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An intelligent and modular greenhouse seedling height inspection robot was designed to meet the demand for high-throughput,
low-cost, and nondestructive inspection during the growth of greenhouse seedlings. Te robot structure mainly consists of a
multiterrain replacement chassis, an electronic control lift image acquisition support, and a quick disassembly mechanism.
SolidWorks was used to design the robot and Adams was used for motion simulations. Based on STM32 and Raspberry Pi as the
core, the robot is equipped with various sensors to build a reliable control system for intelligent navigation for inspection tasks as
well as acquisition of high-quality images and environmental information data of seedling crops. Te developed growth point
detection algorithm based on the EfcientNet deep learning network can efciently measure the heights of seedlings and the
application of the host software and cloud server makes it easy to monitor and control the robot and store and manage various
data. Te results of the greenhouse experiment showed that the robot has an average battery life of 5.2 h after being fully charged,
with satisfactory motion stability and environmental adaptability; the environmental information data collected were valid, and
errors were within the acceptable range; the captured seedling crop images were of high quality, and the seedling height data
obtained through algorithm analysis were valid and reliable. Te robot is expected to be an intelligent assistant for seedling
research and production.

1. Introduction

Seedling cultivation is a key step in vegetable production and
an important bridge between the source of seeds and veg-
etable products [1]. Although the vegetable seedling industry
has developed rapidly in recent years, but most of the en-
terprises’ seedling production management is mainly based
on experience, yielding a low seedling growth rate and labor
productivity; this is still far from agricultural modernization
[2–4]. With the increase in labor costs, and the rapid

development of information technologies such as the In-
ternet of Tings and big data, the intelligent and industri-
alized seedling production has become an inevitable trend in
the development of the modern vegetable industry. Con-
tinuous monitoring and control during seedling cultivation
is an efective way to improve seedling quality and survival
rate, and data collection and analysis enable us to efectively
perceive crop growth conditions and then take corre-
sponding prevention measures [5, 6]. A seedling factory
deploys a large-scale sensor network for intelligent
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monitoring purposes, which is considerably more efcient,
accurate, and real-time than the manual method; however,
such networks are highly complex in wiring and are costly.
An intelligent mobile robot is a more fexible and cost-ef-
fective solution.

Currently, research is being conducted on inspection
robots for crop growth monitoring. For example, Guo et al.
designed a multi-degree-of-freedom robot system for
greenhouse facility image acquisition and environment
monitoring, which can accurately acquire images and data
through the perception layer, and send the data for analysis
and storage via a wireless network, thus enabling fne col-
lection of data perception environment monitoring data for
greenhouse production [7]. Liu et al. designed a monitoring
device based on amobile robot that enables remote real-time
monitoring of the greenhouse environment [8]. Li et al.
developed a mobile and suspended-rail crop growth and
environmental information monitoring system, which en-
ables integrated monitoring of crop growth and environ-
mental information in horticulture facilities through
multisensor information fusion [9]. Han et al. developed an
indoor inspection robot that can conduct autonomous in-
spections based on pre-laid electromagnetic guide wires and
transmit the collected temperature, humidity, CO2 con-
centration, and other information to a cloud server for
growers to view from WeChat [10]. Lu et al. designed and
manufactured a small wheeled tobacco plant protection
machine for the high-ridge-furrow environments, which has
improved the performance of the transmission system and
steering system through a clever mechanical structure to
meet the stability requirements for feld operations [11].
Barker’s team designed a multisource detection sensor
system based on a vehicle-mounted platform to collect
images of seedlings from multiple angles [12, 13]. Te Sunti
team’s agricultural robot platform, built with corrosion-
resistant aluminum profles in the main body, using an
Arduino development board as the control chip, and an
integrated image processing algorithm in the host computer,
can be used to identify and pick small fruits [14]. Bai et al.
used a robotic phenotype collection platform to carry a high-
throughput multisensor system that consists of fve sensor
modules for measuring crop canopy traits from feld plots
and geo-referencing sensor measurements using GPS as well
as incorporates two environment monitoring sensors [15].
Atef et al. used a robot to detect leaf traits in greenhouse-
grown maize and sorghum. Te robot automated the
measurement of plant leaf characteristics using a four-de-
gree-of-freedom manipulator with a portable spectrometer
and a thermistor for leaf temperature measurement [16]. In
the progress both at home and abroad, the existing robots for
crop growth monitoring are not well adaptable to green-
house environments. Because they perform poorly in
seedling growth diagnosis and real-time system control and
data management, there is still large room for development
and improvement.

