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Path planning is one of the key technologies of robot. Aiming at the problems of slow convergence speed and inefcient search of
traditional Ant Colony System Algorithm, an adaptive Ant Colony System Algorithm based on Dijkstra is proposed in the paper.
Firstly, Dijkstra algorithm is applied to searching the initial path in the grid environment, constructing the initial path, optimizing
the initial pheromone in the region, therefore, the Ant Colony System Algorithm avoid falling into blind search in the initial stage;
In the transition probability, the disguised angle probability function and parameter adaptive pseudo-random proportion rule are
introduced to improve the search efciency and convergence speed of the algorithm, and eliminate the inferior ant path; Finally,
B-spline interpolation curve is used to smooth the path. Compared with the traditional Ant Colony System Algorithm, the
simulation results in the grid environment demonstrating its efectiveness to improve convergence speed and to enhance search
efciency are provided. Te characteristics of the improved Ant Colony System Algorithm are faster convergence speed and
better planning.

1. Introduction

Path planning is one of key factors in many research di-
rections of intelligent robots. It is an indispensable part of
robots to realize autonomous movement and navigation [1],
path planning has applications in various felds, such as self-
driving cars, medical applications, graphical animation, cell
transportation, and robotic surgery [2–6]. Te purpose of
path planning is to plan the path with the optimal com-
prehensive index according to the position of the starting
point, the target point and the environment of the robot
[7, 8]. At present, traditional algorithms have been applied to
robot path planning, such as Dijkstra algorithm [9] and A∗
algorithm [10]. As the application scenarios of robots be-
come more and more extensive, the comprehensive per-
formance index requirements of robot planning paths are
also getting higher and higher. Swarm intelligence optimi-
zation algorithms such as Artifcial Fish Swarms Algorithm
(AFSA) [11], the Ant-Colony optimization [12], Particle
Swarm Optimization (PSO) [13] have been applied to
solving robot path planning problems.

Ant colony optimization (ACO) is a swarm intelligence
optimization algorithm based on the way of ants looking for
food.Te positive feedback mechanism and good robustness
of the Ant-Colony Algorithm make it widely used to solve
robot path planning problems, but it also has some defects,
such as deadlock, slow search speed and local convergence.
Terefore, many scholars have proposed corresponding
improvement methods. Te concept of elitist ant system
(EAS) is proposed in literature [14]. On the basis of basic
pheromone updating, the pheromone increment on the
optimal path is applied to improving the convergence speed.
However, with the increase of elite ants, the pheromone on
the optimal path increases rapidly, which reduces the
population diversity [15]. Bullnheimer B et al. Proposed the
rank-based ant system (RAS), which only updates a certain
number of pheromones on the better ant path [16]. Te ACS
algorithm is an extension of the ant colony optimization
algorithm. Te ACO algorithm can generate the optimal
path from the previous suboptimal path information
[17, 18]. Ant colony system (ACS) algorithm is one of the
most excellent ant colony optimization algorithms.
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Compared with the frst ant colony optimization algorithm,
ant system (AS) algorithm, its performance has been greatly
improved.

Compared with the existing relevant studies [19–22],
although certain efects have been achieved in avoiding
falling into the local optimization problem and improving
the convergence speed of ant colony algorithm, there are still
problems such as poor global path efect and long searched
path length. In order to better solve these problems and
obtain better quality paths Te contribution of this paper is
to propose a new path planning method based on Dijkstra’s
improved adaptive ACS algorithm. In this paper, the fol-
lowing improvements are made based on the traditional ant
colony algorithm: Searching the initial path in the grid
environment through Dijkstra algorithm, expanding centred
on the path, and optimizing the initial pheromone con-
centration in the extended area;Te combination of steering
cost and adaptive pseudo-random proportional rule is in-
troduced to improve the path quality and the pheromone
updating strategy is improved.Te adaptive weights of high-
quality ants are updated, and inferior ants are not updated to
avoid interference. In addition, B-spline curve is employed
to smooth and optimize the path.

