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(is paper focuses on a visual navigation control system for mobile robots, recognizing target images and intelligent algorithms
for the navigation system’s path tracking and localization techniques. (is paper examines the recognition and localization of
target images based on the visual navigation control of mobile robots. It proposes an efficient marking line method for recognizing
and localization target images. Meanwhile, a fuzzy control method with smooth filtering and high efficiency is designed to
improve the stability of robot operation, and the feasibility is verified in different scenarios. (e corresponding image acquisition
system is developed according to the characteristics of the experimental environment, and the acquired images are preprocessed to
obtain corrected grayscale images. (en, target image recognition and linear fitting are performed to obtain target image
positioning.(e system calculates the angle and distance of the mobile robot, offsetting the target image in real time, adjusting the
output signal, and controlling the mobile robot to realize path tracking. (e comparison of sensor data and path tracking
algorithm results during the experiment shows that the path tracking algorithm achieves good results with an angular deviation of
±1.5°. (e application of RANSAC algorithm and improved Hough algorithm was analyzed in visual navigation control, and the
two navigation line detection algorithms based on the image characteristics of the target image were improved in the optical
detection area of the navigation line for the shortcomings of the two algorithms in visual navigation control, and the algorithms
before and after the improvement were compared.

1. Introduction

(e mobile robot is an essential branch of robotics. It is an
intelligent robot control system capable of detecting and
sensing the environment through various sensors and car-
rying out independent analysis, planning, and decision-
making based on environmental information and its state
[1]. (e research field of mobile robotics involves many
kinds of interdisciplinary theories and technologies, in-
cluding computer vision, sensor information technology,
communication technology, motion control theory, and
mechanical engineering. (e current hot wave of artificial
intelligence also affects the research progress of mobile
robotics [2]. With the rapid development of information
technology, computer microelectronics, and network tech-
nology, mobile robotics has also developed rapidly, and
more and more new robots with special functions have been

introduced. (e intelligence level of robots has been im-
proving. In the 21st century, attention is on the robot’s
perception of the external environment and autonomy. (e
new direction of robotics is bound to develop toward
practicality and intelligence. Mobile robots have been widely
used in traditional industry and agriculture and will be
further expanded to new sectors, services, defense and se-
curity, and medical services and will be commonly used in
unsuitable and dangerous situations, such as deep sea and
space. (erefore, the broad application prospect of mobile
robots has made the research in this field receive widespread
attention worldwide.

Autonomous mobility, which gives robots the ability to
explore their environment more fully, dramatically increases
the complexity of the tasks they can accomplish. State es-
timation during movement is a constant topic in mobile
robotics research [3]. (e primary consideration in
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designing a reasonable and efficient state estimation method
is the type of sensor the robot is equipped with and the
characteristics of the data acquired by that type of sensor, i.e.,
the construction of a sensor observation model. (e in-
formation that a mobile robot carries about itself and its
environment is the source of all information in the subse-
quent navigation process and determines the form of in-
formation processing in the following global positioning and
attitude tracking, map building, environment understand-
ing, path planning, and motion control, and task execution.
How to deal with the uncertainty contained in the perceptual
information and how to design efficient cognitive methods
to deal with the mental uncertainty based on the environ-
mental information contained in the perceptual report are
the significant challenges for building mobile navigation
systems and must also be predicated on the construction of
mobile robot observation models [4]. At the same time, the
estimation of its positional attitude is the basis and pre-
requisite for performing other processes during the exe-
cution of tasks by mobile robots [5]. (erefore, the
performance of the state estimationmethod will significantly
affect the performance of the whole navigation system.(us,
the mobile robot observation model and the underlying state
estimation model are introduced for two sensors, laser
sensor, and RGB-D vision camera, respectively, to illustrate
the robot state estimation process under different obser-
vation information and its uncertainty expression form
further elaborates its problems. Specifically, the observation
model is constructed for the laser sensor for the mobile robot
equipped with the laser sensor [6]. Based on the observation
model, various forms of observation similarity measures are
given, and the characteristics of each form are analyzed.
Based on this, a general model of the global localization
process of the robot on the raster map is given. Finally, since
global localization results are often uncertain and multi-
hypothesis, the probability-based state tracking model is
introduced in this chapter. For the visual observation model,
the camera projection model is described, the projection
model of spatial points to the camera plane is described, and
the method to recover the spatial position of pixels is given.
Based on this, a technique for global positional estimation
based on the current observation and the feature matching
results in the worldwide map is described. Due to the bias of
feature observation, there is uncertainty in the global po-
sitional estimation results.

