Hindawi

Journal of Robotics

Volume 2024, Article ID 9819037, 1 page
https://doi.org/10.1155/2024/9819037

Retraction

Q@) Hindawi

Retracted: Reinforcement Learning-Based Continuous Action
Space Path Planning Method for Mobile Robots

Journal of Robotics

Received 23 January 2024; Accepted 23 January 2024; Published 24 January 2024

Copyright © 2024 Journal of Robotics. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one or more of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported

(3) Discrepancies between the availability of data and the
research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Manipulated or compromised peer review

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction. We have kept a record of
any response received.

References

[1] W. Zhang and G. Wang, “Reinforcement Learning-Based
Continuous Action Space Path Planning Method for Mobile
Robots,” Journal of Robotics, vol. 2022, Article ID 9069283,
9 pages, 2022.


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9819037

Hindawi

Journal of Robotics

Volume 2022, Article ID 9069283, 9 pages
https://doi.org/10.1155/2022/9069283

Research Article

@ Hindawi

Reinforcement Learning-Based Continuous Action Space Path
Planning Method for Mobile Robots

Weimin Zhang ' and Guoyong Wang (»*

ISchool of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China
2School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China

Correspondence should be addressed to Weimin Zhang; zwm@lit.edu.cn and Guoyong Wang; wgy@lit.edu.cn
Received 21 September 2022; Revised 30 September 2022; Accepted 5 October 2022; Published 15 October 2022
Academic Editor: Shahid Hussain

Copyright © 2022 Weimin Zhang and Guoyong Wang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A reinforcement learning-based continuous action space path planning method for mobile robots is proposed in this article. First,
the kinematic model of the mobile robot is analyzed, and on this basis, the optimal state space is constructed according to the
minimum depth of the field value in the depth image to characterize the distance between the robot and the obstacle. Then, by
setting the reward function of the mobile robot based on the artificial potential field method, the information of the robot’s
distance from obstacles is continuous, and a new reinforcement learning training process is proposed. Finally, by introducing a
DDPG algorithm, the path planning of a mobile robot in an unknown environment is described as a Markov decision process, and
the optimal planning of the mobile robot’s continuous action space path is realized with a high success rate. The results show that
compared with other three comparison methods, the final success rates of the proposed method are the highest, which are 97.2%,

99.1%, 98.4%, and 98.6%, respectively.

1. Introduction

The mobile robot can sense the environment information
and its own state information through the sensor, so as to
realize the autonomous movement in the obstacle envi-
ronment and complete some operations [1-3]. A mobile
robot plays an important role in various fields of life and can
replace people to complete some special work [4, 5].
However, with the expansion of mobile robot application
scenarios, its working environment is becoming quite
complex. In order to achieve better adaptability to the en-
vironment, the autonomous learning ability of robots needs
to be improved [6-8].

In order to successfully complete various tasks, mo-
bile robots must avoid colliding with obstacles in the
environment and complete the navigation from one point
to another. The goal of mobile robot path planning is to
find a collision-free optimal path from the starting po-
sition to the target position in the environment. Path
planning can be divided into global path planning and

local path planning according to the amount of envi-
ronmental prior information. Global path planning
means that environment information is all known relative
to the mobile robot. The mobile robot models the en-
vironment and then finds an optimal path. The obstacle
information in global path planning is known and fixed,
so it belongs to static path planning and is also called
offline planning. Local path planning requires mobile
robots to obtain information from the environment
constantly through sensors and real-time path planning.
Therefore, local path planning belongs to dynamic
planning and is also called online planning [9-11]. At
present, research on navigation strategies using deep
reinforcement learning has attracted considerable at-
tention. Reinforcement learning technology can learn
appropriate strategies from the state of the environment.
In the process of interaction between the agent and the
external environment, the agent obtains the surrounding
environmental information through repeated trial-and-
error learning, so as to continuously optimize the agent’s
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strategy [12, 13]. Applying reinforcement learning to
mobile robot path planning does not need to build maps.
Through deep reinforcement learning networks, mature
navigation strategies are trained so that mobile robots can
navigate in unknown environments [14].

The traditional spatial path planning method of mobile
robots is discontinuous and has a low success rate. A
continuous action spatial path planning method for mobile
robots based on reinforcement learning is proposed.
Compared with the traditional service robot route recom-
mendation method, the innovations of the proposed method
are as follows:

(1) The artificial potential field is introduced to make the
target point and obstacle produce attraction and
repulsion force to the mobile robot, respectively, and
the control performance of the robot is improved
under the superposition of the two forces.

