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As the computing capacity of existingmobile devices cannot fully meet the needs of users for communication quality, a computing
resource allocation strategy for 5G communication in the Internet of (ings (IoT) environment is proposed by applying UAV-
assisted edge computing. First, a systemmodel is constructed with the UAV deployed with mobile edge computing (MEC) servers
to provide assisted computing services for multiple users on the ground. Based on the optimization of the UAV trajectory,
communication scheduling, and the energy consumption model of the UAV, the problem of the total computational cost
minimization is formulated. (en, the genetic algorithm is improved by introducing a penalty function to solve this problem, in
which selection, crossover, and mutation operations are iterated to obtain the optimal allocation strategy for computational
resources. Finally, a simulation platform is constructed to analyze the proposed method. (e results show that the total cost and
total time of the proposed strategy are better than other comparison strategies.

1. Introduction

With the increasing demands in applications and the rapid
development of computing capacity, innovative applications
are emerging quickly, making it difficult for the traditional
4G network architecture to serve exponential growth of data
flows, diverse terminal devices, and various kinds of complex
service scenarios [1]. (e context of the Internet of Every-
thing also places higher demands on wireless communica-
tions in terms of mobile performance, security, network
delay, and communication reliability. At the same time,
people have higher requirements for computational per-
formance as artificial intelligence is developing quickly.
However, the computing capacity of existing mobile devices
cannot fully meet users’ demands for communication
quality [2, 3]. (erefore, mobile edge computing (MEC)
technology is proposed to improve the system computing
capacity so as to meet the users’ demands for communi-
cation. In addition, 5G has become a key technology to
achieve the best performance ofMEC systems in the Internet
of (ings (IoT) environment, which can effectively solve the
problems of delay, lack of storage, and poor computing

capacity in wireless communication networks by combining
reasonable resource optimization strategies for computing,
storage, and communication [4]. It can also give full play to
the characteristics of MEC networks, such as low response
delay in computation task offloading and good network
scalability [5].

By introducing UAVs into the MEC system, the flexible
deployment of UAVs allows users to jointly collaborate on
computing and communication, which improves the per-
formance of the MEC system [6, 7]. However, the rela-
tionship between the trajectory control strategy and the
capacity and energy consumption of traditional commu-
nication systems is unclear due to the fast mobility of UAVs.
It is necessary to combine the classical air-to-ground line-of-
sight channel model with a comprehensive multiobjective
strategy optimization to improve the effectiveness of the
algorithm based on the mobility of UAV during the com-
munication [8].

(ere have been some research studies on traditional
computation task offloading and resource allocation opti-
mization at home and abroad. In Ref. [9], an exact linear
search-based algorithm is proposed for finding the optimal
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solution by fixing the status update rate. As a design al-
ternative, a low complexity concave-convex procedure
(CCP) is also formulated for finding a near-optimal solution
relying on the original problem’s transformation into a form
represented by the difference of two convex problems. In
Ref. [10], the optimization problem of computational re-
source allocation was transformed into the optimal
matching for weighted bipartite graphs, which was solved by
adding fake containers, thus obtaining the optimal strategy
for resource matching of tasks in edge servers. But further
improvement should be considered on the quality of service.
Reference [11] proposed a dynamic resource allocation al-
gorithm in the cloud edge environment and obtained the
optimal scheme of resource scheduling based on tabu search
algorithm, but the multiobjective optimization effect is not
good. Reference [12] designed a multiobjective resource
allocation method, in which Pareto archiving evolution
strategy is used to optimize the time cost of IoT application,
load balance, and energy consumption of MEC server, so as
to find the optimal resource allocation scheme, but there is
still room for further optimization for calculating delay. In
Ref. [13], an enhanced resource allocation strategy in MEC
using the reinforcement learning-based MOACO algorithm
was proposed, in which MEC is used to predict the factors
affecting delay and evaluate the performance of adjacent user
equipment. A cognitive agent model was established to
evaluate the validity of resource allocation. Zhang et al.
proposed a MEC resource offloading method based on the
UAV architecture and alternatively solved the problem of
computational resource energy consumption and commu-
nication delay combined with an iterative algorithm, which
improves the efficiency of optimal resource management
[14]. However, the performance of overall optimization for
multiple UAVs still needs to be improved. An iterative
optimization algorithm with a double-loop structure for the
optimal configuration of multi-UAV-assisted MEC systems
was proposed by Zhang et al. [15]. Based on partial com-
puting offload mode, jointly optimize user association and
CPU cycle frequency for resource scheduling. In Ref. [16], a
strategy for formulating and solving computational off-
loading problems using a model-free reinforcement learning
framework was studied. And select an optimal overhead-
aware computational offloading action based on its state,
enabling the optimization of computational offloading
policies in wireless cellular networks in MEC. However, the
communication delay is still large due to the inadequacy of
communication policies.