Robotics has been rapidly improved, thanks to the rapid
development and maturity of microcomputer technology,
sensors, and other related technologies. Intelligent robots
have been popularized and applied in various fields such as
civil, military, and scientific research. (e research results of
intelligent robots are more prominent in many developed
countries and intelligent. Highly automated intelligent ro-
bots have been put into many fields such as aerospace,
geological exploration, scientific exploration, rescue and
disaster relief, such as China’s lunar rover “Moon Rabbit”.
Some low-cost, clever robots are also coming into daily life
and are used in many indoor environments in homes or
offices, such as floor cleaning robots [7, 8]. We are now in a
critical period of the modern manufacturing industry

upgrading in the industrial field. More and more intelligent
robots are needed to liberate labor, improve production
efficiency, save energy consumption, etc. Visual inspection
area image recognition is the basis of navigation line ex-
traction. (e quality of image segmentation affects the
navigation line extraction and the size of the error in the
measurement results of navigation parameters. In the
navigation line region established by ultrasonic measure-
ment, the navigation line visual detection region is set as the
target operation domain for a series of image processing
algorithms, and the detection region is dynamically tracked
and set based on the detection results of adjacent frames;
preprocessing image algorithms such as inverse color
transformation and histogram equalization are specifically
analyzed to enhance the different target images in the de-
tection region differentially.

2. Related Works

(rough the continuous development of electronic hard-
ware technology and control disciplines, by the 1960s, some
European countries already had various forms of mobile
robots. With the rapid growth of processors in the 70s and
80s, mobile robots have made significant flexibility and
stability. However, the main application scenarios are still
the warehousing industry and logistics and transportation
systems [9]. In the 1990s, the degree of intelligence and
automation of mobile robots was further improved with the
rapid development of computers, electronics, communica-
tions, and image processing technologies, and mobile robots
adapted to various working environments were born, which
have been widely used in the material assembly, home
appliance production, chemical industry, food, and many
other industries. (e vision-based mobile robot navigation
technology has been a new research boom in recent years
and is one of the essential directions of mobile robot
guidance technology research work. Research laboratories in
universities in the countries that first researched visual
navigation technology for mobile robots have achieved
significant research results [10]. Many of the results have
been applied to actual industrial production and even to the
daily lives of the general public.

(e Robot Vision Laboratory was the first to develop a
vision-guided mobile robot based on map construction,
which is accomplished through scene reconstruction using
vision sensors to capture photos of the scene [11]. (e
laboratory at Purdue University has developed an active
binocular stereo-based vision-guided mobile robot, Peter,
which acquires 3D information of the operating environ-
ment and path obstacles, and combines 8 radar scanners, 24
ultrasonic sensors, 8 infrared distance sensors, and a passive
infrared motion sensor to achieve flexible operation. (e
Intelligent Robotics Laboratory at Osaka University has
conducted in-depth research on vision navigation and de-
veloped a mobile robot based on monocular vision navi-
gation, which can detect the surrounding environment
extensively by rotating its vision sensors and obtaining the
positioning information, travel distance, and turning angle
of the mobile robot by a rotary encoder and potentiometer
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[12]. (e vision navigation technology is widely used in
advanced countries, such as autonomous lawnmowers, Mars
landing vehicles, driverless vehicles, and Kiva robots for
Amazon’s unmanned warehouses.

Global localization of mobile robots is the basis of
navigation.(e localization process is based on observations
to form feature representations and perform feature retrieval
and area inference in a global map. Lasers and vision are two
standard sensors used in the indoor navigation process [13].
Lasers can provide stable distance sensing information,
which is advantageous in obstacle avoidance and motion
planning tasks. However, it can only perceive flat infor-
mation and is relatively homogeneous. Vision can perceive
richer data, but its geometric perception range is lower,
while laser has a more extended and more stable perception
range. In the global localization process, there are multiple
possible regions of positional distribution in the environ-
ment due to the existence of similar areas and the incom-
pleteness of the perceived information. How to eliminate the
spatial perceptual ambiguity to make an accurate estimation
of the current poses is essentially a global optimization
problem. (e robot measures the degree of information
consistency between the recent observation and the expected
observation corresponding to the estimated position based
on the constructed objective function. (ere is considerable
international work on visual navigationmotion control from
image analysis to driving command generation [14]. In
image segmentation, since the opening of the ImageNet
challenge, there has been significant work based on the
traditional feature point segmentation method to the cur-
rently popular deep learning methods: the use of deep
learning to achieve semantic recognition of images and
segmentation methods, with a very high number of refer-
ences to achieve autonomous driving using images, or au-
tonomous driving using reinforcement learning methods,
the mainstream research in the field of autonomous driving.
(ere is a large body of literature on autonomous driving,
including the use of road segmentation and the use of en-
vironmental features for autonomous driving.