(2) By introducing the DDPG algorithm, the ability of
the algorithm to deal with higher dimensional ob-
servation space and the stability of the algorithm are
improved.

The remainder of this paper is arranged as follows: The
second section is related work, introducing several repre-
sentative research results. The third section introduces the
path-planning algorithm based on DDPG. In section 4,
experiments are designed to verify the performance of the
proposed model. The fifth section is the conclusion.

2. Related Research Studies

At present, some scholars have conducted in-depth research on
the path planning of mobile robots and achieved some results.
The authors in [15] constructed a global planner for finding the
shortest safe path by combining the evolutionary algorithm,
mutated cuckoo optimization algorithm, and genetic algorithm.
On this basis, a mobile robot navigation system for path op-
timization is constructed based on a sensor source, map format,
and basic controller. However, when the number of nodes is too
large, the algorithm will consume a lot of time and memory,
resulting in low efficiency. In [16], aiming at the mutual re-
striction between the execution speed and path quality of mobile
robots, a new path planning strategy was proposed by ignoring
all static obstacles outside the robot and the destination, fo-
cusing on the processing of key areas around obstacles and
target points to improve the execution speed, and finding a
linear shortcut between any two points in the path to improve
the path quality. However, this method cannot achieve good
results in a dynamic environment. The authors in [17] proposed
a centralized decoupling algorithm for solving the multirobot
path-planning problem in grid graphs, which can be set au-
tomatically as needed. On the one hand, a group of robots can
be moved from their initial positions to the target positions; on
the other hand, they can adapt to the target configuration
adjustment through continuous replanning. However, this
method cannot effectively avoid the local optimization in path
planning. The authors in [18] proposed a trajectory-planning
algorithm for parallel parking mobile robots based on poly-
nomial parameterization and genetic algorithm optimization by
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defining a new law of motion to avoid obstacles on the road
without interruption and guide the vehicle from the initial
posture close to the parking space to the final posture in the
parking space in a stable way. However, this method will still
produce a large amount of calculation when the map accuracy is
large.

In [19], the authors designed an adaptive firefly algorithm
for mobile robot path planning by optimizing the adaptive
parameters of the firefly algorithm to solve the problem that the
traditional firefly algorithm is easy to fall into the local optimal
solution. However, this method does not fundamentally im-
prove the success rate and path optimization performance of the
path optimization algorithm. The authors in [20] aimed at the
problem that the traditional graph neural network depends on
the message aggregation mechanism and is not conducive to the
priority processing of important information. Based on a
mechanism similar to a key query, the relative importance of
features in messages received from various adjacent robots is
determined and the path optimization of autonomous mobile
robots is realized. However, this method will incur a large time
cost in the process of judging the relative importance of
messages, making the convergence speed of the algorithm slow.
The authors in [21] constructed global path planning and local
path planning strategies based on the hybrid artificial fish
swarm algorithm. By developing the scoring function, the time
of local path planning is shortened. On this basis, an obstacle
avoidance and real-time navigation algorithm for the multi-
robot cooperative path is proposed. However, this method will
produce a lot of computation and cannot be used for real-time
path planning.

3. Path Planning Based on DDPG Deep
Reinforcement Learning

3.1. Kinematic Model of Mobile Robots. In the process of
studying the kinematic model of mobile robots, the Pioneer3
mobile robot is taken as a research object, and its model is
shown in Figure 1.

As shown in Figure 1, the Pioneer3 mobile robot is
composed of the rear driving wheel and the front steering wheel,
in which the rear wheel is the driving wheel, the speed is v, and
the front wheel is the steering wheel. The position of the mobile
robot is represented by a three-dimensional state vector
P(x,y,a). (x,y) represents the midpoint of the robot’s rear
axle. The midpoint of the rear axis is used as a reference point to
represent the position coordinates of the robot. « represents the
included angle between the robot-fixed coordinate system and
the spatial-fixed coordinate system, that is, the direction angle of
the robot. f3 represents the steering angle of the robot, which is
the angle of the steering wheel. The wheelbase of the driving
wheel and steering wheel is Z,.

The kinematic model of the Pioneer3 mobile robot is
shown in the following formula:

X cosa 0 v
y|=|sina 0 v tan B (1)
Q 0 1 Z,
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FiGure 1: Basic structure of the Pioneer3 mobile robot.