Based on the aforementioned analysis, an UAV-assisted
edge computing resource allocation strategy for 5G com-
munications in the IoT environment is proposed to address
problems of energy consumption and delay in existing MEC
networks. (e main contributions are summarized as
follows:

(1) In this article, a new mobile edge computing system
is studied. In this system, the ground base station is
used to serve the UAV for computing diversion, and
some computing tasks are unloaded to the ground
base station.(en, based on the energy consumption

model of the rotor UAV, an optimization problem is
formulated to minimize the total UAV energy
consumption, At the same time, it meets the re-
quirements of single target calculation and
unloading of multiple ground base stations.

(2) In order to reduce the total system cost, the proposed
method applies an improved genetic algorithm to
solve the problem, in which the penalty function and
combinatorial coding are used to improve the global
search capability so as to obtain the optimal resource
allocation scheme while improving the allocation
efficiency.

2. System Modeling

2.1. System Model. (e scenario studied is the uplink
communication in an UAV-assisted MEC system, where
users on the ground perform computing tasks with the help
of UAVs, as shown in Figure 1. In the system, there is a
single-antenna rotary-wing UAV with a MEC server and N
number of users on the ground, which can be denoted as
n ∈ 1, 2, · · · , N{ }. Considering the three-dimensional Car-
tesian coordinate system, the position of the nth ground user
can be denoted as ln � (xn, yn). In addition, as the UAV flies
in a defined region and provides assisted computing service
to the ground users, the initial and final positions of the
UAV can be denoted as UI � (xI, yI) and UF � (xF, yF),
respectively.

Assume that each ground user offloads a portion of the
computational task to the UAV and the remainder is exe-
cuted locally due to the lack of computing capacity. It is also
assumed that the total execution time T can be divided
equally into K timeslots, where T � Kδ; here, δ refers to the
length of the timeslot which is small enough to ensure that
the position of the UAV does not change within each
timeslot and k � 1, 2, · · · , i · · · , K{ } denotes that there are K
number of timeslots. In the ith timeslot, the position of the
UAV can be represented as (x[i], y[i]) and the maximum
flight speed of the UAV is vmax, and then, the trajectory of
the UAV can be constrained as

U[0] � UI,

U[K] � UF,

‖U[i] − U[i − 1]‖

δ
≤ vmax,

(1)

Figure 1: System model.
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where the initial and final positions of the UAV during its
flight are given and the flight speed of the UAV must not
exceed the specified maximum flight speed. In addition, the
energy consumption of the UAV during the flight in the ith
timeslot can be calculated as

E
fly

[i] � α‖v[i]‖
2
, i ∈ k, (2)

where v[i] � [‖U[i + 1] − U[i]‖/δ] represents the flight
speed of the UAV in the ith timeslot. α � 0.5Jδ and J is a
constant related to the UAV payload.

2.2.ChannelModel. Because the wireless channel betweenN
ground users and UAV depends on the line-of-sight (LoS)
channel. (erefore, the channel gain between the UAV and
user n in the ith timeslot can be written as

hn(i) �
h0

d
2
n(i)

�
h0�������������

H
2

+ U(i) − ln
����

����

 , (3)

where h0 is the channel gain at a distance of 1m, dn[i] is the
distance between the user n and the UAV in the ith timeslot,
and H denotes the fixed flight altitude of the UAV.