Te novelty of this algorithm is that it improves the
performance of the ACS algorithm and to reach the optimal
value with better convergence speed. After each iteration, the
last pheromone will be evaluated to improve the quality of
the fnal path. Tese evaluation results will afect the results
of the next iteration. Ten, the performance of the proposed
algorithm is compared with the basic ACS, RAS and EAS
algorithms using several benchmark cases. Te improved
algorithm is compared with other existing algorithms, and
the results show that the improved algorithm has better
convergence speed. Te proposed algorithm reached those
optimal value based on the test results from some bench-
mark cases with known optimal values. Statistical analysis
shows that the improved algorithm is signifcantly diferent
from other existing algorithms in performance, and the
improved algorithm has good convergence speed.

2. Related words

2.1. Basic ant colony system algorithm. According to the
phenomenon of ant colony foraging in nature, Dorigo and
Gambardella frst proposed the ant colony system (ACS)
algorithm and applied it to solving the TSP problem. When
compared to other optimization algorithms, the ACS al-
gorithm still shows its superiority. Dorigo and Gambardella
reported that the ACS algorithm could produce a 2.2% better
path length than the genetic algorithm (GA), 1.3% better
than evolutionary programming (EP), and 7.8% better than
simulated annealing (SA) [23, 24]. Because the ACS algo-
rithm is better than the ACO in terms of the cost of the route
generated, and the computational time required in literature
[25], Terefore, this paper uses ACS algorithm as the basis
for improvement. In ACS algorithm the foraging behaviour
of ants in nature is simulated, and certain intelligence is
added to ants which is mainly achieved by adding a certain
memory to the ants and processing the unique pheromone

of ants-pheromone volatilization. Terefore, the perfor-
mance of the algorithm is further improved [26]. At the
beginning, since no ants pass through the path and no
pheromone, ants randomly choose the path they encounter.
With the passage of time, more and more ants will pass
through the path with short distance and the pheromone
concentration accumulated on the path will be higher and
higher. Terefore, the probability of subsequent ants
choosing this path will also increase. Finally, the ant colony
will fnd an optimal path to the target point.

2.2. Mathematical model of ant colony system algorithm

2.2.1. Formula of transfer probability. Te probability that
the ants in the ant colony choose the next node to move
according to the pheromone concentration. It is also afected
by the expected information between the current node and
the surrounding nodes [27].Te state transition rule for ants
is shown in (1):

p
k
ij �

τij􏽨 􏽩
α

· ηij􏽨 􏽩
β

􏽐
k∈dk

τij􏽨 􏽩
α

· ηij􏽨 􏽩
β
, ifj ∈ dk, 0, otherwise

.
⎧⎪⎪⎨

⎪⎪⎩
(1)

Pk
ij is the transition probability of ant k selecting node j

at node i, where τij is the pheromone concentration left by
ants on path (i, j). ηij is the heuristic information between i

and j, which is generally taken as ηij � 1 /dij, and it rep-
resents the Euclidean distance between nodes i and j. α is the
information heuristic factor, which indicates the relative
importance of pheromone concentration when ants select
the next node; β is the expected heuristic factor and indicates
the importance of the distance between the current node and
the next node. Te nodes passed by ants are recorded in the
tabuk (k � 1, 2, ... M, M is the number of ants).
dk � C − tabuk􏼈 􏼉 is the set of nodes that ants can choose, and
C is the set of all nodes. Te decision rule of ants moving
from the current node to the next node is determined by the
pseudo-random proportional rule. Te pseudo-random
proportional rule equation is shown in equation (2) [28];

P �
max τij􏽨 􏽩

α
ηij􏽨 􏽩

β
􏼚 􏼛, q⩽ q0,

P
k
ij(t), q > q0,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where: P is selected as the next grid position; q is a random
number range from 0 to 1; q0 is a coefcient.