3.2.  Construction of the Optimized State Space.
Traditionally, reinforcement learning is generally used in
mobile robot path planning. Although unsupervised au-
tonomous learning can be realized, there is also an inevitable
problem; that is, it is highly dependent on training set in-
formation, and the learning process is very long. In addition,
the solution to the problem is often not achieved overnight,
but through the transition sequence of multiple state actions
to reach the target state to obtain the final delayed return. In
this way, the robot must repeatedly access these state-action
transition sequences in order to find the optimal state-action
transition sequence [22]. Therefore, reinforcement learning
can converge to the optimal solution only when it runs to a
certain extent. In the field of large and complex real
problems, especially in the field of multirobots, the learning
speed of reinforcement learning is very slow and learning
efficiency is very low [23]. There will be problems such as
“dimension disaster” and “state space combination
explosion.”

On the premise of ensuring the training results, how to
greatly accelerate the efficiency of learning and the speed of
reinforcement learning and training and expand rein-
forcement learning to larger and more complex applications
has always been a hot spot in the field of reinforcement
learning. Especially, in today’s atmosphere, where most
studies emphasize the performance of online, real-time
adaptability to quickly adapt to the changes in the envi-
ronment, the improvement of learning efficiency of rein-
forcement learning has increasingly become the research
focus of researchers [24].

At the beginning of learning, the robot is very strange
to the unknown environment and does not establish a
stable state space. It must make actions randomly to
obtain the reward value of different actions in each state,
so as to slowly establish the understanding of the envi-
ronment. For the motion decision-making of the robot, at
the beginning of training, the robot collects the real-time
depth image information in the environment as a real-
time state, randomly gives the line speed and angular
speed to move, calculates the reward value of this

movement, collects the depth image information after the
movement, and repeats this process until enough states
and the probability distribution of the reward values of the
corresponding actions are collected, Finally, training is
completed when the reward values converges to a certain
value.

In the process of repeated trial-and-error learning, the
state when the robot moves to a place far away from the
obstacle can be called the state not required for obstacle
avoidance. Due to the random action selection, it is often in
the collection state without obstacles for a long time so that
the constructed state space contains a large number of
states not required for obstacle avoidance, as shown in
Figure 2.

What we hope is that the robot can move a large number of
random near the obstacle and collect the current state to
construct the state space, so as to obtain the obstacle avoidance
ability when encountering the obstacle. Therefore, in the
process of training, it is hoped that the robot can establish a
state space for obstacle avoidance motion. In order to improve
the efficiency of subsequent training, in the construction
process of the initial state space, the distance between the robot
and the obstacle is characterized according to the minimum
depth of the field value in the depth image. Combined with
robot kinematics, the motion of the robot is constrained and its
training process is guided. A new reinforcement learning
training process for path planning is proposed.

3.3. Algorithm Design

3.3.1. DDPG Algorithm Design. The path planning of the
mobile robot in an unknown environment can be described
as a Markov decision process. The process of the mobile
robot interacting with the environment in offline time can be
described as a decision sequence shown in the following
formula:

{Sp»Ap R1>S1, AL Rys o5 Se 1 A L Ry Sp A (2)

In formula (2), S, represents the state of the robot at the
moment t, A, represents the action of the robot at the
moment t, and R, represents the reward value obtained by
the robot at the moment ¢ — 1. The mobile robot maximizes
the total reward by finding an optimal action strategy. The
total reward is defined as follows:

+00
Gt =Ry + YRHZ teee= Z YTRH'HI' (3)
7=0

In formula (3), A represents the discount factor, which is
used to calculate the cumulative reward.

The strategy 7 represents the mapping from the state to
action probability distribution, which is generally the
probability distribution of the state. The output of the de-
terministic policy gradient algorithm is a specific action. The
definition of the deterministic strategy 7z is shown in
formula:

a=rmn(s0). (4)
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for obstacle avoidance

FiGure 2: Collection status of areas not required for obstacle
avoidance.

In formula (4), 6 represents the parameters of the de-
terministic strategy, and the purpose of its update is to find
an appropriate parameter 6 to optimize the strategy 7.