Additionally, assume that the transmitting power of the
UAV is PU and the offloading rate of the UAV data can be
calculated as

Rn(i) � Blog2 1 +
PUhn(i)

σ2
 

� Blog2 1 +
β0

H
2

+ U(i) − ln
����

����
⎛⎝ ⎞⎠,

(4)

where B represents the system bandwidth, σ2 is the additive
Gaussian white noise power, and β0 represents the received
signal to noise ratio (SNR) at a distance of 1m.

2.3. Energy Consumption Model. From the above analysis,
the energy consumption of the UAV consists of three main
parts: the propulsion energy, computational energy, and
communication energy. It is described in detail in the fol-
lowing section.

2.3.1. Propulsion Energy Consumption Model for UAV.
(e unit energy consumption (J/m) for the UAV during its
flight at a speed of v can be calculated as

E0(v)≜
P(v)

v
� P0

1
v

+
3v

V
2
tip

⎛⎝ ⎞⎠

+ Pu

��������

v−4 +
1

4V4
0



−
1

2V4
0

⎛⎝ ⎞⎠

1/2

+
1
2
τ0ρHAv

2
,

(5)

where V2
tip denotes the tip speed of the rotor blades and V0

denotes the average rotor-induced hover speed. ρ is the air
density. A denotes the area of rotor disc. τ0 denotes the body
drag ratio. P0 and Pu denote the initial and process values of
hovering power, respectively.

For any given UAV trajectory U(i){ }, the propulsion
energy consumption can be expressed as

Efly(T, U(i){ }) � 
T

0
P(‖v(i)‖)di, (6)

where v(i) ≜ U(i) represents the speed of the UAV and
‖v(i)‖ is the speed of the UAV at the moment i.

2.3.2. Communication Energy Consumption Model of UAV
When Offloading Tasks. (e time-division multiple access
approach is considered here. Specifically, the UAV can es-
tablish contact with at most one ground user at any moment,
and φn(i) � 1 indicates that the ground user n has estab-
lished contact with the UAV. Otherwise, φn(i) � 0. φn(i)  is
the user scheduling function, which should meet the con-
strains as



N

n�1
φn(i)≤ 1, ∀i ∈ [0, T]. (7)

(e data volume Dn of the subtask offloaded from
ground user n to the UAV is a function of the variable T,
U(i), and φn(i), which can be expressed as

Dn T, U(i){ }, φn(i) (  � 
T

0
φn(i)Rn(i)di

� B 
T

0
φn(i)log2

1 +
β0

H
2

+ U(i) − ln
����

����
2

⎛⎝ ⎞⎠di.

(8)

Hence, when a task packet with data size (1 − ϖn)Dn is
offloaded to the ground base station at the moment i, we can
get

Dn T, U(i){ }, φn(i) ( ≥ 1 − ϖn( Dn, ∀n ∈ N, (9)

where Dn denotes users’ total computation volume and ϖn

denotes the bit allocation coefficient of the system.
(en, the communication energy consumption of the

UAV when offloading tasks can then be obtained as

EU � PU 
T

0


N

n�1
φn(i)⎛⎝ ⎞⎠di. (10)

2.3.3. Computational Energy Consumption of UAV. (e
energy consumed in local execution is directly determined
by the CPU workload F, which can be formulated as

F � Dζ , (11)
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where D represents the total data volume of system tasks. ζ
denotes the complexity of the application which obeys a
Gamma distribution. In order to minimize CPU energy
consumption, it is necessary to dynamically adjust the clock
frequency in each CPU cycle to achieve the best working
state. As a result, the computational energy consumption
required to execute the computation task whose data size is
ϖnDn within time T can be calculated as

Ecomp �
G ϖnDn( 

3

T
2 , (12)

where the coefficient G � 10− 11 is a constant that takes the
effective switching capacity and the probability of comple-
tion of the application execution into account.