3. Model Design of the Target Image
Recognition and Localization System
Based on Robot Vision Navigation Control

3.1. Robot Vision Navigation Control System Construction.
(e visual navigation software is mainly used to process the
images obtained from the camera in real time, then the
navigation lines are extracted, navigation decisions are made
after calculating the navigation parameters of the robot, and
finally control signals are sent to the lower computer to
control the weeding robot for automatic navigation. (e
visual navigation software in this paper is written on the
Visual Studio 2015 development platform based on MFC
with Open CV, where the algorithms are implemented in
C++ and C languages. (e functional framework of the
visual navigation software is shown in Figure 1.

(e visual navigation software comprises five parts: the
information acquisition module, the image processing

module, the navigation decision module, the information
communication module, and the information storage
module.(e information acquisition module is the basis and
preparation of the visual navigation. Its primary function is
to obtain an accurate image with distortion correction after
the calibration of the camera [15]. (e IMU (Inertial
Measurement Unit) detects the pitch angle of the camera in
real time to correct the deviation of the camera pitch angle
due to the vibration of the robot during the navigation
process. (e image processing module is the core part of
visual navigation. (e main functions of the image pro-
cessing algorithm are image ROI construction, detection
based on a deep learning model, detection frame clustering,
image grayscale and smoothing filtering, corner point fea-
ture extraction in the detection frame, and navigation line
fitting. (e navigation decision module controls the motion
of the robot based on the navigation information obtained
after image processing. (is study uses the fuzzy control
method developed by our group to control the robot’s
movement. (e primary process of the navigation decision
module is to extract the navigation lines in the ROI after
image processing, then to find out the dominant route, solve
the position deviation and angle deviation of the robot, then
input the navigation deviation parameters into the fuzzy
control decision, and finally derive the control command of
the robot. (e function of the communication module is to
realize the serial communication between the visual navi-
gation upper computer software and the lower computer
hardware control system. (rough the configuration of the
serial parameters and the development of the data trans-
mission protocol, the control information is finally con-
verted so that the digital signal output by the navigation
software is converted to the level signal for controlling the
robot motion [16]. (e information saving module is re-
sponsible for saving the camera calibration parameters to
avoid tedious, repetitive calibration work content, and
saving the position deviation and angle deviation during the
robot autonomous navigation process, which is used for the
quantitative analysis of the accuracy of the image processing
algorithm. It is divided into six parts: image processing
display, camera parameter setting, camera calibration set-
ting, serial port setting, production and saving of data, and
robot motion control.

(1) (e image processing display section displays the
processing effects of the main stages of image pro-
cessing in real time. (e processing details of the
image algorithm can be visually observed and ana-
lyzed for any problems that exist.

(2) (e camera parameter setting section is used for
camera ID selection, camera resolution setting, and
image correction by calibrating internal camera
reference.

(3) (e camera calibration section is used to set the
calibration board parameters, calibrate the camera,
and save the calibration parameters. (e calibration
parameters saved locally can be read directly in the
subsequent image correction operation, repeatedly
avoiding tedious camera calibration work.
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(4) (e serial port selection section selects and config-
ures the communication serial port between the
upper and lower computers.

(5) (e data display and saving section is used to display
the pitch angle of the camera measured by the IMU
in real time, to solve the position and angle deviation
of the robot, to store the position and angle deviation
of the weeding robot during automatic navigation in
txt file format, and to select the size of the filter
kernel.

(6) Robot motion control is divided into manual control
mode and automatic navigation mode. (e manual
control mode is used to regulate the robot’s position
and adjust the part of the welding robot in the water
field. (e automatic navigation mode is for the robot
to track forward along the seedling navigation line
according to the control command of fuzzy decision.
(e robot vision navigation flow chart is shown in
Figure 2.