In the DDPG algorithm, the parameter 6 is updated by
the following formula:

60 +/3ytv(97-[ (St’ 8) [Vaq (St’ a, rl)]a:ﬂ (S,,G)' (5)

In formula (5), # represents the parameters of the value
function. 7 can be updated by the following formula:

nen+aly = q.(SpAi;1)]V,q, (S A 7). (6)

Compared with the DPG algorithm, the DDPG algo-
rithm uses the experience replay and target network tech-
nology, which can deal with higher dimensional observation
space and improve the stability of the algorithm. The flow of
the algorithm is as follows:

(1) We initialize the policy network 7 (S, 6), value net-
work q(s,a), and parameters 6 and #. Then, we
initialize the target policy network 7' (s), target value
network g/ (s, a), and parameters 6'—0 and ' <.
We also initialize the target network learning rate o.
The batch size of each learning sample is N, and the
experience pool size is R.

(2) We select the action a, = 7(s,) in the state S,.
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hidden layer 2

output layer

F1GURE 3: The basic structure of the path-planning strategy neural
network.

(3) We perform actions to get rewards r,,; and S,,, from
the environment.

(4) We save {S,a,,7,,1,S;,,} to the experience pool.

(5) When the samples in the experience pool meet the
conditions for starting training, P samples are ran-
domly selected from the experience pool,
{(St’at’rnpsnl)}f\:’l’

(6) We update the policy network and value network:

Yi=Tigqt+ Vq(5i+1’ﬂ(si+1>6/)’ ’7,)’ (7)

1
nen+av Y lyi-alsanV,a(ssan, ()

1
06+ ‘Bﬁ Z Vot (b 0) [Voq (hi> @ 1) acr (n0) (9)

(7) We update the target network at regular intervals:
N —en+(1-e)y, (10)

0 —eb, + (1 -¢)f'. (11)

3.3.2. Design of the Reward and Punishment Function and
State Space. In order to simplify the model of path planning,
it is assumed that the robot moves at a fixed speed; that is, the
robot has a fixed moving distance in each time step.
Therefore, the steering angle 8 of the robot is taken as an
action space, and the dimension is 1. In the training of deep
reinforcement learning, the purpose of the robot is to avoid
obstacles and move to the target point at the same time. The
state space of the robot is defined as follows:
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[ (x, )
p b
1)
E)
Dmin,o
P >
Z =4 (12)
[(X - xmin,o)’ (y - ymin,a)])
p
Dmin,g
o )
(=5 )]
p

In formula (12), (x, y) represent the position of the robot
in the current map, § represents the orientation of the robot
in the current map, p represents the standardization coef-
ficient, D ;, , represents the distance between the robot and
the nearest obstacle, D,,;,, , represents the distance between
the robot and the nearest target point, (X — ., 0)> (¥ —
Ymin o) Fepresent the distance information between the robot
and the nearest obstacle, and (X =Xy o) (¥ = Viin,g)
represent the distance information between the robot and
the nearest target. In actual motion, the distance between the
robot and obstacles in the environment can be obtained by
using sensors.

In the process of reinforcement learning, the quality of
the reward function affects the effect of reinforcement
learning. According to the basic framework of reinforcement
learning, the agent evaluates the action through the feedback
of the environment and selects the action that can obtain the
maximum reward after learning. Therefore, the reasonable
design of the reward function plays a vital role in rein-
forcement learning. Usually, the distance information be-
tween the robot and the target point is processed as the
reward value; that is, the closer the robot is to the end point,
the greater the reward it will get in each step of movement.
However, this method of setting the reward function does
not consider the changes between the robot and obstacle. A
negative reward value is given only when the robot hits the
obstacle, and the information of the robot’s distance from
the obstacle is not continuous. In view of the problems of
setting the reward function in the abovementioned way, an
artificial potential field method is proposed to set the reward
function.

The artificial potential field method is a virtual force
method. In the artificial potential field, the target end point
will attract the mobile robot, while the obstacle will repel the
robot. The superposition of these two forces is the control
force of the mobile robot’s motion process. Under the action

of the control force, the mobile robot plans a path to the end
point. Among them, the attractive force of the robot near the
end point will become larger. If the robot approaches an
obstacle, the repulsion force will become greater. In the
classical artificial potential field, the attractive field function
is shown in the following formula:

Li(x)= %Kld(x,xg). (13)

In formula (8), x; > 0 represents the coeflicient constant
of the attractive field and d (x, x g) represents the distance of
the robot from the target point. At the target point, the
attractive potential energy L, is the smallest. The attractive
function can be obtained by calculating the negative de-
rivative of formula (8), as shown in the following formula:

Fy(x) = —VL, (x) = ~#,d(x, x,). (14)

The formula of the repulsion field function is shown in
the following formula:

1 1 1
_K2<7_d_>, d(%,0) <y
b2 | E\ )

0, d(x, xgo) >d,

ax*

(15)

