the total system delay also increases as
expected. *e main reason is that when the number of
equipment in the system increases, UAV flight delay, UAV
edge computing delay, equipment upload delay, and
equipment local computing delay corresponding to the
newly added equipment will be added to the system. will be
added to the total delay of system. Furthermore, the pro-
posed strategy significantly outperforms other comparative
strategies in reducing the total system latency. When the

Initialization Experience pool capacity C1, Invalid action pool capacity C2, Parameters θ of action value function Q, Parameters
􏽢θ � θ of target action value function 􏽢Q, Initial state s.

Begin
(1) While t≤ tmax
(2) For n � 1: N

If rand(0, 1)< ε
User n randomly selects action a from action space A;

Else
User n selection action a � argmaxa∈AQ(s, a; θ)

End if
End for

(3) Allocate resources according to user actions
(4) For n � 1: N

(5) Obtain a reward r and a new status s′, and store the new sample (s, a, r, s′) in the experience pool.
(6) Update status s � s′
(7) Random sampling (si, ai, ri, si+1) is conducted from the experience pool to form small batch samples.
(8) Perform gradient descent on (yi − Q(si, αi; θ)2 with respect to parameter θ.
(9) Reset the target action value function 􏽢Q � Q every e steps.
(10) End for
(11) t � t + 1
(12) End While
(13) Determine the final user association matrix according to all action sets.
End

ALGORITHM 1: Pseudocode of offloading strategy optimization algorithm based on DQN.
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Figure 2: *e average reward in the training process of the
proposed algorithm.

Table 1: System simulation parameters.

System parameters Value
Bandwidth between UAV and user/MHz 10
Bandwidth between UAV and AP/GHz 1
UAV computing power/MHz 1200
User task size/Mbits [20, 30, 50]
User transmission power/W 3
Maximum user delay/s [10, 15, 25]
Flight cycle time slot of UAV 32
Fixed altitude of UAV/m 60
Maximum available speed of UAV/m·s−1 45
Gauss white noise/W 10–10
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number of user equipment is 40, the total delay is about 33s,
which is 35.29%, 31.25%, and 15.38% lower than reference
[13], reference [14], and reference [22], respectively. Since
the proposed strategy utilizes mobile UAVs for computa-
tional offloading and optimizes resource allocation with
DQN, the delay can be minimized. Reference [13] proposed
a vehicle-assisted computing offloading architecture for
UAVs. Since the optimization algorithm has a weak ability to
seek optimization, it takes a long time, more than 50s.
Reference [14] proposed a UAV-assisted agent-enabled
computing task offloading framework to help users, UAVs,
and edge clouds perform computing task offloading.
However, this algorithm requires a large amount of com-
putation and takes a long time, resulting in increased delay.

Reference [22] proposed a deep reinforcement learning-
based MEC UAV-assisted computing offloading scheme.
When the number of user equipment is small, the total delay
is close to the proposed strategy. However, when the number
of user equipment is large, the processing timeliness is not
strong, and the delay is relatively large.

5. Conclusions

In order to give full play to the advantages of a UAV-
assisted MEC network, it is necessary to further formulate a
reasonable user offloading strategy and UAV flight tra-
jectory. To this end, this study proposes a network resource
allocation strategy based on UAV collaborative edge
computing. Based on the system scenario of collaborative
computing between UAVs and ground users, an optimi-
zation model is constructed to minimize the total system
delay and use DQN to optimize, so as to obtain the best
resource allocation scheme. *e experimental results show
the following:

(1) With the fast mobility of UAVs, users in the system
can offload computing tasks in real time, which
greatly reduces the transmission delay. Especially
when the computing power of UAV reaches
2000MHz, the total system delay is about 20s.

(2) *e proposed strategy uses DQN to optimize the
offloading strategy, which not only has a fast opti-
mization speed but also has an efficient optimization
result, and realizes a reasonable allocation of re-
sources while reducing the delay. Especially when the
amount of user data is large, the optimization effect is
more obvious. When the number of user equipment
is 40, the total delay is about 33s, which is more than
10% lower than the total delay of other comparison
strategies.
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Figure 4: Relationship between calculated energy efficiency and
maximum energy consumption of different loading models.
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As the network scale becomes larger, the network sce-
narios also become more complex. In order to be suitable for
large-scale complex network scenarios and meet the real-
time requirements of MEC systems, we will focus on
researching and designing a simpler and more effective
online scheduling strategy in the future. *is is crucial for
the large-scale application of MEC.
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