Among the many phenotypic parameters that refect the
growth status, the seedling height is an extremely critical
factor. Te measurement of seedling height can provide an
important basis for the quantitative analysis of the sound

seedling index and also help in the cultivation of seedlings
[17]. However, there are very few studies on intelligent
seedling height inspection robots for greenhouse environ-
ments, and directly introduced inspection robots for other
purposes cannot adapt to the special environments of
seedling greenhouses and perform poorly in seedling height
measurement. Terefore, we developed an intelligent
greenhouse seedling height inspection robot for seedling
growth monitoring. Te robot can walk around agilely and
intelligently in the seedling greenhouse, collect seedling
growth information and environmental information in a
comprehensive and stable way, and analyze and store
seedling height data in real time using cloud-based image
processing algorithms and interactive software. Te robot is
expected to become a powerful assistant for greenhouse crop
research and cultivation personnel by improving their labor
efciency and reducing their labor intensity, thereby pro-
moting the intelligent process of greenhouse crop research
and cultivation.

2. Materials and Methods

2.1. PerformanceRequirementAnalysis. Seedling production
is mainly carried out in multispan greenhouses or glass
greenhouses. A seedbed is generally 1.7m wide, 18–20m
long, and 0.65m high. A large number of seedbeds are evenly
arranged and distributed in a huge space of several hundred
to several thousand square meters, with an average spacing
of approximately 0.6m between seedbeds. Te seedbeds can
be moved around slightly to facilitate workers’ operations.
Te robot walks around the seedling greenhouse autono-
mously, collecting environmental information and taking
photos of seedlings and uploading them to the cloud server,
wherein the images are processed and analyzed to obtain
seedling growth data and stored for users to view in real time
through the interactive software on the client computer.
Based on task requirements, the robot should provide the
following features: (1) the robot should have good trafc-
ability when moving around and adapt to diferent types of
greenhouse road surfaces; (2) when facing obstacles or
potholes on the road, the robot should be able to overcome
obstacles and remain stable when being disturbed in its
movement; (3) the shooting height of the image acquisition
device can be adjusted to adapt to diferent greenhouses and
seedlings’ growth periods; (4) the robot can move autono-
mously in a complex environment; (5) an accurate and
efcient image processing algorithm should be developed for
in-situ detection of seedling heights; and (6) greenhouse
environmental data, seedling images, and seedling height
data shall be transmitted, stored, and managed via a wireless
network.

2.2. Robot Body Design

2.2.1. Overall Structural Design. Te robot has a modular
structure that consists of a multi-terrain replacement
chassis, an electronic control lift image acquisition bracket,
and a quick release mechanism. Te multi-terrain replace-
ment chassis consists of components such as the drive part,
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motion part, suspension part, and frame; the electronic
control lift image acquisition bracket comprises components
such as the motor, telescopic structure, and camera mount;
the quick release mechanism comprises components such as
the split connection part and reset pin. As shown in Figure 1,
themechanical structure of the robot is drawn andmachined
using SolidWorks software.

Te height of the seedbeds in the greenhouse is ap-
proximately 600–700mm above the ground; the growth
height of the seedlings is approximately 50–150mm; the
minimum imaging distance of the camera is 250mm; and
the spacing between the bottoms of seedbeds is approxi-
mately 600mm. To meet the actual crop inspection and
image acquisition requirements and facilitate the handling
and movement of the robot, the length, width, and height of
the designed robot were 570, 420, and 900–1300mm, re-
spectively, and the weight was 23 kg. Te main structural
parameters of the robot are listed in Table 1.

2.2.2. Shock-Absorbing Wheel Replacement Chassis. Te
chassis is responsible for the movement of the robot and
overcoming obstacles. Due to complex terrains in diferent
greenhouses, to adapt to diferent road surfaces, the robot
chassis is powered by four 3.1Nm 57 stepper motors that are
coupled with diferent tires through a designed 8mm shaft
hole coupler for wheel replacement. For a greenhouse on
paved roads with large spacings between seedbeds, low-cost
ordinary round rubber tires can be used. In the case of
narrow and complex roads in a greenhouse, a McNamee
wheel chassis can be used for agile multidirectional move-
ment based on its high mobility. A track chassis is suitable
for a greenhouse on nonpaved roads and can maintain a
tight grip on uneven roads by adjusting the belt tensioner.
Te design of the replacement chassis structure signifcantly

improves the robot’s adaptability and trafcability.
Figures 2(a)–2(c) show the tire chassis, McNamee wheel
chassis, and track chassis, respectively.