2.2.2. Pheromone concentration update rule. Tabu table
named tabuk is used to record the nodes passed by ants in the
current iteration until this iteration is completed, otherwise
the nodes recorded in the tabu table cannot be accessed
again. When all ants complete the access to all nodes, in the
tabu table, the nodes passed by each ant are recorded to form
the feasible solution of the path. After that, the previous path
pheromone should be weakened, and the newly introduced
pheromone should be strengthened. When the ant com-
pletes a path search, it will leave pheromone on the path, and
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part of the previous pheromone will volatilize. Te phero-
mone concentration at the next time is shown in (3) and (4)
[29]:

τij(t + 1) � (1 − ρ)τij(t) + 􏽘
m

k�1
Δτk

ij(t, t + 1), (3)

Δτk
ij(t, t + 1) �

Q

Lk

, Path of ant k i( ), j( 􏼁,

0, others.

⎧⎪⎪⎨

⎪⎪⎩
(4)

τij(t + 1) represents the pheromone concentration on
the updated (i, j) path, ρ is pheromone volatilization factor,
τij(t) is the amount of pheromone increased on the path
(i, j) after the last iteration, Δτk

ij(t, t + 1) is the pheromone
quantity that is left by ant k on (i, j) in this cycle, Lk is the
path length visited by ant k in this iteration, Q is a constant
that is set to 1, and it is the pheromone enhancement
coefcient.

2.3. Dijkstra algorithm. Dijkstra algorithm is employed to
calculate the shortest path from one vertex to other
vertices, which is applied to solving the shortest path
problem in weighted graph [30]. According to the
principle of array, Dijkstra algorithm can quickly adapt to
the update of conditional variables and achieve the
purpose of rapid solution with the increase of calculation
layers. Dijkstra algorithm adopts the strategy of greedy
algorithm, and each time it traverses the adjacent nodes
of the vertex that is closest to the starting point and has
not been visited, until it extends to the end point [31]. Te
process of Dijkstra algorithm path planning is shown in
fgure 1.

3. Improved adaptive ant colony system
algorithm based on Dijkstra

3.1. Improvement of initial pheromone. In the traditional
Ant Colony System Algorithm, the initial pheromone
concentration is evenly distributed, which leads to the
blind search in the early stage and reduces the search
speed. In this paper, Dijkstra is employed to improve the
planning of the initial path, and then each grid of the
initial path is expanded to 8 directions to construct the
dominant area for pheromone optimization. Te number
of expanded grids is related to the size of the grid map and
the proportion of obstacles in the grid map. In this way,
the algorithm can not only avoid the blind search in the
early stage, but also do not completely rely on the
guidance of the initial path. Te grid forming the initial
path expands to the adjacent grids in 8 directions. Te
specifc pheromone difusion concentration method is
shown in Figure 2. Te yellow squares represent the initial
starting position of the ants, the purple squares represent
the target end position of the ants, the green squares are
the initial paths planned by the Dijkstra strategy, and the
red mesh area is the initial pheromone difusion area
planned by the Dijkstra strategy.

Te initial pheromone of the feasible grid in the grid area
is optimized. Te red reticulated areas were given relatively
high pheromone concentrations relative to other areas,
which is expressed as (5) and (6):

Start

n<N

Grid information reading

Set grid start and target points

Mark start point s, set D = 0, P = [], n = 1

Check the distance from all marked points to the unmarked 
point J and record it as D

Select the point I with the smallest d from the unmarked 
points

Find the point directly connected to I from the marked 
points, and record it as pi

End

Mark point I, n++

N

Y

Figure 1: Flow chart of Dijkstra algorithm path planning
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Figure 2: Dijkstra algorithm expands the grid pheromone con-
centration map
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τij �

u∗ τ0, i, j ∈ U,

τ0, others,

⎧⎪⎨

⎪⎩
(5)

τ0 �
1

((X + Y)∗ (X∗Y))
. (6)

Te τ0 is the initial pheromone concentration; u is the
enhancement coefcient of pheromone concentration; U
represents the adjacent grid range planned by Dijkstra al-
gorithm; X is the number of rows of grid map, and Y is the
number of columns of grid map.