To sum up, the total energy consumption of UAV is
composed of propulsion energy consumption, calculated
energy consumption, and communication energy con-
sumption, which is calculated as follows:

Etotal � Efly(T, U(i){ }) + PU 
T

0


N

n�1
φn(i)⎛⎝ ⎞⎠

+ 
N

n�1

G ϖnDn( 
3

T
2 .

(13)

2.4. Optimization Objectives. (e optimization objective is
to minimize the energy consumption of the UAV, which
needs to take the user scheduling function φn(i), the bit
allocation coefficient of the system ϖn and the UAV tra-
jectory U(i){ } into consideration. (en, the problem can be
formulated as

min
T, U(i){ }, φn(i){ },ϖn

Etotal

s.t. Dn T, U(i){ }, φn(i) ( ≥ 1 − ϖn( Dn, ∀n ∈ N,

‖ _U(i)‖≤ vmax, ∀i ∈ [0, T],

U(0) � UI,

U(T) � UF,

φn(i) ∈ 0, 1{ }, ∀n ∈ N, i ∈ [0.T],

0≤ϖn ≤ 1.

(14)

It should be noted that the problem requires to jointly
optimize the UAV trajectory U(i), the communication
scheduling φn(i), and the bit allocation coefficient ϖn. And
the trajectory U(i) and the communication schedule φn(i)

are both continuous functions with respect to time i. Fur-
thermore, the problem constraints are nonconvex and
contain binary constraints, making it difficult to obtain
optimal results.

3. Computational Allocation Strategy Based on
an Improved Genetic Algorithm

Minimizing energy consumption is a nonlinear 0-1 pro-
gramming problem, so the binary coded genetic algorithm is
selected to solve the problem. Genetic algorithm is an ef-
ficient global search algorithm, which has certain advantages
in solving complex problems such as nonlinear, multi-
peaked, large space, and globalization. It is famous for
simulating the law of “superiority and inferiority” in the
evolution of organisms in nature. (e main idea is to encode
the solution of the objective optimization problem into
chromosomes and then simulate the genetic evolution of the
chromosomes to gradually approach the optimal solution.

3.1. Encoding and Initial Populations. When the genetic
algorithm is applied to globally find the optimal offloading
strategy of a task, each offloading strategy needs to be
encoded into a corresponding chromosome to facilitate later
genetic operations such as crossover and mutation [17]. In
fact, encoding is the process of converting the feasible so-
lutions of the actual problem from its solution space to the
search space of the genetic algorithm. And choosing the
appropriate encoding method is the fundamental task in
solving the genetic algorithm.

(ere are a variety of encoding methods. Since in the
energy consumption minimization model for task off-
loading, the scheduling decision variable φn is a binary
vector, binary encoding is most suitable and conforms to the
encoding principle of minimum symbol set. (e population
size is set to be Q and task offloading decisions are randomly
generate, which should be encoded based on the binary
chromosome encoding method. (en, the initial chromo-
some population S(0) can be obtained.

Since an offloading decision variable φn contains n
number of decisions and it is known that those subtasks that
can only be executed locally do not require a decision, they
always have 0 decision, that is, φn � 0. Suppose that a mobile
application contains n number of subtasks, where ϑ0 number
of tasksmust be executed locally and ϑ1 number of tasks can be
offloaded, and ϑ0 + ϑ1 � n. (erefore, it is sufficient to make
offloading decisions for the ϑ1 number of subtasks. Namely, a
chromosome can be constructed by using ϑ1 number of binary
bits (genes) in the genetic algorithm, and after arriving at the
optimal solution, the completed offloading decision φn can be
formed by combining them with another ϑ0 number of binary
bits whose values are 0. An example of the combined encoding
solution is shown in Figure 2.