Te suspension mechanism is responsible for main-
taining the overall stability of the robot by ensuring that the
violent shaking of the image acquisition camera caused by
robot movement is minimized when the tire chassis is in
contact with the ground [18]. Te chassis features a four-
wheel independent suspension mechanism with the tires
mounted on the crank guide-bar suspension mechanism
composed of rocker links, bearings, and springs, and
swinging around the suspension pivot point with rocker
links when passing over potholes, thus enhancing the grip of
the chassis on the ground and absorbing shocks. Te
structure of the chassis suspension mechanism is shown in
Figure 3.

2.2.3. Electronic Control Lift Image Acquisition Bracket.
Amultisource camera is mounted on this bracket for image
acquisition. A 24V electric push rod with a stroke of
400mm is used to constitute an electrically controlled
image acquisition device. Te two poles of the DC motor of
the push rod are, respectively, connected to two sets of
relays and then connected to the positive and negative poles

1

2

3

4

5

6

7

Figure 1: Overall structure of the robot. (1) Multi-terrain replacement chassis. (2) Surveillance camera. (3) Lidar. (4) Camera module.
(5) Electronic control lift image acquisition bracket. (6) Car display. (7) Quick release mechanism.

Table 1: Main parameters of the robot.

Parameters Value
Length×width× height
(mm×mm×mm) 570× 420× (900–1300)

Total mass (kg) 23
Maximum travel speed (km/h) >3.6
Minimum turning radius (mm) <500
Camera height above ground (mm) 900–1300
Battery life (h) 5.2
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of the power supply. By controlling the conduction and
disconnection of the two sets of relays, the switching of the
positive and negative poles of the DC motor is completed,
so that the speed of the electric push rod is 12mm/s forward
or reverse height adjustment. Te RealSense camera and
Kinect camera are fxed onto the image acquisition device
through diferent brackets to collect RGB-D information of
seedling images. As shown in Figure 4, the electronic
control lift image acquisition bracket allows the camera to
acquire the images of seedlings in the height range of
900–1300mm.

2.2.4. Quick Release Mechanism. Te quick release mech-
anism is mainly responsible for the separation/combination
of the robot chassis from/with diferent end actuators. It is
mainly divided into upper and lower parts. Te upper part is
a boss structure with pin holes on the side, and its upper
surface is connected with the connecting seat of the end
efector; the lower part cooperates with the upper connecting
body and is connected to the chassis through the base. After
the two are inserted, the locking is completed by the spring
return pin. Owing to the aluminum alloy, it features a
lightweight design with a high carrying capacity. As shown
in Figure 5, the quick release mechanism achieves a split
design for the robot, which enables the end actuator to be

combined with or separated from the chassis within seconds,
thus greatly facilitating the handling and storage of the
robot.

2.2.5. Robot Motion Simulation. Because the robot needs to
be as stable as possible when it is moving around to reduce
the jitter of the camera module to acquire higher quality
images of the seedlings, we used Adams to perform kinetics

(a) (b) (c)

Figure 2: Multi-terrain wheel replacement chassis. (a) Tire chassis. (b) McNamee wheel chassis. (c) Track chassis.
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Figure 3: Chassis suspension mechanism. (1) Motor bracket. (2)
Rocker link. (3) Spring. (4) Rocker bracket. (5) Rocker arm.
(6) Bearing.
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Figure 4: Electronic control lift image acquisition bracket. (1)
Connecting seat. (2) Cantilever bracket. (3) Camera module. (4)
Telescopic rod. (5) Linear motor.
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simulations and verify the reliability of the suspension
mechanism and the entire system as a whole. We con-
structed a map with uneven surfaces to simulate actual road
surface undulations, modeled the robot in equal proportion
using SolidWorks, and then imported the model into
Adams. Te kinetic parameters were set according to the
actual parts mating and material characteristics. Te mul-
tiple-degree-of-freedom spring force was decomposed to the
vertical direction as its equivalent combined force. Te
driving force parameters were set according to the me-
chanical characteristics of the motor. For kinetic analysis of
the chassis, the robot mass m was set to 23 kg; the global
gravitational acceleration g was set to 9.81 kg/s2; the friction
coefcient μ was set to 0.3, which is the static friction co-
efcient between rubber and concrete road; and the direc-
tion perpendicular to the upward direction of the base plate
was chosen as the main reference direction to refect the
undulation degree of its center of gravity.

Te simulation results are shown in Figure 6.Te vertical
coordinate of the curves is the displacement of the center of
mass of the bottom plate in the vertical direction, and the
horizontal coordinate is the time used by the robot to move
forward. Te red curve is the result without the chassis
suspension mechanism, while the blue curve is the result
with the chassis suspension mechanism. According to the
simulation results, the chassis suspension mechanism has
improved the overall stability of the robot, especially on
undulating roads where it can efectively isolate the shocks of
the vehicle from the ground.