3.2. Heuristic information. Te traditional distance heuristic
information has weak inspiration for ACS algorithm,
resulting in low search efciency.Terefore, the reciprocal of
the length from the optional node to the end point is used as
the distance heuristic method [32], that is, the heuristic
information from the current node to the next node is the
Euclidean distance from the next node to the target node.
Heuristic information is generated according to the fol-
lowing (7):

djg � distance(j, goal ). (7)

3.3. Formula of transition probability. Te traditional ACS
algorithm adopts the roulette method in path selection,
without considering the back and forth of ants that are
looking for the path. Terefore, in the early stage of the
search path or the early stage of the iteration, the path is too
long, which afects the speed of the algorithm in the later
iteration. Te improved ACS Algorithm introduces a
strategy of defection direction probability, and Figure 3
illustrates the way of direction change when the ant colony
algorithm performs grid selection. As shown in Fig. 2, the
directional change in the grid diagram is divided into types.
Te θ angles are 0、 π/4、 π/2、 3π/4 and π in eight cases.
According to the magnitude of θ, the corresponding
probability cost of defection direction can be calculated.
Each time the ant moves to the next grid, it determines the
probability of defection of all eight adjacent moveable grids.
Temain purpose of this is to constrain the path from taking
extreme turns and folding back to afect the length of the
path planning algorithm.

Te defection direction probability is introduced to the
grid selection probability of the traditional ACS Algorithm.

Te transfer probability equation of the improved ACS al-
gorithm is:

p
k
ij �

τij􏽨 􏽩
α
ηij􏽨 􏽩

β
ζ ij􏽨 􏽩

c

􏽐
j∈allowedk

τij􏽨 􏽩
α
ηij􏽨 􏽩

β
ζ ij􏽨 􏽩

c
, ifj ∈ dk,

0, otherwise, ζ ij �
θ
π

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Te ζ ij is the steering cost from the current node to the
next feasible node; c is the steering coefcient, which de-
termines the infuence of steering cost in the calculation of
transition probability; θ is the defection direction angle
generated by the ant when selecting the grid.

3.4. Adaptive strategy of probability transfer. Te selection of
the next grid in the path adopts the pseudo-random pro-
portion rule varying with the number of iterations in rou-
lette, in which q0 is adaptive probability, and the value is
improved as following:

p �
max τij􏽨 􏽩

α
ηij􏽨 􏽩

β
ζ ij􏽨 􏽩

c
􏼚 􏼛, q≤ q0,

P
k
ij, q> q0,

⎧⎪⎪⎨

⎪⎪⎩

q0 � u∗
dsg

Lbest
􏼠 􏼡∗ e

− NC/NCmax ,

dsg � distance(start, goal).

(9)
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Figure 3: Illustration of direction change mode generated by
transition probability
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where: P is selected as the next grid position; q is a random
number range from 0 to 1; NCmax is the maximum value of
iteration; NC is the number of current iterations; u is a
coefcient and the value is 1.1, that is used to adjust the range
of q0; dsg is the distance from the starting point to the target
point; Lbest is the optimal path length in the current iteration
times; In the early stage of the algorithm iteration, the ratio
of NC/NCmax is small, so the value of q0 is large, and the
path with less number of direction changes and low cost of
direction change can be selected, which can speed up the
convergence of the algorithm. In the later stage of the al-
gorithm iteration, as the number of iterations increases, the
ratio ofNC/NCmax increases gradually, q0 decreases with the
increase of the number of iterations, so that the algorithm
obtains better adaptiveness and reduces the probability of
falling into local convergence.

3.5. Smoothpathplanning curve. Te path of the grid map is
composed of several straight lines connecting the geo-
metric center of the grid, so there must be spikes at the
turning, that is inconsistent with the motion character-
istics of the robot. Te optimal path of the improved ACS
Algorithm is still not smooth enough, and there are peak
infection points in some paths. In order to solve this
problem, it is necessary to smooth the path to satisfy the
requirements of real robots. Te mathematical expression
of B-spline curve is relatively simple. It has the ability of
local modifcation that Bezier curve does not have, and it
is second-order continuous at the connection [33, 34].
Terefore, it is widely used in image processing, the shape
design, etc. Te path is smoothed using a cubic B-spline,
and its expression is:

Pk,n(t) � 􏽘
n

i�0
PiGi,n(t), t ∈ [0, 1], (10)

where Pi is the control vertex (i =0, 1, ..., n), i denotes the
B-spline number; Gi,n(t) the nth order B-sample basis
function, which can be derived from DeBoor's recurrence
formula as:

Gi,n(t) �
1
n!