In formula (15), x, > 0 represents the coefficient constant
of the repulsion field, d (x, x ) represents the straight-line
distance of the robot from the target point, and d,,, rep-
resents the maximum influence range of the obstacle. When
d (x, X 49) >y the robot is not affected by obstacles. The
repulsive potential energy at obstacles has the maximum
value. The repulsion function can be obtained by calculating
the negative derivative of formula (10), as shown in the
following formula:

F, (x) =
1 ~ 1 Kzad(x, xgo)
d(x, xgo) A dz(x, xgo)ax’

0, d(x, xgo) >d,

d(x, xgo) <d

max’>

ax*

(16)

The resultant potential field L(x) and resultant force
F(x) received by the mobile robot during movement are
shown in the following formula:

{ L(x) =L, (x) + Ly (x),

(17)
F(x) = F,(x) + F,(x).

When the robot has not reached the target or touched an
obstacle, according to the idea of the artificial potential field,
the reward value includes two parts: (1) the negative reward
value of the distance information between the robot and the
nearest obstacle and (2) the positive reward value of the
distance information between the robot and the target point.



Journal of Robotics

TaBLE 1: Neural network-related parameter settings.

Parameters Value Meaning

Network learning rate 0.001 Network learning speed

Reward discount rate 0.92 Future rewards at the current value

Soft update parameters 0.01 Update parameters of the strategy network and target network
Steps per round 250 Maximum number of exploration steps per round

Total number of rounds 20000 Maximum number of rounds

Experience pool capacity 60000 Experience storage limit

Batch size 32 Update network training batch size

400
300
200
100

-100
-200

Reward value
o

-300
-400

0 1 2 3 4 5 6 7 8 9 10
Episodes x10?

—— Artificial potential field Reward

- -~ Distance Reward

FIGURE 4: Total reward value per episode.

The sum of the two reward values is taken as the final reward
value obtained after the robot performs each action, as
shown in the following formula:

1 1
C=C+Cy=—- - (18)

299 9o
In formula (18), d, represents the distance between the
robot and the target point and d,, represents the distance
between the robot and the obstacle.
The reward function of the robot action is obtained as
shown in the following formula:

[ 200,
1 1
R = —ngm _ﬁ’ (19)
| —200.

3.3.3. Neural Network Design. The designed path-planning
strategy neural network is composed of four layers of the
neural network, and its network structure is shown in
Figure 3.

In Figure 3, the input layer is the current state of the
mobile robot, the output layer is the linear velocity and
angular velocity of the mobile robot, and there are two
hidden layers in the middle. The input layer contains 12
neurons, and hidden layer 1 contains 250 neurons. The

90
80
70
60
50
40
30
20
10

Success rate (%)

Episodes x10?

—— Artificial potential field Reward
- -~ Distance Reward

FIGURE 5: Change trend of the overall success rate.

90
98
95
92
90
88
86
84
82

Success rate (%)

Episodes x10°

—— Artificial potential field Reward
- -~ Distance Reward

FIGURE 6: Change trend of the final success rate of training.

connection mode between the input layer and hidden layer 1
is full connection, and the ReLU nonlinear activation
function is adopted. The input of hidden layer 2 contains 250
neurons. Hidden layer 1 and hidden layer 2 are fully con-
nected, and the ReLU activation function is used. The output
layer contains two neurons. Hidden layer 2 and the output
layer are also fully connected, using the sigmoid activation
function. The value network adopts a similar network
structure. The main difference from the strategy network is
that the input layer includes two parts: one is the current
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TaBLE 2: The total length of paths planned by different algorithms in different situations.

Situation 2 (m)

Situation 3 (m) Situation 4 (m)

Method Situation 1 (m)
Proposed method 2.8
Reference. [15] 3.7
Reference. [18] 32
Reference. [19] 35

4.6 59 8.3
5.5 7.2 9.5
4.9 6.5 8.8
5.1 6.6 9.2

100

Wulh

Situation 1~ Situation2  Situation 3  Situation 4

Success rate (%)

Il Proposed method [ Ref.[18]
B Ref[15] [ Ref[19]

FIGURE 7: The success rate of path planning of different methods in
different situations.

state of the robot and the other is the current action value of
the robot. The output layer contains 1 neuron.