2.3. Robot Control System Design

2.3.1. STM32-Based Motion Control Module. As shown in
Figure 7, during the greenhouse production, it is usually
necessary to inspect the seedbeds in specifed areas and

design an intelligent navigation mode based on the opera-
tional requirements in the greenhouse. In this mode, the
robot moves to the specifed point on the radar map along
the planned route to complete the task.

Te control system for the intelligent navigation mode
features a distributed design for motion control through
intermodular communications and collaborations.Temain
control unit employs a STM32F407 series microcontroller
with low power consumption, high stability, and rich in-
terfaces, as well as 114 programmable I/O ports, 17 timers,
and 17 communication interfaces, enough to meet the
control and communication requirements. Te processor is
from the Raspberry Pi 4B series and integrates 2 HDMI
ports, 4 USB ports, and wired and wireless network interface
cards that can transmit HD video streams as well as send and
receive various data simultaneously. A LIDAR is used to
sense the robot’s surrounding environment. A Silan A1
LIDAR with a sampling frequency of 8000 times per second
and a scanning frequency of 5.5Hz is used to collect the road
data within 12m. Te inertial sensor (IMU) is responsible
for sensing the attitude of the robot during its motion. A
nine-axis inertial sensor is used as the IMU to measure the
angular velocity, acceleration, attitude angle, etc., during
robot motion.

Te intelligent navigation feature is based on the si-
multaneous localization and mapping (SLAM) technique.
Te robot calculates its own position while building a map of
the environment based on the information from the LiDAR
and inertial sensors and odometer, and then it navigates to
the specifed points based on the planned route. A ROS
environment is built based on Raspberry Pi Ubuntu 20.04
system to provide the mapping and navigation features of
the robot. Te GMapping algorithm [19] is used by the robot
for mapping, synchronous localization, and map saving. A
GMapping node is built to import the data of the LiDAR and
motor odometer in real time, and after converting the radar
coordinate system to the chassis coordinate system, a map is
built using the IMU’s attitude information. Te control
system loads the built map, which provides the initial po-
sition, direction, and target point of the robot, planned a
route using the A∗ algorithm [20], obtained the chassis
motor speed control instruction, and sent the instruction to
the STM32 controller via a serial port.

After receiving the motor control command, the STM32
controller generates PWM signals through the four channels
of the advanced timer and then drives the chassis motor after
power amplifcation by the drivers of the four stepper
motors, thus enabling the robot to navigate around.

2.3.2. Raspberry Pi-Based Image Acquisition Module. As
shown in Figure 8, the image acquisition module system of
the robot consists of a camera system, an information
processing unit, and a data transceiver module. Te camera
system consists of a RealSense and a Kinect camera mounted
at the end of the abovementioned electronic control lift
image acquisition bracket and a surveillance camera at the
front of the chassis. Among them, Intel’s RealSense D415
camera can acquire RGB-D information at 1280× 720
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Figure 5: Quick release mechanism. (1) Base. (2) Lower connecting
body. (3) Upper connecting body. (4) Pin hole. (5) Positioning hole.
(6) Reset pin.
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resolution and the Azure Kinect camera can acquire image
color information at 4096× 3072 resolution and image depth
information at 1024×1024 resolution. Te Kinect camera
can provide better-quality depth images, and RealSense is
used to obtain better-quality color images with diferent
imaging principles. Te purpose of using these two RGB-D
cameras at the same time is for subsequent image fusion to
obtain better RGB-D image quality to meet the needs of crop
image acquisition. Te surveillance camera features a
LeSports 3-in-1 camera, which is used to transmit the picture
in front of the robot in real time and provide the remote
monitoring function of the robot.

With a limited space inside the robot, the information
processing unit uses a Raspberry Pi 4B with dimensions
(L×W×H) of 88mm× 58mm× 19.5mm. Its 1.5GHz 64-
bit quad-core processor and TCP/IP protocol-based wireless
network communication support can meet the needs for
image acquisition and transmission.

Te data transceiver module is a 5-mode and 13-fre-
quency 4G network transmission module, which features
ultralow latency, data encryption, and stable signals, and can
meet the networking requirements of the robot.