􏽘

n−i

j�0
(−1)

j
C

j
n+1(t + n − i − j)

n
. (11)

Let n = 3, then the basis function of the cubic B-spline
curve can be deduced as:

G0,3(t) �
1
6

−t
3

+ 3t
2

− 3t + 1􏼐 􏼑,

G1,3(t) �
1
6

3t
3

− 6t
2

+ 4􏼐 􏼑,

G2,3(t) �
1
6

−3t
3

+ 3t
2

+ 3t + 1􏼐 􏼑,

G3,3(t) �
1
6
t
3
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Te equation of the cubic B- spline curve can be obtained
from the above equation:

P0,3(t) �
1
6 1 t t

2
t
3􏽨 􏽩

1 4 1 0

−3 0 3 0

3 −6 3 0

−1 3 −3 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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P1

P2

P3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

3.6. Improved algorithm fow

Step 1. establish a grid map. Te path fnding map is
planned, a reasonable raster map is established, and the
starting point S and the ending point G are set.

Step 2. set the parameter value. Te number of ants in each
iteration M, the maximum number of iterations NCmax,
pheromone evaporation factor ρ and other related parameter
values of ant colony calculation are set.

Step 3. initial pheromone optimization. Te Dijkstra algo-
rithm is used to search the initial path in the grid map, and
according to the size and complexity of the raster map, the
initial pheromone enhancement region is obtained.

Step 4. select the path grid. Place the ant at the starting
point, select the next grid according to the selection prob-
ability and roulette. Place the serial number of the passing
grid in the taboo table and record the current walking length.
When the ant reaches the end or falls into a deadlock, the
selection ends.

Step 5. update the global pheromone. After all the ants in
this iteration complete the path fnding, the pheromone of
the ants that travel to the end is updated.

Step 6. judge whether the maximum number of iterations is
reached. If the number of iterations reaches the set maxi-
mum value, output the optimal result of routing and end the
operation. If not, repeat step 4 and 5 until the maximum
number of iterations is reached.

Step 7. smooth the optimal path. Te peak of the optimal
path is smoothed by cubic B-spline curve, and the smoothed
path and length are output.

Te diagram of the improved Ant Colony System Al-
gorithm is shown in fgure 4:

4. Experiments

In order to verify the feasibility of the improved Ant Colony
Sytem Algorithm, the algorithm is placed in 20 × 20 and 50 ×

50 these two grid environments with diferent sizes and
complexity. Te environment adopts Windows 10 home
Chinese operating system, core (TM) i7-8565u processor, 8
GB running memory and MATLAB 2018b. In order to
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eliminate the infuence of map environment factors, two
diferent obstacle simulation maps are established: one is a
U-shaped obstacle environment map (specifcation 20 ∗ 20),
and the other one is a complex obstacle environment map
(specifcation 50 ∗ 50). Te starting point of the two map
environment models of path planning is 1, and the target
point is 400 and 2500, respectively.

4.1. Environment establishment of 2D grid. Compared with
visual graph method, the node method and free space
method, the grid method has the advantages of consistent
expression of planning space and convenient for computer
modelling, storage, processing, updating and analysis [35].
Terefore, the gridmethod is used to verify the environment.
Grid map is applied to describing the characteristic infor-
mation of the real environment without too much time and
space. At the same time, grid information is employed to
mark the starting point, ending point, obstacles and other
complex environmental features. When dealing with ir-
regular obstacles, grid representation has obvious

advantages over other map description methods [36].
Terefore, this paper uses the grid method to establish the
working environment model of mobile robot. According to
the obstacle distribution in the environment and the above
grid division rules, the grid map includes feasible grid and
the obstacle grid. An example of a two-dimensional grid
environment is shown in fgure 5, in which the white grid
represents the feasible grid and the black grid represents the
obstacle grid.