As shown in Figure 2, the mobile application is divided
into 10 subtasks, with 3 locally executed tasks and 7 offloading
tasks. Only the decision variables of 7 offloading subtasks
need to be encoded and solved. When the optimal solution is
achieved, it is combined with the decision variables of the
other 3 local subtasks to arrive at the final offloading decision.
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3.2. Fitness Function. (e optimization problem with con-
straints can be converted to an unconstrained problem by
introducing a penalty function [18, 19]. (e penalty function
can combine the constraints with the objective function by
introducing a multiplicative factor, and then, the optimi-
zation problem can be converted, while the optimal solution
to the original optimization problem remains unchanged.
(e specific process can be written as

ϕ � Efly(T, U(i){ }) + PU 
T

0


N

n�1
φn(i)⎛⎝ ⎞⎠ + 

N

n�1

G ϖnDn( 
3

T
2

+ 

T

i�1
c1 × Dn T, U(i){ }, φn(i) ( 

+ c2 ×‖ _U(i)‖ + c3 × φn(i),

(15)

where c1, c2, and c3 are penalty factors, which are the weights
of the inequality constraint functions in the optimization
problem. (e fitness function of the genetic algorithm can be
combined with the original optimization problem based on the
method of the penalty function. Since the proposed optimi-
zation problem is to minimize the total energy consumption of
the task allocation under the constraints, the fitness function
here will be designed to be inversely proportional to equation
(15), which can be calculated as

Fitness �
1
ϕ

. (16)

3.3. Genetic Operations

3.3.1. Selection. (emain function of selection is to simulate
the operation of survival of the fittest in nature, select the
chromosomes corresponding to some individuals with the
best adaptation to produce the next generation, and elim-
inate the parents with poor adaptability [20, 21]. In this

process, the number of individuals in parent and offspring
populations should be the same.

(e most common strategy used in selection is the
“proportional selection” strategy. For example, the proba-
bility of selecting the bth element with priority a in a j th
population can be expressed as

p
a,b
j �

Fitness
a,b
j xb( 


n
b�1 Fitnes

a,b
j xb( 

, xb � 0, 1{ }. (17)

Proportional selection is usually achieved using the
Roulette Wheel Selection (RWS) algorithm, which yields
probabilities pa,b

j that are always distributed in the interval
[0,1] and satisfy



n

b�1
p

a,b
j � 1. (18)

(us, for a population with a number of priority tasks in
each generation, assuming that the total number of ath
priority tasks isW and the RWS algorithm first generatesW
random numbers in the interval [0,1], [0, 1] and divides the
wheel into W parts according to the individual probabilities
pa,b

j . For each random number, if it is within
[

b−1
r�1pa,r

j , 
b
r�1 pa,r

j ], the individual corresponded to the task
will be selected to generate the next population with W
number of individuals. (us, the RWS algorithm can be
regarded as a scheme that decides whether to select an
individual based on the probability corresponding to its
fitness value. (erefore, this selection method has no safe-
guard mechanism and may allow some well-adapted indi-
viduals to be lost in genetics. According to the proposed
model, elitist strategy selection is used to ensure that the
better-adapted individuals will not be lost in the next
generation. (e elitist strategy selection is an improvement
of the basic genetic algorithm. In order to prevent the op-
timal solutions generated during evolution from being
destroyed by crossover andmutation operations, the optimal
one in each generation will be copied directly into the next
generation [22, 23]. (e genetic algorithm with the
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Figure 2: Combined encoding process.
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introduction of elitist strategy tends to have faster conver-
gence and better stability [24]. Since the execution time of
tasks with higher priority affects the waiting time for the
subsequent tasks with lower priority, the fitness value and
the maximum time for the execution of tasks with the same
priority should be considered simultaneously when per-
forming elitist strategy selection.

3.3.2. Crossover and Mutation. Individuals are selected for
the crossover and mutation operations based on the prob-
abilities of crossover and mutation. (e crossover operation
for two 6× 4 matrices is shown below, with the positions of
the lines chosen at random:

Before crossover:

0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0
1 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After crossover:

0 1 0 0
1 0 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.4. Genetic Update. (e new population is formed by
combining the population obtained through the above
operations with the initial population, and the energy
consumption and the corresponding fitness value of each
individual in the new population need to be calculated
[25, 26]. (e minimum value ϕ is taken as the result of this
iteration, and the individual with the greatest fitness value is
selected to update the population, that is, i � i + 1.