Visual navigation of mobile robots is to collect road
information through a camera to identify marking lines and
guide the robot. (erefore, to accurately show the robot
along the desired path, the body model must be built first to
realize the conversion between the image space coordinate
system corresponding to the camera and the world coor-
dinate system centered on the robot’s body. (e mobile
robot body structure is fixed, and its Kinect camera optical
axis is parallel to the road surface, 34 cm high from the
ground, and its maximum adequate vertical view is a+ b
because there are shields above and below the camera, i.e.,
the bottom of the image taken by the camera is the road
surface 66 cm in front of it. (e Tourtellot mobile robot in
this paper adopts a four-wheel structure, in which the left

and right wheels are the driving wheels, and the front and
rear wheels are the driven wheels. (e wheeled mobile robot
can accomplish a variety of motions, mainly by controlling
the rotational speed of its left and right drive wheels, re-
spectively. (erefore, to effectively manage the movement of
the mobile robot, its kinematic model must be analyzed first.
(e position state of the mobile robot at two adjacent
moments, with the x-axis forward as the robot’s forward
direction, where vr and vt are the velocities of the robot’s left
and right drive wheels, respectively, the angle the robot has
turned at the adjacent moment t, r is the distance between
the left and right drive wheels, and r is the radius of the
circular arc motion at the adjoining moment where the
forward velocity of the mobile robot is equal to the average
rate of its left and right wheels, assuming that the steering
angle is slight, the formula can be obtained as follows:

vt �
v − 1
����
lw/2

√ ,

vr �
v + 1
����
2/lw

√ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Before the visual navigation line improvement RANSAC
algorithm extraction, each pixel point in the optical de-
tection area of the navigation line needs to be calculated in
uIPM, the directional gradient Iupm and vIPM, directional
gradient IvPM, and the product I2uipm

I2viPM
and sum Iuipm

Ivipm
of

the two gradient directions are calculated. (en, the
Gaussian filtering is performed, and the template parameters
are normalized; then, the corner point response value P of
each image element is calculated, and the P value smaller
than the threshold is set to zero. Finally, within the 3× 3
neighborhood, the local nonmaximum values are
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suppressed, and the remaining local maximum values are
output as corner points. (e specific steps of the improved
RANSAC algorithm for visual navigation line detection are
as follows:

Step 1: A minimum of two data points is required for
each random sampling. (e number of samples in the
data set You for each corner point needs to be guar-
anteed to avoidmisfitting the harvesting navigation line
due to too few corner points.
Step 2: Initial estimation of two randomly selected data
points (u1

IPM, v1Ipm) and (u2
IPM, v2Ipm) models from the

corner point data set U to obtain a linear model M.

vip �

���������
v
2
ipm + v

1
ipm

􏽱

u
2

+ u
1 . (2)

Step 3: For the remaining data in the data set U, cal-
culate the pixel distances dm to the linear model M in
turn, if the distance threshold A is dm satisfied, but the
point into the set Us as an ingroup point together with
the extracted sample points, and the other points as
outgroup points.
Step 4: Count the number of ingroup points in the set
Us of ingroup points s. If s satisfies the threshold ST of
the number of ingroup points, refit the ingroup points
Us in the ingroup points using the least-squares
method, and update the linear model M. If it does not
satisfy, discard this linear model.

Step 5: Repeat the hypothesis and judge the mathe-
matical model to find the ingroup points step NR by
step, compare the ingroup point set USMax with the
most significant number of ingroup points, and output
its corresponding linear model M to get the navigation
path line LM.

(e essence of the Hough transform is to map the image
to its parameter space, which requires the computation of all
HM edge points and requires a large amount of memory
space and operations. (e improved Hough transform
processes mH(mH <MH) only one edge point in the input
image, and the selection of mH this edge point is somewhat
random. In addition, the enhanced Hough transform al-
gorithm can obtain two endpoints of a straight line in the
detection image and accurately locate the detected target
straight line. (e specific detection processes are as follows:

(1) In the image of the detection area, an edge point is
randomly selected (uIPM, vIpm) and mapped to the
polar coordinate system to obtain a family of
straight lines through the edge point. Suppose the
edge point has been marked on a straight line. In
that case, the random selection is continued among
the remaining issues, and the polar coordinate
equation where the family of straight lines through
the edge point lies is obtained until all the edge
points are randomly selected. (e polar coordinates
of the lines passing through the edge point are the
opposite equation.
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r �
uipm. cos θ
���������
vipm. sin θ

􏽱 . (3)

(2) (e Hough transform of randomly selected edge
points and calculation of the cumulative sum.