Te image acquisition system runs in the Raspberry Pi
Ubuntu 20.04 environment. Te image acquisition code is
compiled with Python 3.7 and linked to the camera video
stream for image acquisition by calling OpenCV andNumPy
interface library functions. During image acquisition, the
RealSense camera or Kinect camera is connected to Rasp-
berry Pi through a USB3.0 interface, and images of seedling
crops are acquired and then uploaded to the cloud server for
storage and processing through the 4G transmission
module. Te surveillance camera is connected to the
Raspberry Pi via an USB interface and a video stream is
established with the cloud server via TCP/IP protocol to
transmit the robot surveillance images in real time for re-
trieval and viewing.

2.3.3. Environmental Information Collection Module. Te
environmental information collection mainly focuses on
light intensity, temperature, humidity, and carbon dioxide
(CO2) concentration in the greenhouse environment, which
have a great impact on crop growth. Te environmental
information collection system consists of a sensor, STM32
processor, and 4G transmission module, as shown in Fig-
ure 9. A light intensity sensor based on the BH1750 chip is
used to measure the light intensity within the range of
0–65535 lx; a temperature and humidity sensor SHT30 is
used to measure the temperature and humidity within the
ranges of −40–125°C and 0%–100%, respectively, and with
the accuracies of ±0.3°C and ±2%, respectively. A CCS811
sensor is used to measure the CO2 concentration within the
range of 400–5000mg/m³.
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Figure 8: Block diagram of the image acquisition system.
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When collecting environmental information, the sensor
converts the received environmental information analog
signals to digital signals through the AD conversion chip and
sends the data to STM32 through TTL serial communication
or I2C communication for them to upload the environ-
mental data to the cloud server for storage through the 4G
transmission module.

2.3.4. Power Management Module. Te mobile robot is
powered by a 24V vehicle lithium battery. Due to diferent
voltage requirements of various electronic control systems
and sensors, the PW2902, PW2183, and PW2052 chips are
connected in a series-parallel combination to build a power
management module that supplies 24V, 12V, and 5V high-
current outputs, and provides rectifcation, overvoltage, and
overcurrent protection and reverse polarity protection
features. As shown in Figure 10, the step-down regulator
feature is simulated electrically using the Simulink tool in
MATLAB software to simplify the analog chip circuitry. Te
simulated waveform results are shown in Figure 11. It can be
seen that when the power input is 24V 0.6 A, the voltage
output by the simplifed circuit is stabilized at 12V in a very
short period of time, and its waveform is in line with ex-
pectations. Tis design meets the functional needs of each
module for power supply.

2.4. Robot Algorithms and Software System Design

2.4.1. Host Computer Control Software. As shown in Fig-
ure 12, the robot can be controlled andmanaged through the
PC-based host software, which greatly enhances the real-
time performance and convenience of system. A mobile
laptop serves as the host computer (equipped with a Core i7-
3632 CPU, 2.20GHz, 12GB RAM, 64-bit OS). Te robot’s
host control software for Windows is developed in
PyQt5 +Qt Designer environment using Python language.
Te software is designed with an easy-to-understand and
simple GUI, which makes it easy for the user to get started,
and integrates various features such as robot control and
operation status monitoring, image shooting control, crop
image data viewing and management, etc.

Te Raspberry Pi processor functions as an intermediary
for wireless control of the robot motion by the host PC.
When the host PC and the Raspberry Pi are at the same
hotspot, the host PC establishes a connection with the

Raspberry Pi by accessing its IP address. To perform a
control operation, the host computer sends a “control
instruction + check code” to the Raspberry Pi IP in the form
of a character string. Upon reception of the character string,
the Raspberry Pi decodes it into control instruction char-
acters and then sends it to the STM32 via a USART serial
port to control the motor operation, thereby controlling the
robot operation. After the “Start” button in the host software
is clicked, the robot moves along the route of destinations
predefned in the ROS system. After the “Stop” button is
clicked, the robot stops moving. In addition, buttons such as
“forward/backward” and “turn around” in the host software
can be used for manual and remote control of the robot.

Features of the host computer such as robot operation
monitoring, seedling growth status diagnosis and analysis,
crop information, and environmental data management are
provided by the server-side program deployed on the cloud
server. Te server-side program is developed using Node.js
language, which uses a socket interface for communication. It
features a Nginx architecture and integrates aMySQL database
to build a cloud data storage and processing system that serves
as a bridge between the robot and the host software.

Te surveillance camera at the front of the chassis up-
loads the captured images to the server and establishes a
video stream, which is accessed by the host computer to
monitor the robot operation. Te environmental informa-
tion data collected by the robot sensors are uploaded to the
server every hour. After the “Shoot” button in the host
software is clicked, the collected seedling images would be
uploaded to the server and saved; after clicking the “Data
Analysis” button, the service program would call the image
processing algorithm to detect and analyze the uploaded
images and obtain the biomass data of the plant such as
seedling height. After the “Save Results” button is clicked,
the data in the server database can be exported to an Excel
table for easy viewing and management.