4.2. U-shaped simulation environment. 10 experiments are
carried out for each algorithm, and then the average of the
best values of 10 experiments are averaged to initialize the
information. Te initialization information sets the number
of ants in each generation M=30, the maximum number of
iterations NCmax = 50, and the initial pheromone concen-
tration α =1, β =5, c =0.1, ρ =0.08, pheromone concentration
Q =1. In the simple environment map model, simulation
results of optimal path planning based on the basic Ant
Colony System Algorithm and the improved Ant Colony

Start

Initial pheromone concentration 
assignment using Dijkstra algorithm

Using pseudo-random probability to 
select the next location path

Optimal path and iteration times 
of output algorithm

Curve optimization 
shortest path

Ants search the path from the 
starting point

End

M=Mmax

NC=NC+1

NC=NCmax

M=M+1

Optimal path and iteration times 
of output algorithm

Parameter initialization, 
building grid map

N

N

Y

Y

Figure 4: Flow chart of improved ant-colony system algorithm
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System Algorithm are shown in Figure 6 and Figure 7, and
their iterative convergence curves are shown in fgure 8 and
fgure 9.

In the U-shaped region, the traditional ACS Algorithm
has the potential for the ants to get stuck in the U-shaped
region leading to difculties in obtaining the minimum path
after several iterations, afecting the optimal length of the
fnal path planning algorithm. Ten in this experiment a
large U-shaped obstacle was placed in the center of the map.
Figure 6 and Figure 7 show the optimal path planning di-
agrams obtained from the two algorithms within ten ex-
periments. Figure 8 shows a comparison of the algorithm
path convergence curves for the U-shaped simulation en-
vironment. It can be seen in this experiment that the im-
proved algorithm did not obtain the optimal value when it
fell into the U-shaped region in the frst iteration, but after
another iteration the improved algorithm quickly got rid of
the U-shaped obstacle to obtain the optimal path planning
quickly. It can be seen from Figure 8 that the length of the
optimal path planned by the improved ACS Algorithm is
signifcantly less than the path distance planned by the basic
ACS Algorithm. Te convergence length of the improved
algorithm in this paper is 33.8995, and it begins to converge
at the frst generation; Te path convergence length of the
basic ACS Algorithm is 34.7279 and the convergence algebra
is 22 generations. Obviously, the improved ACS Algorithm
is better than the traditional ACS Algorithm in the optimal
path length and convergence speed.

4.3. Complex obstacle environment. 10 experiments are
carried out for each algorithm, and then the average of the
best values of 10 experiments are averaged to initialize the
information. Te initialization information sets the number
of ants in each generation M�30, the maximum number of
iterations NCmax � 50, and the initial pheromone concen-
tration α �1, β �5, c �0.1, ρ �0.08, pheromone concentration
Q �1. In the simulation experiment of complex obstacle, elite
Ant-Colony Algorithm and sorting Ant-Colony Algorithm
are also introduced to compare the efect of the algorithm.
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Figure 6: Basic ant colony system algorithm path planning
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Figure 7: Improved ant colony system algorithm path planning

20

18

16

14

12

10

8

6

4

2

0
0 5 10 15 20

Figure 5: 2D grid environment diagram
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Figure 8: Comparison of algorithm path convergence curves for
U-shaped simulation environment
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Te simulation results of several algorithms for optimal path
planning under complex obstacle environment maps are
shown in Figure 9 to Figure 10, Figure 11, Figure 12, along
with their iterative convergence curves as shown in
Figure 13.