(3) In the Hough space, select the edge point that reaches
the maximum value and continue to the next step
when the issue is greater than the threshold, oth-
erwise return to step1.

(4) (e edge point where themaximum value reached by
step3 is taken as the starting coordinate point. (e
displacement is carried out along the straight-line
direction. (e two endpoints of the line are detected
to have coordinates of (ub

IPM, vb
IPM) and

(ue
IPM, ve

IPM), respectively.
(5) When the length of the line obtained from the de-

tection reaches a particular threshold value, the line
is output as a result, and the detection is continued
by returning to the initial step.

Compared with the standard Hough transform algo-
rithm, the improved Hough transform has significantly
improved memory consumption and computation. (e
improved probabilistic Hough algorithm can effectively
avoid the interference of non-harvesting dividing lines and
achieve accurate detection of visual navigation lines. In the
complete detection process of optical navigation lines, the
average processing time of a single frame for navigation line
detection based on the original probabilistic Hough trans-
form algorithm is 77.4Ms. In comparison, the average
processing time of a single frame based on the improved
probabilistic Hough algorithm is 54.6Ms. (e enhanced
algorithm also improves the processing speed compared
with the original algorithm.

3.2. Target Image Recognition and LocalizationModel Design.
(e process of digital image acquisition and transmission
can be disturbed by many factors, which can cause differ-
ences between the digital image and the real object scene and
can affect the image processing of the vision system in the
later stage. Preprocessing operations such as grayscale,
image enhancement, and filtering must be performed on the
original image captured by the camera at the beginning of
the vision system. (en, the features of the preprocessed
image are extracted, and then the parts are matched with
those of the template image to identify the target strip of
smoke. (e surface of the identification target in this paper
has robust texture features. (e images captured by the
camera are generally colorful. (ey contain much infor-
mation, extending the time of processing images by the
binocular vision system and considering the efficiency re-
quirements of recognition and localization technology to
improve the efficiency of the binocular vision system. (e
color images are to be converted into grayscale maps [17].
(e R, G, and B components in the color image are con-
verted into the same values. Since each pixel has a different
value for the R, G, and B components, other colors can be

displayed in the color image. (e principle of target image
visual localization is shown in Figure 3.

(e amount of data in the image is also three times the
number of pixels. When an image is grayed out, the in-
formation contained in the image becomes one-third of the
original image [17]. (e image pixels differ only in
brightness and are all displayed in gray.(e various colors in
a color image are composed of the three base colors R, G, and
B. In digital images, if the R, G, and B base colors are finely
divided, the more colorful the image can be and the more
information the image contains. (e R, G, and B base colors
are red grayscale, green grayscale, and blue grayscale.
Weighted value method: according to different indicators to
the original color image R, G, and B components multiplied
by the corresponding weight to find the weighting, the
expression is as follows:

gray �

���������

􏽘 WR + R

􏽱

×

��������
WG

G
+

WB

B

􏽲

. (4)

Image enhancement is also critical to the overall bin-
ocular vision system and is necessary for processing images.
Image enhancement highlights essential information in the
image to meet the system’s requirements and eliminate or
weaken redundant details irrelevant to the system. Enhanced
image processing makes the image more compatible with
human visual habits and is intended for specific application
purposes. After the image is enhanced, only the ability to
distinguish information increases, while the background
information is not added. (e improved picture is more
suitable for the application than the original image in specific
scenarios.(e standard methods for image enhancement are
segmented linear transform enhancement and histogram
equalization. (e segmented linear transformation en-
hancement: Suppose the gray map function before the en-
hancement transformation is f(r, c) and the grayscale range
is [O, Mf], after the segmented linear transformation en-
hancement, the gray map function is g(r, c) and the gray-
scale range is [O, Mg] and the formula.

g(r, c) � 􏽘

f

g

�����
d − c

b − a

􏽲

+
mg − d

mf − b
. (5)

A grayscale histogram is a statistical graph of the dis-
tribution of gray levels, representing the proportion of each
gray level pixel in the total number of pixels in a digital
image. (e histogram can describe the general situation of a
grayscale image, such as the degree of contrast between light
and dark, the frequency of each gray level, the distribution of
gray levels in the picture, etc. (e gray histogram is a
function of the gray level, with the gray value as the hori-
zontal coordinate and the number of pixels as the vertical
coordinate [18]. (e gray histogram of an image has the
following properties: the gray histogram is a statistical result
of the number of occurrences of the gray value of all pixels in
the picture, which does not reflect the specific position of the
gray value pixels in the image, but only the number of
occurrences of different gray values; a pair of images only
corresponds to a couple of histograms. (e histogram of a
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team of images corresponds to only one histogram, but one
histogram can be reversed to correspond to different ideas;
the grayscale histogram counts the number of pixels with the
same gray value in an image, so the grayscale histogram of a
pair of images is equal to the sum of the histograms of all
parts of the picture. (e histogram with a [O, L − 1] range of
gray values is a discrete function.