2.4.2. Image Processing Algorithm for Seedling Height
Detection. Seedling height is a critical biomass parameter in
the determination of the seedling growth quality. Seedling
height is the distance from the base of the plant to the top of
the main stem, i.e., the main stem growth point [21]. Te
identifcation and localization of growth points is the key to
seedling height measurement. In this project, we tested fve
deep learning networks and selected the EfcientNet net-
work [22] to identify seedling growth points. EfcientNet is a
weighted bidirectional feature pyramid network (BiFPN) as
shown in Figure 13. Te network allows simple and fast
multiscale feature fusion; second, the network incorporates a
compound scale dilation method that uniformly scales the
resolution, depth, and width of all backbone, feature, and
prediction networks. With this new idea, the detection ac-
curacy of the EfcientNet network has been greatly im-
proved compared with other networks.

We used the training method of migration learning and
the weights of the ResNet and VGG network models trained
with the Pascal VOC dataset [23] as the initialized weights of
the network models. Labellmg software was used to label the

Light Intensity 
Sensor

Temperature And 
Humidity Sensor

CO2 Concentration 
Sensor

4G Transmission 
Module

STM32 Processor

Sensor System

Figure 9: Block diagram of the environmental information col-
lection system.
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color images of cucumber seedlings’ growth points and save
them in an xml fle. Te labeled dataset in .xml format and
the original images were used in a ratio of 9 :1 between the
training set and test set to create a dataset in VOC2007
format, which was imported into the network model for
training to obtain a corresponding weight fle for the de-
tection model, where all the parameters for the training
process were saved. By calling this weight fle, it is possible to
detect the growth points of fruit and vegetable seedlings.
Relevant parameter settings for network training were as
follows: the total number of iterations is 1200, of which the
frst 800 rounds freeze some layers in the network and set the
learning rate to 5e− 4; the next 400 iterations unfreeze all
layers and set the learning rate to 1e− 5 for training, and set
the training batch size to 4. Te CycleGAN model was
developed under the PyTorch 1.13.2 deep learning frame-
work and based on a Windows 10 64-bit operating system,
Intel i5-10400F, GPU, and NVIDIA GeForce GTX 1660
SUPER graphics card.

To solve the overftting issue caused by a small amount of
data and to improve the training efect of the model and the
accuracy of the results, the dataset was enriched by data
augmentation. Te complexity of the samples was increased
using traditional dataset augmentation methods, e.g., image
rotation (45°, 60°, 90° rotation), brightness adjustment (0.8x
and 1.3x), contrast enhancement (0.8x), addition of
Gaussian noise (standard deviation 0.1), and mirroring
(horizontal rotation), and the dataset was expanded to 8
times of its original size. Te preprocessed images were
manually labeled using Labellmg software. Mark the growth
points of multiple seedling images in a single image with
rectangular boxes and name them growpoints, and save the
results as .xml fles. After the annotation is completed, each
image corresponds to a .xml fle with the same name. A total
of 1600 near-growth point color images were produced. To
ensure the dissimilarity of the data, 90% of it were used for
the training set and 10% for the test set, which were put into
a deep learning network model for training.

A schematic diagram of seedling height measurement is
shown in Figure 14. Te center of the growth point pre-
diction box identifed by the EfcientNet network serves as
the pixel coordinates of the growth point. Te spatial co-
ordinates of each pixel point in the depth image captured by
the Kinect camera can be calculated using equation (1).

x �
u − cx( 􏼁z

fx

,

y �
v − cy􏼐 􏼑z

fy

,

z �
d

depth
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

By mapping the pixel coordinates of the growth point to
the depth image, the spatial coordinates of the growth point
can be extracted [24], and then, the depth between the
growth point and the camera plane (h2) can be calculated. If
the measurement environment remains unchanged, the
distance h1 from the camera plane to the top of the seedling
pot can be measured manually, and the seedling height h3
can be calculated using equation (2).

h3 � h1 − h2. (2)

3. Prototype Test Results

3.1. Robot Operational Stability Test. Te operational sta-
bility test of the robot prototype was conducted in the in-
telligent glass greenhouse of Huazhong Agricultural
University during May 24–26, 2022, as shown in Figure 15.
On the three days, the average temperatures of the test
environment were, respectively, 25.6, 25.8, and 29.8°C; the
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Input
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P4/16

P5/32
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P7/128
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Class prediction net

conv
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Figure 13: Te framework of EfcientNet.

h3
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h1

Figure 14: Schematic diagram of seedling height calculation.
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average relative humidity values were, respectively, 76%,
78%, and 85%; the weather was sunny and the light con-
dition was good; the foor of the greenhouse was a cement
pavement foor; the height of the seedbed was 750mm; and
the spacing was 800mm. Te test started with the robot
being fully charged. It moved around the seedbeds in the
intelligent navigation mode to collect images and its oper-
ation was monitored from the host software. Te robot was
operated from the fully charged voltage of 24.4 V till 22.8V
until it ran unstable.