According to the analysis of the above fgures, the
performance of the improved ACS Algorithm is better than
that of the basic ACS Algorithm in the complex obstacle
environment. Te improved ACS Algorithm converges to
the optimal path in generation 1, and the path length is
75.6396, while the optimal path length of the basic ACS
Algorithm is 77.68, and the convergence algebra is 43. In the
two map environments, it is shown in fgures that in both
map environments, the global optimization and conver-
gence speed of the improved ACS Algorithm are better than
that of the basic ant colony system algorithm by introducing
a new judgment probability, strengthening the initial path
pheromone concentration and adaptive adjustment.
Terefore, the optimization efciency of ants is improved.

In table 1, it is illustrated that compared with the basic
ACS Algorithm, the optimal iterative convergence times of
this algorithm are reduced by 66.7%, the infection point is
reduced by 34.8%, and the path length is reduced by 3.4%.
Compared with EAS algorithm, the optimal convergence
times of this algorithm are reduced by 83.3%, the infection
point is reduced by 16.7%, and the path length is reduced by
0.79%. Compared with RAS algorithm, the optimal con-
vergence times of this algorithm are reduced by 85.7%, the
infection point is reduced by 28.6%, and the path length is
shortened by 1.56%. According to the data of standard
deviation, the stability of this algorithm is better than other
algorithms in ten experiments. Terefore, the convergence
speed and convergence results of the proposed algorithm in
the 50×50 grid environment are better than those of the
comparison algorithms.

Te improved algorithm can also be well implemented in
a larger environment with more obstacles, for example in a
100×100 grid map as shown in Figure 14, and the algorithm
can be adapted well in larger grid environments.
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Figure 10: EAS algorithm path planning
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Figure 11: RAS algorithm path planning
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Figure 9: Basic ant colony system algorithm path planning
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Figure 12: Improved ant colony system algorithm path planning
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Figure 13: Comparison of algorithm path convergence curve in complex obstacle simulation environment

Table 1: Comparison tests of 50 × 50 simulation environment

Algorithm Optimal path
length

Worst path
length

Iterations of optimal
path

Number of infection
points Standard deviation of data

Improved algorithm 75.6396 79.05 1 15 1.0342
ACS algorithm 77.68 81.8823 3 23 1.5052
EAS algorithm 77.64 80.2254 6 18 1.6050
RAS algorithm 76.2254 83.8823 7 21 2.2678
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Figure 14: Path planning of improved algorithm for large-scale
complex obstacle simulation environment

0 10 20 30 40 50
The number of iterations

M
in

im
um

 p
at

h 
le

ng
th

160

159

158

157

156

155

Figure 15: Algorithm path convergence curve for large scale
complex obstacle simulation environment
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Figure 15 shows the convergence curve of the optimal
path after ten experiments. It can be seen that the improved
algorithm also converges rapidly in large-scale and complex
obstacle environments. Te best path planning route is
basically found within fve iterations in all ten experiments,
proving that the algorithm is also well adapted to complex
environments and fnds the optimal path planning route.

 . Conclusions

According to the size of grid environment and the proportion
of obstacle grid, the algorithm in the paper that is combined
with the path searched by Dijkstra algorithm optimizes the
initial pheromone of Ant Colony System Algorithm through
grid expansion, which efectively improves the search speed of
the algorithm in the early stage. Te number of infection
points in search path are reduced and the convergence of the
algorithm is promoted by introducing the variable heuristic
function and the adaptive pseudo-randomproportion rule.Te
cubic spline is used to smooth the spikes generated by the path
in the grid environment, which efectively reduces the gen-
eration of sharp paths. Comparing results in the grid envi-
ronment, it is shown that the path searched by the improved
adaptive Ant Colony System Algorithm based on Dijkstra
algorithm is better than that of others, and the optimal path is
obtained with less iteration. In this paper, as a global path
planning algorithm for mobile robots, the improved Ant
Colony System Algorithm is mainly applied to the static en-
vironment where the global map is known. In this paper, as a
global path planning algorithm for mobile robots, the im-
proved Ant Colony System Algorithm is mainly applied to the
static environment where the global map is known. For the
research in dynamic environment, the adaptive Ant Colony
System Algorithm based on Dijkstra algorithm will be con-
sidered in combination with other algorithms, or the research
of three-dimensional path planning will be carried out.
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