S � 􏽚
0

2
PR +(w + dw). (6)

(e robot uses a trained feature point regression model
and a topological structure regression model to estimate the
robot’s poses online. First, a pyramid is constructed for the
acquired image, and SURF features and descriptors are
extracted. Let F � (pi, vi), i � 1􏼈 􏼉 be the location of the
extracted feature points and their descriptors. Based on the
depth map of the current observation, the coordinates
corresponding to the feature points in the camera coordinate
system can be obtained. Let S � s ∈ R3, i � 1􏼈 􏼉 denote the set
of points corresponding to the features. (en, the topo-
logical positions corresponding to the current image are
predicted using the topological position regression model to
obtain multiple candidate topological positions. At the same
time, the spatial coordinates in the world coordinate system
are indicated for the features in F using the feature point
regression model. Let M � vi � m1 + mu, i � 1􏼈 􏼉 denote the
set of prediction results for feature points. M contains only
the prediction results located at that topological node for
each topological location. Due to the existence of erroneous
predictions and the fact that each point has multiple pro-
jections, the global positional estimation problem of the
camera can be expressed.

t � argmin􏽘
1

(min ∈ |m − ts|). (7)

4. Analysis of Results

4.1. Analysis of the Robot Vision Navigation Control System.
In the process of autonomous navigation, the robot calcu-
lates the position deviation and angle deviation of the robot
relative to the navigation line based on the seedling navi-
gation line extracted by the vision system and continuously
corrects the heading based on the variation during the
forward motion [19]. (erefore, the positioning error of the
weeding robot concerning the navigation line directly affects
the navigation control process of the robot and must be
measured and analyzed. (e angular deviation error was
measured by fixing the deviation of the robot’s center on the
centerline of the seedling row and rotating the robot. (e
angular deviation between the robot’s centerline and the
centerline of the seedling row changed from [15–15°°] to
[−15°°]. When the centerline of the robot is parallel to the
centerline of the seedling column, the angular deviation is
defined as positive when the weeding robot is turned
counterclockwise, i.e., the centerline of the weeding robot
deviates to the left concerning the centerline of the seedling,
the angular deviation is defined as unfavorable when the
weeding robot is turned clockwise, i.e., the centerline of the
weeding robot deviates to the right concerning the centerline
of the seedling column. (e measured and calculated values
of angular deviation were recorded every 5° as a set of data.
(e experiment was repeated thrice for each group to im-
prove the reliability of the experimental data, as shown in
Figure 4. (e mean error of the angular deviation was
calculated to be 0.11°, and the standard deviation was 0.04°.

To verify the feasibility and reliability of the visual
navigation and path tracking designed in this paper, the
following scenes are set up: straight line, turning path, and
obstacle occlusion. In the experiment, its forward speed is set
as V� 0.2m/s. (e angular velocity w is in the
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[−1.0 rad/s, 1.0 rad/s] range, in each frame after processing,
the recognized center line is displayed with a straight blue
line, and if a digital road sign is detected, the connection
between the presighting point and the center of the digital
road sign is displayed with a red straight line. (e initial
position of the Tourtellot robot is slight to the right of the
path in the straight section at startup, and the identification
line recognition results under several moments at intervals
during operation. During the process of the robot, the angle
of the centerline of the marking line obtained through image
processing and recognition is plotted against the distance
from the pre-sighting point to the centerline, as shown in
Figure 5, where the dark blue curve is after the Kalman
filtering. (e light blue curve is the angle θpre without the
Kalman filtering. It can be seen that θ the fluctuation is
relatively stable during the robot’s operation without sig-
nificant abrupt changes. In contrast, the θpre instability of the
unfiltered red curve in the figure is the distance deviation d
after Kalman filtering, while the purple curve is the unfil-
tered distance deviation dpre. (e result of the distance
deviation depends on the angle to a certain extent, so the
fluctuation θpre leads to a more significant distance deviation
from the pre-sighting point to the marker line also varies
more.