Te test results showed that the robot featured an av-
erage battery life of 5.2 h in the greenhouse environment and
high trafcability and stability during its operation. It was
highly reliable and able to perform specifed operations for
crop phenotype detection and environmental data collec-
tion. Te robot, server, and host computer communicated
with one another stably and properly even under high
temperature and humidity conditions, indicating that it
could adapt to complex environments.

3.2. Environmental Data Validity Testing. Te environ-
mental data collected during the robot prototype test were
collated, and the values from an environmental monitor
from Changzhou Ekos Electronic Technology Co., Ltd. were
used as comparison values to verify the accuracy of the
environmental sensors, including temperature and humidity
sensors, lightness sensors, and CO2 sensors. Te resolution
and range of the temperature measurement were 0.01°C and
−40–60°C, respectively; the resolution and range of the
relative humidity measurement were 0.01% and 0%–100%
RH, respectively; the resolution and range of the illuminance
sensor measurement were 10 lx and 0–100000 lx, respec-
tively; the range of the CO2 sensor was 0–5000mg/m³. Te
environmental data collected by the robot prototype were
used as the measured values, and the above data were
updated every 1 h. By comparing the measured values of the
greenhouse environmental data with the comparison values
(Figure 16), we concluded that the following: the maximum
diference between the measured value of temperature and
the comparison value was 1.96°C, with a maximum relative
error of 5.8%; the maximum diference between the mea-
sured value of humidity and comparison values was 1.79%,
with a maximum relative error of 3.0%; the maximum
diference between the measured value of light intensity and
comparison values was 333 lx, with a maximum relative
error of 2.6%; and the maximum diference between the
measured value of CO2 concentration and comparison
values was 66mg/m³, with a maximum relative error of
8.6%.

3.3. Seedling Height Detection Validity Test. Phenotypic
parameters of the seedling crop canopy were measured in
the greenhouse for early Jia 8424 watermelon seedlings at the
one-true leaf and one-apical bud stage, and Fengle Golden A
pumpkin seedlings at the one-true leaf and one-apical bud
stage as well as two-true leaf and one-apical bud stage. While
moving around, the robot used the Kinect camera to acquire
RGB color images and depth images; then it used the image

processing algorithm to identify the growth points of
seedlings at diferent growth stages and fnally measured
seedling heights.

To verify the accuracy of the growth point detection
algorithm, 49 watermelon seedlings at the young seedling
stage, 45 watermelon seedlings at the one-true leaf and one-
apical bud stage, 44 pumpkin seedlings at the one-true leaf
and one-apical bud stage, and 47 pumpkin seedlings at the
two-true leaf and one-apical bud stage were randomly se-
lected for the test, as shown in Figure 17.

It is difcult to intuitively draw the pros and cons of each
model algorithm by comparing the detection images of the
fve models for watermelon seedlings [25]. Using 160 images
of watermelon seedlings as the test set, the fve networks
were quantitatively evaluated using AP (average precision)
and F1 parameter (an evaluation index that comprehensively
considers precision and accuracy).Te test results are shown
in Table 2. It shows that the AP and F1 values of the Ef-
cientNet network for the detection of watermelon seedling
growth points are higher than those of the other four target
detectionmodels, and the detection time of the fvemodels is
not much diferent. Terefore, the EfcientNet network is
determined as the detection model for the growth point of
fruit and vegetable seedlings in this paper.

To verify the accuracy of the seedling height calculation
algorithm, the heights of the abovementioned tested seed-
lings were measured. Te height from the growing point of
the seedling to the surface of the plug was measured using a
vernier caliper with an accuracy of 0.1mm, which served as
the actual seedling height value. To make the test results
more intuitive, the actual values of seedling heights mea-
sured manually were used as the x-axis and the seedling
heights calculated using the proposed algorithm were used
as the y-axis to draw scatter plots as shown in Figures 18(a)–
18(d). Tese fgures are the scatter plots for watermelon
seedlings at the young seedling stage, watermelon seedlings
at the one-true leaf and one-apical bud stage, pumpkin
seedlings at the one-true leaf and one-apical bud stage, and
pumpkin seedlings at the two-true leaf and one-apical bud
stage, respectively.