4. Experiments and Analysis

In the simulation experiments, numerical results will be
provided to validate the proposed algorithm. (e altitude of
the UAV is set to H� 100m, and the total communication
bandwidth is B� 3MHz. (e SNR is h0 � 60 dB, and the
communication power consumption of the UAV is fixed at
PU � 75W. (e maximum flight speed is vmax � 60m/s, and
the initial and final positions of the UAV are set to UI �

[0, 0]T and UF � [1200, 1200]T. (e specific simulation
parameter settings for the scenario when the number of
users is N� 50 are shown in Table 1.

(e parameters of the genetic algorithm are set as fol-
lows. (e number of populations is 50. (e maximum
number of iterations is 500. (e crossover probability is 0.7,
and the initial mutation probability is 0.01. (e penalty
factors c1, c2, and c3 are set to be 107.

4.1. UAV Trajectory. (e UAV trajectory based on the
proposed method under different task execution time T is
shown in Figure 3, where the red circle indicates the po-
sitions of the ground users.

As can be seen in Figure 3, when T� 30 s, the UAV flies
along a closed-loop trajectory and has a small flight range.
(e UAV is farther away from the user when offloading data
and the communication quality is poor. As T increases, that
is, T� 60 s and T�120 s, the distance between the UAV and
users decreases and the flight range expands, improving the
communication quality. When T is large enough, the UAV
continues to fly along a closed-loop trajectory and serves one
user for a certain number of timeslots. (us, it can be
concluded that the larger T leads to the greater flight range of
the UAV, making it is closer to the users, and then brings
better communication quality.

4.2. Comparison with Other Algorithms. To demonstrate the
performance of the proposed method, it is analyzed in
comparison with algorithms proposed in Ref. [10], Refer-
ence [12], and Ref. [16].

4.2.1. Effect of the Number of Tasks on Total Cost. When the
weight of time in the total cost is 0.5, there are 10 levels of
task priorities, and the effect of changes in the maximum
number of tasks at each level on the total cost is shown in
Figure 4. (e horizontal coordinate indicates the maximum

Table 1: Simulation parameter setting.

Simulation parameters Value
Flight altitude H 100m
Channel bandwidth B 3MHz
SNR received at reference distance 1m h0 60 dB
Communication power of UAV PU 75W
Maximum flight speed vmax 60m/s
Initial position UI [0, 0]
Final position UF [1200, 1200]
Number of users N 50
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Figure 3: (e map of UAV trajectory.
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number of tasks at each level. In the experiment, for each
level, a random number from 1 to the maximum is randomly
generated and the tasks are numbered, and then, the de-
pendencies on the tasks at the previous level are randomly
generated according to the mutation of different tasks. (e
vertical coordinate shows the total cost corresponding to the
allocation results obtained in different algorithms.

It can be seen in Figure 4 that the total cost grows
gradually as the number of tasks at each level increases.
Meanwhile, the lowest total cost is obtained in the proposed
method as the UAV is used for computational task off-
loading and the improved genetic algorithm is introduced
for problem-solving. When the task size is 30, the total cost
reaches 1800. Both Ref. [10] and Ref. [12] use a traditional
optimization algorithm, and the total cost grows most
rapidly with the increase of tasks in each level. Reference [16]
realizes the resource allocation based on a reinforcement
learning network. However, it lacks a reasonable offloading
target, so the total computational cost is higher than the
proposed method. In addition, when there are more tasks
per level, greater reduction in the total cost of executing all
tasks can be achieved using the proposed method and the
algorithm proposed in Ref. [16], while the proposed method
has a more significant advantage.

4.2.2. Effect of the Number of Tasks on Total Time. When
there are 10 levels in task priority, the effect of the change in
the number of tasks on the total time to execute the same task
is illustrated in Figure 5. (e horizontal coordinate indicates
the maximum number of tasks at each level, and the vertical
coordinate indicates the total time to execute all tasks.