(e lane lines were laid in the lab, and the corresponding
QR codes were set at each node location to place the mobile
robot at any initial node location. First, we start the mobile
robot management system and wireless communication
server, set the relevant network parameters, establish the
wireless LAN server, and wait for the lower computer to
access. We start the embedded development board TX2, the

industrial CCD camera, and the execution component Turtle
Bot2, and enable the wireless network access function after
checking and confirming the connection of each hardware of
the lower computer, setting the network parameters, and
accessing the LAN established by the wireless server; the
upper computer reads the map file and reads the infor-
mation to the vehicle controller according to the readings.
(e upper computer reads the map file, reads the data from
the vehicle controller, initializes the coordinates of the node
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where the mobile robot is located according to the read
information, and displays its position in the map in real
time; the management system will automatically number the
tasks after receiving the task command, and then compare
the current mobile robot location information with the
target location information to get the shortest path infor-
mation by path planning and transmit the path information
to the lower computer through wireless communication.(e
path information will be transferred to the lower computer
through wireless communication. After receiving the path
information, the lower computer will execute the task and
walk on the specified path through lane line tracking. (e
QR code recognition will be used for positioning correction
and steering guidance, and the real-time data will be
uploaded to the upper computer [20]. To verify the accuracy
of the path tracking algorithm based on visual navigation, we
randomly select a time point in the mobile robot operation
test, extract the measured angle data of the gyroscope in the
actuator at this time point, and compare it with the data
obtained from the path tracking algorithm at the corre-
sponding time. (e deviation of the gyroscope angle data
from the angle data obtained from image processing is
calculated, and the relationship between the selected time
nodes and the angle deviation is plotted as shown in Fig-
ure 6. From the results, the deviation value between the path
tracking algorithm and the actual angle is ±1.5°, indicating
that this paper’s path tracking algorithm can achieve high
accuracy.

4.2. Results of Target Image Recognition and Localization
Analysis. (e validation criteria for the measurement ac-
curacy of visual navigation parameters were first established,
followed by the analysis of the overall structure of the optical
navigation detection system in the field and the experimental
locations and experimental methods. (en, experiments on
navigation line detection were conducted for the improved
RANSAC algorithm and the enhanced probabilistic Hough
transforms algorithm under different harvesting environ-
ments. (e success rate of detection and image processing
operation speed were statistically analyzed. Finally, experi-
ments are conducted to verify the success rate of navigation
line detection for the image pyramid optical flow tracking
algorithm under different environments, and multiple sets of
displacement deviation and angle deviation benchmark values
are set to verify the measurement accuracy of navigation
parameters according to the visual navigation parameter
measurement accuracy verification standard. (e measure-
ment accuracy of angular deviation of navigation parameters
of the image pyramid optical flow tracking algorithm is
verified. (e experiments on the error measurement of the
angular variation of the navigation parameters of the image
pyramid optical flow tracking algorithm were performed in 6
groups in turn, with the base value of the angular deviation
being 0°. As shown in Figure 7, the average value of the
maximum error of the actual measurement value of the
angular deviation of the harvester was 10.57°, the average
value of the mean error was 3.73°, and the average value of the
standard deviation was 2.98°. In the actual detection process,

the factors affecting the angle deviation measurement error
are mainly: due to the influence of factors such as the in-
fluence of driving vision, the manually operated intelligent
rice, and wheat harvester cannot always keep the straight line
where the left-hand divider is located parallel to the harvest
navigation line, i.e., the actual reference value floats around 0°;
the incomplete segmentation of harvested and unharvested
areas in the image causes the detected navigation line and the
straight line where the left-hand divider is located to addi-
tional angle exists.