4. Experiment and Analysis

4.1. Experimental Environment. All the experiments in this
chapter are implemented on the Windows?7 professional 64 bit
system and Python3.6. The simulation environment is designed
by using pyglet, a multimedia framework under Python. A
shape map with a pixel size of 1000 * 1000 is created. The pixel
coordinates of four inner corners in the map are (300, 300),
(700, 300), (300, 700), and (700, 700), respectively. The size of
the robot in the environment is 100-pixel long and 50-pixel
wide. The front end of the robot has five sensors to detect the
distance, which can obtain the distance from the environmental
boundary in all directions. The initial pose of the robot is
(500, 250, —7/2), and the speed is v = 50. The purpose of path
planning is to enable the mobile robot to return to the initial
position from the initial pose. The mobile robot cannot turn
around in the environment under set speed conditions, so the
mobile robot will complete the path planning around the map.

The pose of the robot can be solved by the following
formula , and ¢ is the sampling time.

[ Xp,  =Xp+t-v- cos ap,

tan ﬁp’ (20)

1 & =ap+t-v-

| Ypy1 = yp +1t-v- sin ap.

After building the neural network and environment, we
set the relevant parameters of the neural network according
to Table 1.

4.2. Simulation Analysis. In this paper, deep reinforcement
learning is trained based on the reward function built by the
artificial potential field method and by using the distance
information of the mobile robot from the target point.
During the training process, the change trend of the total
reward value, the change trend of the overall success rate,
and the final success rate of training are shown in
Figures 4-6, respectively.

It can be seen from Figures 4-6 that the reward
function based on the artificial potential field method used
in this paper converges more rapidly than the method that
only takes the information of the distance from the target
point of the mobile robot as the reward function. In
addition, under the same training times, its success rate is
also higher, and it has better goal orientation and obstacle
avoidance ability.

The following is a comparative analysis of the proposed
method and the mobile robot path-planning method pro-
posed in [15], [18], and [19] under the same conditions for
four different situations. The total length of mobile robot
paths planned by different algorithms in different situations
is shown in Table 2. The success rate of the proposed method
in four different situations compared with the other three
methods is shown in Figure 7.

It can be seen from Table 2 that in four different situ-
ations, compared with the other three comparison methods,
the total lengths of the final planned path of the proposed
method are both the shortest, which are 2.8 m, 4.6 m, 5.9 m,
and 8.3 m, respectively. Compared with the other three
methods, the maximum increased values are 0.9 m, 0.9 m,
1.3m, and 1.2m, respectively, and the minimum increased
values are 0.4m, 0.3 m, 0.6 m, and 0.5 m, respectively. This is
because the method proposed in this paper uses the artificial
potential field method to set the reward function, collects the
information of the robot from the continuous obstacle, im-
proves the performance of the path planning of the algorithm,
and obtains the optimal path with a shorter path length.

As can be seen from Figure 7, in four different situations,
compared with the other three comparison methods, the
final success rates of the proposed method are the highest,
which are 97.2%, 99.1%, 98.4%, and 98.6%, respectively.
Compared with other comparison methods, it has been
improved to a certain extent. The results show that the
learning efliciency and training speed can be improved by
combining the kinematic constraint motion of the robot and
guiding its training process to establish the optimal state



space for obstacle avoidance motion. The proposed algo-
rithm can describe the path planning of the mobile robot in
the unknown environment as a Markov decision-making
process by introducing the DDPG algorithm. The stability of
the algorithm and the success rate of path planning are
greatly improved by using experience replay and target
network technology.

5. Conclusion

Aiming at the problems of poor continuity and low
success rate of the mobile robot spatial path-planning
method, a continuous action spatial path-planning
method of the mobile robot based on reinforcement
learning is proposed. Through simulation experiments,
the proposed method is compared with the other three
methods. The basic ideas are as follows: @ Through the
analysis of the kinematic model of the mobile robot, the
optimal state space is constructed. @ The reward function
of the mobile robot is set based on the artificial potential
field method, and the information of the robot’s distance
from the obstacle is continuous. ® By introducing the
deep deterministic policy gradient (DDPG) algorithm, the
success rate of mobile robot path planning is improved. By
introducing the depth deterministic strategy, the gradient
algorithm can use experience replay and target network
technology to deal with higher dimensional observation
space and improve the stability of the algorithm and the
success rate of path planning.

This paper studies the path planning of mobile robots in
static and dynamic environments only for one robot. Al-
though there is research on the dynamic environment, the
situation of multiple robots is different from the dynamic
environment, so independent training and knowledge
sharing need to be considered. In addition, there is a
problem of cooperation among multiple robots, and there
will be some new problems to be further solved.
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