To compare the agreement between the seedling height
calculated using the proposed algorithm and the manually
measured seedling height values, a least squares regression
analysis was conducted to linearly ft the scatter plots of the

Figure 15: Photo of the robot test in the greenhouse.
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Figure 16: Comparison of measured values and comparison values of the environmental data. (a) Comparison of temperature data.
(b) Comparison of relative humidity data. (c) Comparison of light intensity data. (d) Comparison of carbon dioxide concentration data.
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Figure 17: Growth point detection results. (a) Watermelon seedling detection chart at the young seedling stage. (b) One-true leaf and one-
apical bud watermelon seedling detection. (c) One-true leaf and one-apical bud pumpkin seedling detection. (d) Two-true leaf and one-
apical bud pumpkin seedlings detection. One-true leaf and one-apical bud pumpkin seedling detection.
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two datasets, and the corresponding goodness of ft R2 and
root mean square error (RMSE) between the predicted and
true values were calculated. Both R2 and RMSE are in-
dicators used to evaluate and describe the degree of
agreement between the two datasets. A higher value of R2

indicates a better ft between the predicted and true values.
Equations (3) and (4) are used to calculate R2 and RMSE,
respectively.

R
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Table 2: Comparison of detection results of fve algorithms.

Model Model size (M) AP (%) F1 (%) Detection time (s)
SSD 92.77 89.28 73 0.021
YOLOv5s 14.65 68.1 77 0.014
EfcientNet 15.3 96.6 94 0.026
Faster-RCNN 110.7 86.82 71 0.045
CenterNet 127.9 46.68 18 0.03
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Figure 18: Scatter plot of actual seedling heights and measured seedling heights. (a) Watermelon seedling data at the young seedling stage.
(b) Watermelon seedling data at the one-true leaf and one-apical bud stage. (c) Pumpkin seedling data at one-true leaf and one-apical bud
stage. (d) Pumpkin seedling data at the two-true leaf and one-apical bud stage.
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Te test results of seedling height calculations are shown
in Table 3, which indicate that the R2 values of the seedling
heights measured using the proposed algorithm and the
seedling heights measured manually were greater than 0.9
for the four seedling stages of fruit and vegetable seedlings,
and the values of RMSE for these stages were 2.81, 3.69, 3.43,
and 4.83, respectively. Te ftted equations obtained were
near the direct proportion straight line with a slope of 1. Te
results confrm that the seedling heights calculated by the
algorithm of this paper are accurate. In Table 3, “W-
YOUNG” represents watermelon seedlings in the seedling
stage, “W-ONE-TRUE” represents watermelon seedlings in
the one leaf and one heart stage, “P-ONE-TURE” represents
pumpkin seedlings in the one leaf and one heart stage, and
“P-TWO-TRUE” represents pumpkin seedlings of the two
leaves and one heart stage.

4. Conclusion

We designed an intelligent and modular greenhouse seed-
ling height inspection robot to acquire images of seedlings
and environmental data during seedling cultivation in a
greenhouse. Te test results confrmed the following. First,
the robot is highly versatile and stable. Its multi-terrain
replacement chassis can adapt to diferent types of road
surfaces in the greenhouse and its independent suspension
structure design enhances the stability of the robot in
motion, so that the robot can complete inspection tasks in
various common greenhouses. Te designed electronic
control lift image acquisition bracket can capture high-
quality images of seedling crops, which meets the shooting
requirements of greenhouse seedlings at diferent heights.
Second, the robot can collect data in a stable way. Trough
the deep learning algorithm based on the EfcientNet
network to identify the growing point, the plant height data
of the seedling can be accurately measured and the efcient
measurement of the in-situ crop is realized. Moreover, its
environmental data collection module can accurately obtain
light intensity, temperature and humidity, and CO2 con-
centration data in the greenhouse. At last, the robot system
features a high integration level and high real time per-
formance. Te host computer and cloud server can connect
the systemmodules in real time, thus making it easier for the
user to monitor and control the robot as well as analyze and
manage data. In the follow-up, image fusion technology can
be used to improve the quality of the collected images to
further improve the accuracy of algorithm recognition; by
further integrating each module and upgrading the human-
computer interaction software, the integration of the robot
system can be higher, and the operation efciency can be
improved while being convenient to use. Te robot plays a

signifcant role in assisting greenhouse seedling cultivation
research and promoting mechanization and intelligence of
seedling cultivation.
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