(e training process of the detection algorithm includes
data set preparation, formal training, and network gener-
alization error evaluation. (en, the deep learning detection
algorithm is compared with the traditional SVM algorithm
for classification experiments. (e results surface that al-
though the deep learning detection check-all rate is slightly
lower than the SVM algorithm, its check-accuracy rate and
accuracy rate are higher than the SVM algorithm. And the
detection rate of the deep learning detection algorithm has a
more significant advantage, which can meet the basic re-
quirements of real-time QR code detection for mobile ro-
bots. Finally, the operation experiment of the whole system
is carried out to verify the feasibility. Moreover, comparing
the gyroscope angle data with the path tracking algorithm
data can be obtained. Various experiments were designed
according to different given algorithm parameters to in-
fluence the environment model rasterization resolution
parameter on the confidence occupancy meter. (e test
image size varies. (e algorithm automatically transforms
the original test map to 448× 448 resolution size before
input. (e output result of the positioning frame will also be
altered accordingly. (e partial detection results of the deep
learning detection algorithm are shown in Figure 8. (e
results show that the deep learning detection algorithm
performs well for QR codes with simple backgrounds,
complex backgrounds, vestiges, small deformations, partial
occlusions, or multiple QR codes in a single image.
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Among the detection results, the deep learning detection
algorithm can make accurate judgments on the images of the
experimental scenes of the mobile robot in this paper. (e
accuracy and rapidity of the integrated detection algorithm
canmeet the basic requirements of real-time detection of QR
codes during the execution of the mobile robot tasks in this
paper’s experiments. Moreover, the corresponding QR codes
are set at each node location, and the mobile robot is placed
at any initial node location. First, we start the mobile robot
management system and wireless communication server, set
the relevant network parameters and establish the wireless
LAN server, and wait for the lower computer to access; then,
we start the embedded development board TX2, the in-
dustrial CCD camera, and the execution component Turtle
Bot2 and enable the wireless network access function after
each hardware connection of the lower computer is checked
and confirmed, set the network parameters and access the
LAN established by the wireless server; the upper computer
reads the QR code and reads the QR code. (e upper

computer reads the map file, reads the information from the
vehicle controller, initializes the coordinates of the node
where the mobile robot is located according to the read
information, and displays its position in the map in real
time.(e gyroscope is corrected once after the QR code, so it
is assumed that the gyroscope data is the actual angle. (e
deviation of the gyroscope angle data from the angle data
obtained from image processing is calculated, and the re-
lationship between the selected time nodes and the angle
deviation is plotted. From the results, the variation of the
path tracking algorithm from the actual angle is ±1.5°, which
indicates that the path tracking algorithm in this paper can
achieve high accuracy.

5. Conclusion

With the continuous development and progress of science
and technology, the intelligent level requirements are
gradually increasing, and the automatic control of mobile
robots has become an important direction in the develop-
ment of robot systems, whose visual navigation system is one
of the hotspots of research today. In this paper, an in-depth
study is conducted on the problem of robot optical navi-
gation path detection. For the problem that the RANSAC
algorithm first establishes the linear mathematical model of
the path in the navigation line detection and then performs
the remaining corner point model verification, which leads
to more iterations of the algorithm and more considerable
computation, model verification criteria are added to avoid
the problem of time-consuming and detection errors caused
by continuing iterative verification in the case of model
errors. By limiting the range of edge point probability ex-
traction and setting the success criterion of straight line
detection, the improved Hough transform algorithm can
effectively solve the problem of fast and accurate identifi-
cation of navigation lines caused by the probability ex-
traction of edge points in the whole detection area; finally,
the image pyramid optical flow tracking algorithm is used to
realize the tracking detection of robot visual navigation and
tracking measurement of visual navigation parameters. (e
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robot is experimented with setting straight, turning, and
obstacle occlusion scenes. From the trajectory graphs ob-
tained from the experimental simulation, the robot can
better fit the marking line operation during the operation.
(e charts of parameters and d show that the bit-posture
relationship of the robot body relative to the marking line is
closed during the process, which also illustrates the effec-
tiveness and accuracy of target image recognition and
localization.

Based on the research work carried out in this paper, we
briefly analyze the potential research points with further
depth in this study, taking into account the current trends in
computer vision and robotics.

(e introduction of deep neural network descriptors as
the front-end data matching for VSLAM to achieve visual
data matching with illumination and viewpoint invariance is
a current research hotspot and trend in VSLAM-related
work. A considerable amount of work has been carried out
in this area, including the extraction of intermediate de-
scriptors using existing network models and the design of a
network structure of visual feature descriptors specifically
for VSLAM. However, the gap between the current research
in this area and the application of VSLAM lies in the visual
feature point extraction and the real-time nature of the
generation. In addition, deep neural network descriptors
tend to have higher dimensionality and take longer to
perform feature point matching and distance calculation.
(erefore, it is not easy to guarantee the online performance
of deep vision descriptors for system applications with high
real-time requirements such as VSLAM. (erefore, there is
work to be done on a downscale and speed up the depth
vision descriptors to meet the demand of VSLAM real-time
applications.
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