As depicted in Figure 5, the total computation time is the
shortest due to the simplicity of the algorithm proposed in
Ref. [10], which creates a weighted complete bipartite graph
by adding false containers to achieve the optimal matching

of task resources in the edge server. Reference [12] uses a
Pareto archiving evolutionary strategy to optimize time cost,
load balancing of MEC servers, and energy consumption.
(e overall time consumed rises rapidly with the increase of
tasks due to too many optimization targets and the slow
search speed of the optimization algorithm. (e reinforce-
ment learning network in Ref. [16] is more complex, and its
search time is longer compared to the proposed method,
which uses an improved genetic algorithm. And the pro-
posed method introduces the UAV to dynamically adjust the
offloading strategies and reduce the data transmission time;
thus, its total time cost is 17 s when the task size is 30, which
is about 39% less than Ref. [16].

4.2.3. Effect of the Number of Mobile Terminals on Total Cost.
(e effect of the change in the number of mobile terminals
on the total system cost is shown in Figure 6.

As illustrated in Figure 6, when the number of mobile
terminals is less than 30, the computing resources are less and
the MEC server resources are relatively sufficient. (erefore,
most tasks are unloaded to the MEC server for execution, and
the overhead obtained by collaborative scheduling of different
algorithms is not different. With the increase of mobile
terminals, resources in the MEC server gradually decrease as
the collaborative scheduling uses the computational resources
of the mobile terminals. (e total cost of Ref. [10] and Ref.
[12] grows rapidly to over 4×104 due to their poor perfor-
mance in finding the optimal solution. (e proposed method
allocates resources based on an improved genetic algorithm
and the UAV platform, and its system cost is lower than that
of Ref. [16] which applies the reinforcement learning network.
Specifically, the cost of the proposed method is only half of
that of Ref. [16] when there are 100 mobile terminals in the
system, demonstrating that the resource allocation strategy in
the proposed method is ideal.
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Figure 4: Effect of the number of tasks on total cost.
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4.2.4. Effect of the Number of MEC Servers on Total Cost.
(e effect of the change in the number ofMEC servers on the
total system cost is shown in Figure 7.

It is depicted in Figure 7 that the queuing time at the
MEC server side decreases as the total computational cost
gradually decreases. (e proposed method has the smallest
total computational cost, which is less than 0.2×105 when
the number of MEC servers is 100. (is is because the use of
UAV allows dynamic adjust on the positions of MEC
servers, causing less transmission loss. Furthermore, as the
number of MEC servers continues to increase, all tasks are
offloaded to the MEC server for execution when resources in
the MEC server are sufficient. When the number of servers

exceeds 70, the overhead of the whole system is almost
unchanged, which shows that only increasing the number of
MEC servers cannot increase the total overhead of the
system. With the increase of MEC servers, the queuing
latency decreases and the cost when all tasks are offloaded to
MEC servers decreases at first, but it remains constant when
there are enough MEC servers.

5. Conclusion

As a key and fundamental technology in 5G, the MEC
system needs to meet the requirements of low latency and
low energy consumption. Applying the high flexibility of
UAVs, an UAV-assisted edge computing resource allocation
strategy for 5G communication in the IoT environment is
proposed. A system model of an UAV deployed with a MEC
server to provide assisted computing services for multiple
users on the ground is constructed. And the minimization of
total system cost, which is composed of channel model and
energy consumption model, is solved by the improved ge-
netic algorithm, obtaining the best resource allocation
strategy. (e simulation results show that

(1) (e system model introduces the UAV-assisted edge
computing with high flexibility, which can effectively
reduce the total system time to be less than 17 s when
the number of tasks increases.

(2) Improving the genetic algorithm by using a penalty
function and combination coding can enhance its
ability of global optimization so as to obtain a re-
source allocation scheme that minimizes the total
system cost. (e total cost of the proposed method is
1800 when the number of tasks per level is 30 and it is
less than 0.2×105 when the number of MEC servers
is 100.

(e main scenario studied in this article is a single UAV
providing assisted computing services to users, while multi-
UAV scenarios are more important in practical applications.
(erefore, in future research studies, the focus will be at-
tached on the scenarios of multiple UAVs serving ground
users.
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